Astrometric Detection of Exoplanets. The Astrometric Detection of Planets

Size: px
Start display at page:

Download "Astrometric Detection of Exoplanets. The Astrometric Detection of Planets"

Transcription

1 Astrometric Detection of Exoplanets

2 Detection and Properties of Planetary Systems Schedule of Lectures 05. Apr: Introduction and Background 12. Apr: The Radial Velocity Method: Method and Tools 19. Apr: The Radial Velocity Method: Results 26. Apr: Astrometric Detections 03. May: Direct Imaging 10. May: The Transit Method 17. May: Transiting Exopanets : Results 24. May: Atmospheres and Interiors 31. May: Gravitational Microlensing 07. Jun: The Timing Method (Dr. Eike Guenther) 14. Jun: Host Stars (Dr. Eike Guenther) 21. Jun: TBD 28. Jun: In Search of Habitable Planets 06. Jul: No Class

3 Stellar Motion There are 4 types of stellar motion that astrometry can measure: 1. Parallax (distance): the motion of stars caused by viewing them from different parts of the Earth s orbit 2. Proper motion: the true motion of stars through space 3. Motion due to the presence of companion 4. Fake motion due to other physical phenomena

4 Brief History Astrometry - the branch of astronomy that deals with the measurement of the position and motion of celestial bodies It is one of the oldest subfields of the astronomy dating back at least to Hipparchus (130 B.C.), who combined the arithmetical astronomy of the Babylonians with the geometrical approach of the Greeks to develop a model for solar and lunar motions. He also invented the brightness scale used to this day. Galileo was the first to try measure distance to stars using a 2.5 cm telescope. He of course failed. Hooke, Flamsteed, Picard, Cassini, Horrebrow, Halley also tried and failed

5 1838 first stellar parallax (distance) was measured independently by Bessel (heliometer), Struve (filar micrometer), and Henderson (meridian circle). Modern astrometry was founded by Friedrich Bessel with his Fundamenta astronomiae, which gave the mean position of 3222 stars Pritchard used photography for astrometric measurements

6 Mitchell at McCormick Observatory (66 cm) telescope started systematic parallax work using photography Astrometry is also fundamental for fields like celestial mechanics, stellar dynamics and galactic astronomy. Astrometric applications led to the development of spherical geometry. Astrometry is also fundamental for cosmology. The cosmological distance scale is based on the measurements of nearby stars.

7

8 Astrometry: Parallax Distant stars 1 AU projects to 1 arcsecond at a distance of 1 pc = 3.26 light years

9 Astrometry: Parallax So why did Galileo fail? θ= 1 arcsecond d = 1/θ, d in parsecs, θ in arcseconds d = 1 parsec 1 parsec = cm = 3.26 light years F D f = F/D

10 Astrometry: Parallax So why did Galileo fail? D = 2.5cm, f ~ 20 (a guess) Plate scale = 360 o = 2 π F arcsecs F F = 500 mm Scale = 412 arcsecs / mm Displacement of α Cen = mm Astrometry benefits from high magnification, long focal length telescopes

11 Astrometry: Proper motion Discovered by Halley who noticed that Sirius, Arcturus, and Aldebaran were over ½ degree away from the positions Hipparchus measured 1850 years earlier

12 Astrometry: Proper motion Barnard is the star with the highest proper motion (~10 arcseconds per year) Barnard s star in 1950 Barnard s star in 1997

13 Astrometry: Orbital Motion a 1 m 1 = a 2 m 2 a 1 = a 2 m 2 /m 1 a 2 a 1 D To convert to an angular displacement you have to divide by the distance, D

14 Astrometry: Orbital Motion The astrometric signal is given by: θ = m M a D This is in radians. More useful units are arcseconds (1 radian = arcseconds) or milliarcseconds (0.001 arcseconds) = mas m = mass of planet M = mass of star a = orbital radius D = distance of star θ = m P 2/3 M 2/3 D Note: astrometry is sensitive to companions of nearby stars with large orbital distances Radial velocity measurements are distance independent, but sensitive to companions with small orbital distances

15 Astrometry: Orbital Motion With radial velocity measurements and astrometry one can solve for all orbital elements

16 Orbital elements solved with astrometry and RV: P - period T - epoch of periastron ω - longitude of periastron passage e -eccentricity Solve for these with astrometry α - semiaxis major i - orbital inclination Ω - position angle of ascending node µ - proper motion π - parallax Solve for these with radial velocity γ - offset K - semi-amplitude

17 All parameters are simultaneously solved using non-linear least squares fitting and the Pourbaix & Jorrisen (2000) constraint α A s i n i ω a b s = P K 1 ( 1 - e 2 ) 2 π α = semi major axis ω = parallax K 1 = Radial Velocity amplitude P = period e = eccentricity

18 So we find our astrometric orbit But the parallax can disguise it And the proper motion can slinky it Julian Date x x10 6 Julian Date Julian Date x10 6

19 The Space motion of Sirius A and B

20 Astrometric Detections of Exoplanets The Challenge: for a star at a distance of 10 parsecs (=32.6 light years): Source Displacment (µas) Jupiter at 1 AU 100 Jupiter at 5 AU 500 Jupiter at 0.05 AU 5 Neptune at 1 AU 6 Earth at 1 AU 0.33 Parallax Proper motion (/yr) µas = 10-6 arcsec

21 The Observable Model Must take into account: 1. Location and motion of target 2. Instrumental motion and changes 3. Orbital parameters 4. Physical effects that modify the position of the stars

22 * * * * * Astrometry, a simple example 5 "plates" different scales different orientations * * * * * * * * * * * * * Observations are taken at different times, different instrument setups and sometimes different telescopes * * * * 4 * * * * * * * * 5 Result of Overlap Solution to Plate #1 Precision = standard deviation of the distribution of residuals ( ) from the model-derived positions (*) * * * * * * Frames have to rotated, stretched, aligned and stacked I0.002 arcsec

23 The Importance of Reference stars Example Focal plane Detector Perfect instrument Perfect instrument at a later time Reference stars: 1. Define the plate scale 2. Monitor changes in the plate scale (instrumental effects) 3. Give additional measures of your target Typical plate scale on a 4m telescope (Focal ratio = 13) = 3.82 arcsecs/mm = 0.05 arcsec/pixel (15 µm) = 57 mas/pixel. The displacement of a star at 10 parsecs with a Jupiter-like planet would make a displacement of 1/100 of a pixel ( mm)

24 Good Reference stars can be difficult to find: 1. They can have their own (and different) parallax 2. They can have their own (and different) proper motion 3. They can have their own companions (stellar and planetary) 4. They can have starspots, pulsations, etc (as well as the target)

25 Where are your reference stars?

26 In search of a perfect reference. You want reference objects that move little with respect to your target stars and are evenly distributed in the sky. Possible references: K giant stars V-mag > 10. Quasars V-mag >13 Problem: the best reference objects are much fainter than your targets. To get enough signal on your target means low signal on your reference. Good signal on your reference means a saturated signal on your target forced to use nearby stars

27 A saturated bright star:

28 Astrometric detections: attempts and failures To date no extrasolar planet has been discovered with the astrometric method, although there have been several false detections Barnard s star

29

30

31

32 Scargle Periodogram of Van de Kamp data False alarm probability = ! Frequency (cycles/year) A signal is present, but what is it due to?

33 New cell in lens installed Lens re-aligned Hershey 1973 Van de Kamp detection was most likely an instrumental effect

34 Lalande 21185

35 Lalande Gatewood 1973 Gatewood 1996: At a meeting of the American Astronomical Society Gatewood claimed Lalande did have a 2 M jupiter planet in an 8 yr period plus a second one with M < 1M jupiter at 3 AU. After 21 years these have not been confirmed.

36 Real Astrometric Detections with the Hubble Telescope Fine Guidance Sensors

37 HST uses Narrow Angle Interferometry!

38 The first space interferometer for astrometric measurements: The Fine Guidance Sensors of the Hubble Space Telescope Uses a Koersters Prism

39 Fossil Astronomy at its Finest - 1.5% Masses -0.1 W 1062 AB M Tot =0.568 ± 0.008M O M A =0.381 ± 0.006M O M B =0.187 ± 0.003M O π abs = 98.1 ± 0.4 mas Declination (arcsec) HST astrometry on a Binary star (N) 90 (E) RA (arcsec)

40 Image size at best sites from ground HST is achieving astrometric precision of mas

41 One of our planets is missing: sometimes you need the true mass! HD b B P = 2173 d, Msini = 10.2 M Jup Bean et al. 2007AJ B i = 4 deg m = 142 M Jup = M sun

42 M- dwarf host star Period = 60.8 days GL 876

43 The Radial Velocity Curve of Gl 876

44

45 The astrometric perturbation of GL 876

46 The mass of Gl876 b The more massive companion to Gl 876 (Gl 876b) has a mass M b = 1.89 ± 0.34 M Jup and an orbital inclination i = 84 ± 6. Assuming coplanarity, the inner companion (Gl 876c) has a mass M c = 0.56 M Jup

47 55 Cnc d Perturbation due to component d, P = 4517 days α = 1.9 ± 0.4 mas i = 53 ± 7 M d sin i = 3.9 ± 0.5 M J Combining HST astrometry and ground-based RV M d = 4.9 ± 1.1 M J McArthur et al ApJL, 614, L81

48 The 55 Cnc (= ρ 1 Cnc) planetary system, from outerto inner-most ID r(au) M (M Jup ) d ± 1.1 c ± 0.07 b ±0.19 e ± 0.02 = (17.8 ± 5.6 M earth ) a Neptune!! Where we have invoked coplanarity for c, b, and e

49 The Planet around ε Eridani Distance = 3.22 pcs = 10 light years Period = 6.9 yrs

50 HST Astrometry of the extrasolar planet of ε Eridani

51 The x- y- displacement of ε Eri ε Eri π = arcsec (parallax) a = 2.2 mas (semi-major axis) i = 30 (inclination) X-displacement (arc-seconds) Y-displacement (arc-seconds) Mass (true) = 1.53 ± 0.29 M Jupiter

52 Orbital inclination of 30 degrees is consistent with inclination of dust ring

53 Astrometric Masses of Exoplanets

54 Astrometric measurements of HD 38529

55 α A s i n i ω a b s = P K 1 ( 1 - e 2 ) 2 π Brown Dwarf

56 The x- y- perturbation of HD 38529

57 The Astrometric Orbit of HD 38529b

58

59 The Planetary System of υ And

60 The Orbital Inclinations of υ And c,d Note: the planets do not have the same inclination!

61 TheAstrometric Perturbation of υ And

62 The Astrometric Perturbation of υ And

63 The Astrometric Orbits of υ And c,d

64 The Purported Planet around Vb10 Up until now astrometric measurements have only detected known exoplanets. Vb10 was purported to be the first astrometric detection of a planet. Prada and Shalkan 2009 claimed to have found a planet using the STEPS: A CCD camera mounted on the Palomar 5m. 9 years of data were obtained.

65 The x- y- perturbation of Vb 10 Vb 10 Control star

66 The control stars are constant Control star Control star

67 The Periodograms show a significant signal at 0.74 years

68 The astrometric perturbation of Vb 10

69 The astrometric orbit of Vb 10 Mass = 6.4 M Jup

70 But there are no Radial Velocity Variations! A possible problem: The RV measurements show no variability, but these are at low precision It is unlikely that it is a more massive companion in an eccentric orbit Red lines: A high amplitude radial velocity model showing that the measurements would have missed the periastron passage

71

72 Looks like a confirmation with radial velocity measurements, but it is only driven by one point

73 The IR measurements shows no radial velocity variations no planet!

74 The RV data does not support the previous RV model. The only way is to have eccentric orbits which is ruled out by the astrometric measurements.

75 Is there something different about the first point? Science is a way of trying not to fool yourself. The first principle is that you must not fool yourself, and you are the easiest person to fool. Richard Feynman Taken with a different slit width!

76 Comparison between Radial Velocity Measurements and Astrometry. Astrometry and radial velocity measurements are fundamentally the same: you are trying to measure a displacement on a detector Radial Velocity 1. Measure a displacement of a spectral line on a detector 2. Thousands of spectral lines (decrease error by N lines ) 3. Hundreds of reference lines (Th- Ar or Iodine) to define plate solution (wavelength solution) Astrometry 1. Measure a displacement of a stellar image on a detector 2. One stellar image reference stars to define plate solution 4. Reference lines are stable 4. Reference stars move!

77 Space: The Final Frontier 1. Hipparcos 3.5 year mission ending in 1993 ~ Stars to an accuracy of 7 mas 2. Gaia stars V-mag 15: 24 µas V-mag 20: 200 µas Launch December 2013

78 GAIA from the Thüringer Landessternwarte Tautenburg

79 Gaia Sky Coverage Sky coverage due to motion about sun Sky coverage due to spacecraft tilt with respect to sun direction Sky coverage due to spin of spacecraft

80 GAIA Detection limits Casertano et al detection Parameters determined Red: G-stars Blue: M Dwarfs

81 Number of Expected Planets from GAIA 8000 Giant planet detections 4000 Giant planets with orbital parameters determined 1000 Multiple planet detections 500 Multiple planets with orbital parameters determined

82 Sources of Noise Secular changes in proper motion: Small proper motion Large proper motion Perspective effect

83 dµ dt = 2v r AU µπ dπ dt = v r AU π 2 In arcsecs/yr 2 and arcsecs/yr if radial velocity v r in km/s, π in arcsec, µ in arcsec/yr (proper motion and parallax)

84

85 The Secular Acceleration of Barnard s Star (Kürster et al. 2003).

86 Sources of Noise Relativistic correction to stellar aberration: No observer motion observer motion θ = angle between direction to target and direction of motion α aber v c sin θ 1 4 v 2 c 2 sin 2 θ v 3 c 3 sin 2 θ ( sin 2 θ) = arcsecs = 1-3 mas = ~ µas

87 Gravitational deflection of light: Sources of Noise α defl = 4 GM R o c 2 cot ψ 2 M = mass of perturbing body R o = distance between solar system body and source c, G = speed of light, gravitational constant ψ = angular distance between body and source

88 Source d min (1 µas) Sun o Mercury 83 9 Venus o.5 Earth o (@10 6 km) Moon 26 5 o (@10 6 km) Mars Jupiter o Saturn o Uranus Neptune Ganymede Titan Io Callisto Europa Triton Pluto d min is the angular distance for which the effect is still 1 µas α is for a limb-grazing light ray

89 Spots : y Brightness centroid x

90 Astrometric signal of starspots Latitude = 10 o,60 o Latitude = 10 o,0 o 2 spots radius 5 o and 7 o, longitude separation = 180 o ΔT=1200 K, distance to star = 5 pc, solar radius for star Horizontal bar is nominal precision of SIM

91 Our solar system from 32 light years (10 pcs) 1 milliarcsecond 40 µas In spite of all these problems GAIA has the potential to find planetary systems

92 Summary 1. Astrometry is the oldest branch of Astronomy 2. It is sensitive to planets at large orbital distances complimentary to radial velocity 3. Gives you the true mass 4. Least successful of all search techniques because the precision is about a factor of 1000 to large. 5. We have to await space based missions to have a real impact

Astrometric Detection of Exoplanets

Astrometric Detection of Exoplanets Astrometric Detection of Exoplanets Angles & Coordinates: 1 full circle = 360 degrees 1 degree = 60 arcminutes 1 arcminute = 60 arcseconds ~ 1 inch @ 100 yards (2.908 cm at 100 meters) 1 milliarcsec (mas)

More information

Methods for detection of extra-solar planets (exo-planets):

Methods for detection of extra-solar planets (exo-planets): Methods for detection of extra-solar planets (exo-planets): 2? 10? 3 ~100 ~500 51 Peg Folgende Folien basieren auf der Vorlesung Physics of Planetary Systems von Prof. Artie Hatzes (TLS Tautenburg) Sprache

More information

Analysis of Radial Velocity and Astrometric Signals in the Detection of Multi-Planet Extrasolar Planetary Systems Barbara McArthur

Analysis of Radial Velocity and Astrometric Signals in the Detection of Multi-Planet Extrasolar Planetary Systems Barbara McArthur Analysis of Radial Velocity and Astrometric Signals in the Detection of Multi-Planet Extrasolar Planetary Systems Barbara McArthur Dominique Naef Stephane Udry Didier Queloz Michel Mayor Mike Endl Tom

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Geneva Observatory The First Years Of ESO, Garching, 4.9.212 high-precision astrometry is powerful yields complete information,

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Other planetary systems

Other planetary systems Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

A Random Walk Through Astrometry

A Random Walk Through Astrometry A Random Walk Through Astrometry Astrometry: The Second Oldest Profession George H. Kaplan Astronomical Applications Department Astrometry Department U.S. Naval Observatory Random Topics to be Covered

More information

Terrestrial Planet (and Life) Finder. AST 309 part 2: Extraterrestrial Life

Terrestrial Planet (and Life) Finder. AST 309 part 2: Extraterrestrial Life Terrestrial Planet (and Life) Finder AST 309 part 2: Extraterrestrial Life The Drake Equation: N = N * f pl n hab f L f C f T L/T Stars? Planets? Habitable Origin Complex Intelligence, Lifetime planets?

More information

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Planet Detection! Estimating f p!

Planet Detection! Estimating f p! Planet Detection! Estimating f p! Can We See Them?! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

MASS DETERMINATIONS OF POPULATION II BINARY STARS

MASS DETERMINATIONS OF POPULATION II BINARY STARS MASS DETERMINATIONS OF POPULATION II BINARY STARS Kathryn E. Williamson Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602-2451 James N. Heasley Institute for Astronomy, University

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

Basic Properties of the Stars

Basic Properties of the Stars Basic Properties of the Stars The Sun-centered model of the solar system laid out by Copernicus in De Revolutionibus (1543) made a very specific prediction: that the nearby stars should exhibit parallax

More information

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018 Stellar distances and velocities ASTR320 Wednesday January 24, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Why are stellar distances important? Distances

More information

Conceptual Themes for the 2017 Sagan Summer Workshop

Conceptual Themes for the 2017 Sagan Summer Workshop Conceptual Themes for the 2017 Sagan Summer Workshop Authors: Jennifer C. Yee (SAO) & Calen B. Henderson (JPL) Theme 1: The Scale of the Einstein Ring Microlensing is most sensitive to planets near the

More information

Astr As ome tr tr ome y I M. Shao

Astr As ome tr tr ome y I M. Shao Astrometry I M. Shao Outline Relative astrometry vs Global Astrometry What s the science objective? What s possible, what are fundamental limits? Instrument Description Error/noise sources Photon noise

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 1 Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 2 Why Should We Expect to Find Other Planets? Observations show young stars are surrounded

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Radial Velocity Detection of Planets: I. Techniques and Tools

Radial Velocity Detection of Planets: I. Techniques and Tools Radial Velocity Detection of Planets: I. Techniques and Tools 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity measurements 4. Searching for periodic signals Detection and

More information

ASTRO 6570 Lecture 1

ASTRO 6570 Lecture 1 ASTRO 6570 Lecture 1 Historical Survey EARLY GREEK ASTRONOMY: Earth-centered universe - Some radical suggestions for a sun-centered model Shape of the Earth - Aristotle (4 th century BCE) made the first

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

There are 4 x stars in the Galaxy

There are 4 x stars in the Galaxy ExtraSolar Planets Our solar system consists of 1 Star 4 Jovian planets (+ icy moons) 4 Terrestrial planets The asteroid belt (minor planets) The Kuiper belt (dwarf planets, plutinos and TNOs) The Oort

More information

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization

Planets Around M-dwarfs Astrometric Detection and Orbit Characterization Planets Around M-dwarfs Page of 7 Planets Around M-dwarfs Astrometric Detection and Orbit Characterization N. M. Law (nlaw@astro.caltech.edu), S. R. Kulkarni, R. G. Dekany, C. Baranec California Institute

More information

The Doppler Method, or Radial Velocity Detection of Planets: I. Technique

The Doppler Method, or Radial Velocity Detection of Planets: I. Technique ASTs309L The Doppler Method, or Radial Velocity Detection of Planets: I. Technique 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity measurements ASTs309L The Doppler Effect:

More information

How big is the Universe and where are we in it?

How big is the Universe and where are we in it? Announcements Results of clicker questions from Monday are on ICON. First homework is graded on ICON. Next homework due one minute before midnight on Tuesday, September 6. Labs start this week. All lab

More information

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life. Planets & Life PHYS 214. Please start all class related  s with 214: 214: Dept of Physics (308A) Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s lecture Assignment 1 marked will hand

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

The Outer Planets (pages )

The Outer Planets (pages ) The Outer Planets (pages 720 727) Gas Giants and Pluto (page 721) Key Concept: The first four outer planets Jupiter, Saturn, Uranus, and Neptune are much larger and more massive than Earth, and they do

More information

Planets and Brown Dwarfs

Planets and Brown Dwarfs Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

More information

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU Lecture 23: Jupiter Solar System Jupiter s Orbit The semi-major axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semi-major axis to the orbital period 1 Jupiter s Orbit

More information

III The properties of extrasolar planets

III The properties of extrasolar planets III The properties of extrasolar planets (as of early 2016) http://sgoodwin.staff.shef.ac.uk/phy229.html 3.0 Introduction This lecture will discuss what we have found so far. It is important to remember

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

The Cosmological Distance Ladder. It's not perfect, but it works!

The Cosmological Distance Ladder. It's not perfect, but it works! The Cosmological Distance Ladder It's not perfect, but it works! First, we must know how big the Earth is. Next, we must determine the scale of the solar system. Copernicus (1543) correctly determined

More information

Finding Other Earths. Jason H. Steffen. Asset Earth Waubonsee Community College October 1, 2009

Finding Other Earths. Jason H. Steffen. Asset Earth Waubonsee Community College October 1, 2009 Finding Other Earths Jason H. Steffen Asset Earth Waubonsee Community College October 1, 2009 True Earth Analog Necessities: 1) Main Sequence Star 2) Within the Stellar Habitable Zone 3) Roughly Earth

More information

Astronomy 111 Review Problems Solutions

Astronomy 111 Review Problems Solutions Astronomy 111 Review Problems Solutions Problem 1: Venus has an equatorial radius of 6052 km. Its semi-major axis is 0.72 AU. The Sun has a radius of cm. a) During a Venus transit (such as occurred June

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Parallaxes with Hubble Space Telescope

Parallaxes with Hubble Space Telescope Parallaxes with Hubble Space Telescope How Bayes (and Bill) Helped G. Fritz Benedict and Barbara E. McArthur McDonald Observatory 10 June 2004 University of Texas 1 Outline Astrometry with HST A Recent

More information

Planet Detection. Estimating f p

Planet Detection. Estimating f p Planet Detection Estimating f p Can We See Them? Not yet, but there are plans 3 recent claims, but planets very far from star, so some doubts Problem is separating planet light from star light Star is

More information

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method Indirect Methods: gravitational perturbation of the stellar motion Exoplanets The reflex motion of the star is proportional to M p /M * This introduces an observational bias that favours the detection

More information

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Celestial Coordinate Systems

Celestial Coordinate Systems Celestial Coordinate Systems Horizon Coordinates h - altitude: +-90 deg A - azimuth (0-360 deg, from N through E, on the horizon) z - zenith distance; 90 deg - h (refraction, airmass) Kaler Equatorial

More information

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan Global edition Astronomy Today Eighth edition Eric Chaisson Steve McMillan The Distance Scale ~1 Gpc Velocity L Distance Hubble s law Supernovae ~200 Mpc Time Tully-Fisher ~25 Mpc ~10,000 pc Time Variable

More information

Interferometry of Solar System Objects

Interferometry of Solar System Objects Interferometry of Solar System Objects Bryan Butler National Radio Astronomy Observatory Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

PARALLAX AND PROPER MOTION

PARALLAX AND PROPER MOTION PARALLAX AND PROPER MOTION What will you learn in this Lab? We will be introducing you to the idea of parallax and how it can be used to measure the distance to objects not only here on Earth but also

More information

Useful Formulas and Values

Useful Formulas and Values Name Test 1 Planetary and Stellar Astronomy 2017 (Last, First) The exam has 20 multiple choice questions (3 points each) and 8 short answer questions (5 points each). This is a closed-book, closed-notes

More information

Structure & Evolution of Stars 1

Structure & Evolution of Stars 1 Structure and Evolution of Stars Lecture 2: Observational Properties Distance measurement Space velocities Apparent magnitudes and colours Absolute magnitudes and luminosities Blackbodies and temperatures

More information

Extra Solar Planetary Systems and Habitable Zones

Extra Solar Planetary Systems and Habitable Zones Lecture Overview Extra Solar Planetary Systems and Habitable Zones Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone Exoplanets Karen J. Meech, Svetlana

More information

Kepler s Multiple Planet Systems

Kepler s Multiple Planet Systems Kepler s Multiple Planet Systems TITech & Kobe Univ. February 2018 Jack J. Lissauer NASA Ames Outline Solar System & Exoplanets Kepler Mission Kepler planets and planetery systems Principal Kepler findings

More information

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton. Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope

More information

ASTB01 Exoplanets Lab

ASTB01 Exoplanets Lab ASTB01 Exoplanets Lab Author: Anders Johansen Revision date: $Date: 2015/08/28 14:55:59 $ Planets orbiting stars other than the Sun are called exoplanets. Stellar light reflected off

More information

OPTION E, ASTROPHYSICS TEST REVIEW

OPTION E, ASTROPHYSICS TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS OPTION E, ASTROPHYSICS TEST REVIEW S1. This question is about the nature of certain stars on the Hertzsprung-Russell diagram and determining

More information

Foundations of Astrophysics

Foundations of Astrophysics Foundations of Astrophysics Barbara Ryden The Ohio State University Bradley M. Peterson The Ohio State University Preface xi 1 Early Astronomy 1 1.1 The Celestial Sphere 1 1.2 Coordinate Systems on a Sphere

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

Ay 1 Lecture 2. Starting the Exploration

Ay 1 Lecture 2. Starting the Exploration Ay 1 Lecture 2 Starting the Exploration 2.1 Distances and Scales Some Commonly Used Units Distance: Astronomical unit: the distance from the Earth to the Sun, 1 au = 1.496 10 13 cm ~ 1.5 10 13 cm Light

More information

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars 4. Direct imaging of extrasolar planets Reminder: Direct imaging is challenging: The proximity to its host star: 1 AU at 1 for alpha Cen 0.15 for the 10th most nearby solar-type star The low ratio of planet

More information

Properties of the Solar System

Properties of the Solar System Properties of the Solar System Dynamics of asteroids Telescopic surveys, especially those searching for near-earth asteroids and comets (collectively called near-earth objects or NEOs) have discovered

More information

3.4 Transiting planets

3.4 Transiting planets 64 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES 3.4 Transiting planets A transits of a planet in front of its parent star occurs if the line of sight is very close to the orbital plane. The transit probability

More information

OPTION E, ASTROPHYSICS TEST REVIEW

OPTION E, ASTROPHYSICS TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: # Marks: XX Raw Score: IB Curve: BADDEST CLASS ON CAMPUS OPTION E, ASTROPHYSICS TEST REVIEW S1. This question is about the nature of certain stars on the Hertzsprung-Russell

More information

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

More information

Dynamics of the Earth

Dynamics of the Earth Time Dynamics of the Earth Historically, a day is a time interval between successive upper transits of a given celestial reference point. upper transit the passage of a body across the celestial meridian

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

The Galactic Exoplanet Survey Telescope (GEST)

The Galactic Exoplanet Survey Telescope (GEST) The Galactic Exoplanet Survey Telescope (GEST) D. Bennett (Notre Dame), J. Bally (Colorado), I. Bond (Auckland), E. Cheng (GSFC), K. Cook (LLNL), D. Deming, (GSFC) P. Garnavich (Notre Dame), K. Griest

More information

1UNIT. The Universe. What do you remember? Key language. Content objectives

1UNIT. The Universe. What do you remember? Key language. Content objectives 1UNIT The Universe What do you remember? What are the points of light in this photo? What is the difference between a star and a planet? a moon and a comet? Content objectives In this unit, you will Learn

More information

Using Gravity to Measure the Mass of a Star

Using Gravity to Measure the Mass of a Star STScI Newsletter Vol. 34 Issue 02 Using Gravity to Measure the Mass of a Star Abstract Kailash C. Sahu, ksahu[at]stsci.edu In a reprise of the famous 1919 solar eclipse experiment that confirmed Einstein's

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Observations of Extrasolar Planets

Observations of Extrasolar Planets Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

More information

Searching for transiting giant extrasolar planets. Department of Physics University of Tokyo Yasushi Suto

Searching for transiting giant extrasolar planets. Department of Physics University of Tokyo Yasushi Suto Searching for transiting giant extrasolar planets Department of Physics University of Tokyo Yasushi Suto Cosmology in the 20 th th century Rapid progress of cosmology since 1980 s existence of dark matter

More information

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Lecture 2 Yogesh Wadadekar ISYA 2016, Tehran ISYA 2016, Tehran 1 / 51 How sun moves? How do stars move in the sky? ISYA 2016, Tehran 2 / 51 Celestial sphere ISYA 2016, Tehran 3

More information

Theoretical Examination

Theoretical Examination Page 1 of (T1) True or False Determine if each of the following statements is True or False. In the Summary Answersheet, tick the correct answer (TRUE / FALSE) for each statement. No justifications are

More information

Chapter 06 Let s Make a Solar System

Chapter 06 Let s Make a Solar System like? Big picture. Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? The solar system exhibits clear patterns of

More information

The UVES M Dwarf Planet Search Programme

The UVES M Dwarf Planet Search Programme The UVES M Dwarf Planet Search Programme Martin Kürster Mathias Zechmeister Michael Endl 2 Eva Meyer,@W/K@MBJ(MRSHSTSEXQ RSQNMNLHD 'DHCDKADQF&DQL@MX 2,B#NM@KC.ARDQU@SNQX4MHUDQRHSXNE 3DW@R@S TRSHM42 We

More information

The Three Dimensional Universe, Meudon - October, 2004

The Three Dimensional Universe, Meudon - October, 2004 GAIA : The science machine Scientific objectives and impacts ------- F. Mignard OCA/ Cassiopée 1 Summary Few figures about Gaia Gaia major assets What science with Gaia Few introductory highlights Conclusion

More information

How did it come to be this way? Will I stop sounding like the

How did it come to be this way? Will I stop sounding like the Chapter 06 Let s Make a Solar System How did it come to be this way? Where did it come from? Will I stop sounding like the Talking Heads? What does the solar system look like? Big picture. The solar system

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Trigonometry p. 9 The Earth p. 12 The Celestial Sphere p. 14 The

More information

Gaia Launched in Dec D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to

Gaia Launched in Dec D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to Gaia Launched in Dec 2013 3D map of the stars near Sun = 10% of Galaxy Measure the positions of a billion stars to brightness V=20 Precise to 0.000024 arcseconds = hair at 1000km Accurate parallax/distances?

More information

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory Finding Extra-Solar Earths with Kepler William Cochran McDonald Observatory Who is Bill Cochran? Senior Research Scien;st McDonald Observatory Originally interested in outer planet atmospheres Started

More information

Observed Properties of Stars ASTR 2120 Sarazin

Observed Properties of Stars ASTR 2120 Sarazin Observed Properties of Stars ASTR 2120 Sarazin Extrinsic Properties Location Motion kinematics Extrinsic Properties Location Use spherical coordinate system centered on Solar System Two angles (θ,φ) Right

More information

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position.

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position. PERIODICITY FORMULAS: Sidereal Orbit Tropical Year Eclipse Year Anomalistic Year Sidereal Lunar Orbit Lunar Mean Daily Sidereal Motion Lunar Synodical Period Centenial General Precession Longitude (365.25636042

More information

Analysis of Radial Velocity Measurements

Analysis of Radial Velocity Measurements Analysis of Radial Velocity Measurements Sistemas Planetários - 2nd project - 2011/2012 João Faria 1. Introduction The existence of solar systems other than our own has been speculated for a long time,

More information

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth Size of Astronomical istances ecture 2 Astronomical istances istance to the Moon (1 sec) istance to the Sun (8 min) istance to other stars (years) istance to centre of our Galaxy ( 30,000 yr to centre)

More information

A Comparison of Radio and Optical Astrometric Reduction Algorithms

A Comparison of Radio and Optical Astrometric Reduction Algorithms A Comparison of Radio and Optical Astrometric Reduction Algorithms G. H. Kaplan U.S. Naval Observatory ghk@newcomb.usno.navy.mil Abstract This paper examines the correspondence between two approaches to

More information

Our Solar System and Its Place in the Universe

Our Solar System and Its Place in the Universe Our Solar System and Its Place in the Universe The Formation of the Solar System Our Solar System includes: Planets Dwarf Planets Moons Small Solar System bodies Sun Outer portion created Planets and their

More information

Lecture notes 18: Double stars and the detection of planets

Lecture notes 18: Double stars and the detection of planets Lecture notes 18: Double stars and the detection of planets More than half of all stars are in double star or in multiple star systems. This fact gives important clues on how stars form, but can also has

More information

The FAME Mission: An Adventure in Celestial Astrometric Precision

The FAME Mission: An Adventure in Celestial Astrometric Precision The FAME Mission: An Adventure in Celestial Astrometric Precision Kenneth J. Johnston Scientific Director United States Naval Observatory Washington, DC 20390 Abstract-The Full-sky Astrometric Mapping

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

AST111 PROBLEM SET 2 SOLUTIONS. RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch J2000).

AST111 PROBLEM SET 2 SOLUTIONS. RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch J2000). AST111 PROBLEM SET 2 SOLUTIONS Home work problems 1. Angles on the sky and asteroid motion An asteroid is observed at two different times. The asteroid is located at RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch

More information

18 An Eclipsing Extrasolar Planet

18 An Eclipsing Extrasolar Planet Name: Date: 18 An Eclipsing Extrasolar Planet 18.1 Introduction One of the more recent new fields in astronomy is the search for (and discovery of) planets orbiting around stars other than our Sun, or

More information