What Can Craters Tell Us About a Planet?

Size: px
Start display at page:

Download "What Can Craters Tell Us About a Planet?"

Transcription

1 Group Members Absent Materials What Can Craters Tell Us About a Planet? Image set Tray Flour Corn meal Different size of objects to use as meteorites Sifter Meter stick Balance Ruler to smooth the surface of the powder Drop cloths Stopwatch Procedure 1. Examine Mars Image Set images 2 and 3. What do you think caused the circular shapes? 2. Spread the drop cloth on the floor, setting the prepared tray in the center.

2 3. Drop you largest meteorite onto a section of the surface from a height of two meters. Using your stopwatch, determine how long it takes to hit the tray. Remove the meteorite. Record data about the meteorite in the table. Sketch and describe the ejecta blanket and any changes to the surface. Did the layers mix? If so, how? Which layers are visible in the crater? At the rim? Beyond the rim? Is the ejecta thrown out evenly in all directions? How large is the crater compared with the meteorite?

3 Are the meteorites generally bigger, smaller or the same size as the craters they form? What was the velocity of your meteorite at impact? (Use the formula v = at where a equals 9.8 meters per second and t = time). t = seconds. v = meters per second What is the kinetic energy of the object? (Kinetic energy is the energy the meteorite has because of its motion.) (Use the formula K = ½ MV 2 where M = mass (weight) of meteorite and V = the Velocity of the object.) V = meters per second K = joules 4. Repeat Step 3 with another meteorite. Make sure the observations include comparisons between the craters. Continue until all three meteorites have been dropped. (Note: Do not smooth the surface between meteorites because it is important for them to see the pattern of a heavily cratered surface with overlapping ejecta blankets.) Meteorite #2

4 Did the layers mix? If so, how? Did it overlap the other crater(s)? Which layers are visible in the crater? At the rim? Beyond the rim? Is the ejecta thrown out evenly in all directions? How large is the crater compared with the meteorite? Are the meteorites generally bigger, smaller or the same size as the craters they form? What was the velocity of your meteorite at impact? (Use the formula v = at where a equals 9.8 meters per second and t = time). t = seconds. v = meters per second

5 What is the kinetic energy of the object? (Kinetic energy is the energy the meteorite has because of its motion.) (Use the formula K = ½ MV 2 where M = mass (weight) of meteorite and V = the Velocity of the object.) V = meters per second K = joules Meteorite #3 - Did the layers mix? If so, how? Did it overlap the other crater(s)? Which layers are visible in the crater? At the rim? Beyond the rim?

6 Is the ejecta thrown out evenly in all directions? How large is the crater compared with the meteorite? Are the meteorites generally bigger, smaller or the same size as the craters they form? What was the velocity of your meteorite at impact? (Use the formula v = at where a equals 9.8 meters per second and t = time). t = seconds. v = meters per second What is the kinetic energy of the object? (Kinetic energy is the energy the meteorite has because of its motion.) (Use the formula K = ½ MV 2 where M = mass (weight) of meteorite and V = the Velocity of the object.) V = meters per second K = joules 5. Clean up your work area. 6. Look at Image Set images 2 and 3. How are these craters and the model alike and different?

7 5. Consider a question that confronted scientists: How did the mud-flow-like ejecta blankets form? Create a list of hypotheses that might include ideas such as the ground contained water or ice that melted after impact, and the muddy ejecta flowed instead of being thrown away from the crater. the meteorite was made of ice, which melted upon impact turning the ground to mud which subsequently flowed. the impact might have melted the ground and turned it into lava, which flowed away from the crater.

8 Data Table Meteorite # Diameter (mm) Mass (g) Crater Diameter What Can We Say About the Craters in Image Set images 2 and 3? Interpretations We re Reasonably Sure Of Questions We Have How We Might Answer Those

9 To understand crater formation and to identify the distinctive features of impact sites, it is best to begin by examining the simplest case the effect of a meteorite on a dry surface. 3. Have students fill the container with about 5-10 cm of the light colored powder (larger meteorites require a thicker layer of powder). Have them pack it lightly and smooth it with a card or ruler. If cost or availability are factors, use fine sand for the first 5-10 centimeters and then sift a 1-2 cm layer of fine, light-colored powder such as grout over it. 4. Have students sprinkle a 1-2 cm layer of dark powder over the lightcolored powder, using enough to hide the light-colored powder. Have them gently smooth the dark layer with a card or ruler, being careful not to mix the two layers.

What Craters Can Tell Us about a Planet

What Craters Can Tell Us about a Planet C16 What Craters Can Tell Us about a Planet Activity C16 Grade Level: 6 12 Source: This activity comes from the MarsQuest On Line web site. It was developed by TERC, with funding from the National Science

More information

Safety goggles must be worn whenever the slingshot is in use!

Safety goggles must be worn whenever the slingshot is in use! Name Impact Cratering Lab Class Purpose To learn about the mechanics of impact cratering, the concept of kinetic energy, and to recognize the landforms associated with impact cratering. Materials This

More information

Purpose: To determine the factors affecting the appearance of impact craters and ejecta.

Purpose: To determine the factors affecting the appearance of impact craters and ejecta. Title: Impact Craters Subject: Science Grade Level: 4 th - 8th Purpose: To determine the factors affecting the appearance of impact craters and ejecta. Materials 1 pan Lunar surface material Tempera paint,

More information

Impact Craters Teacher Page Purpose

Impact Craters Teacher Page Purpose 1 of 5 2008-05-01 12:15 PM Hawai'i Space Grant College, Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, 1996 Background Impact Craters Teacher Page Purpose To determine the factors

More information

Lunar Crater Activity - Teacher Pages

Lunar Crater Activity - Teacher Pages Adapted from: http://www.nasa.gov/pdf/180572main_etm.impact.craters.pdf I took the activity and simplified it so that there was just one independent variable: the drop height, and one dependent variable:

More information

Earth s Layers Activity

Earth s Layers Activity Earth s Layers Activity Purpose: To visualize the basic structure of the Earth and how we study it. Materials: Procedure: A piece of poster board shaped like a pizza slice with radius of about 16 cm Compass

More information

Impact Cratering. Exercise Four. Instructor Notes. Background. Purpose. Materials. Suggested Correlation of Topics

Impact Cratering. Exercise Four. Instructor Notes. Background. Purpose. Materials. Suggested Correlation of Topics 2.0 hours Exercise Four Impact ing Instructor Notes Suggested Correlation of Topics s on planets and satellites, gradation, impact mechanics, physics Purpose This exercise demonstrates the mechanics of

More information

GLY 103 Laboratory Lab 5: Impact Processes

GLY 103 Laboratory Lab 5: Impact Processes GLY 103 Laboratory Lab 5: Impact Processes Impact cratering is a catastrophic event that affects all of the solid bodies in the solar system: Mercury, Mars, Venus, the Earth and Moon, and the satellites

More information

Cratering Pre-Lab. 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor?

Cratering Pre-Lab. 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor? Cratering Pre-Lab 1.) How are craters produced? 2.) How do you expect the size of a crater to depend on the kinetic energy of an impactor? 3.) What are the units of kinetic energy that you will use in

More information

Teachersʼ Guide. Creating Craters. Down to Earth KS3

Teachersʼ Guide. Creating Craters. Down to Earth KS3 Teachersʼ Guide Creating Craters Creating Craters! Creating Craters - Teachersʼ Guide - 2 Overview This lesson allows pupils to create impact craters in layered dry materials. Pupils can perform controlled

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

Lab #11. Impact Craters

Lab #11. Impact Craters Lab #11 Impact Craters Introduction It is clear from the surface features of geologically old planets (the Moon, Mercury) and some of the unusual phenomena in the solar system (Earth s large moon, the

More information

MAPPING THE SURFACE OF MARS

MAPPING THE SURFACE OF MARS MAPPING THE SURFACE OF MARS What will you learn in this lab? How can we determine the geologic history of a planet or satellite without travelling to the planetary body? In this lab you will create a simple

More information

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 7

Stars Above, Earth Below By Tyler Nordgren Laboratory Exercise for Chapter 7 Name Section Partners By Tyler Nordgren Laboratory Exercise for Chapter 7 Equipment: Ruler Sand box Meter stick Log-log paper Small balls such as those included in the table at the end of the lab THE FORMATION

More information

Conservation of Momentum: Marble Collisions Student Version

Conservation of Momentum: Marble Collisions Student Version Conservation of Momentum: Marble Collisions Student Version In this lab you will roll a marble down a ramp, and at the bottom of the ramp the marble will collide with another marble. You will measure the

More information

I. Introduction: II. Background:

I. Introduction: II. Background: I. Introduction: Is there a difference between the size of the crater and the ejecta blanket? This question could lead to many different discoveries. When you think about the thousands of craters on mars,

More information

This Rocks! Author: Sara Kobilka Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison

This Rocks! Author: Sara Kobilka Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison This Rocks! Author: Sara Kobilka Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison Purpose: To learn about the rock cycle and the role that weather

More information

Cake Batter Lava. Teacher Page Purpose. Background. Preparation

Cake Batter Lava. Teacher Page Purpose. Background. Preparation Teacher Page:Cake Batter Lava 8/12/04 15:42 Hawai'i Space Grant College, Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, 1996 Cake Batter Lava Teacher Page Purpose Background To

More information

Initial Observations and Strategies

Initial Observations and Strategies STUDENT WORKSHEET 1 Initial Observations and Strategies Name(s) Date Look at the Thermal Emission Imaging System (THEMIS) Daytime Infrared (IR) image mosaic your teacher has given you. You will be investigating

More information

Teacher Lesson 4: Are Craters Always Round?

Teacher Lesson 4: Are Craters Always Round? www.barringercrater.com Teacher Lesson 4: Are Craters Always Round? Overview Most of the craters we have seen on Mars, Mercury and the Moon are round, but is that always the case? Daniel Barringer experimented

More information

Meteoroids & Craters

Meteoroids & Craters Meteoroids & Craters This activity consists of a few simple experiments in which students will create a model of crater formation to determine the effect of (1) size of meteoroid, (2) speed of meteoroid,

More information

Type of Exercise: In-Class Activity or Laboratory Exercise.

Type of Exercise: In-Class Activity or Laboratory Exercise. Using Lava Flows & Volcanic Structures on Mars to Introduce the Concept of Relative Dating in Introductory Courses Audeliz Matias Skidmore College, Saratoga Springs, NY 12866 amatias@skidmore.edu Type

More information

Where do they come from?

Where do they come from? Exploring Meteorite Mysteries Lesson 3 Searching for Meteorites Objectives Students will: perform a demonstration of meteorite impacts with water balloons. assess various terrains for meteorite recovery

More information

Ice Cores: Modeling Ice Sheets

Ice Cores: Modeling Ice Sheets Details Completion Time: About 1 period Permission: Download, Share, and Remix Ice Cores: Modeling Ice Sheets Overview Working in groups students will use common materials to create layers of snow and

More information

COSMORPHOLOGY - May 2009

COSMORPHOLOGY - May 2009 Name COSMORPHOLOGY - May 2009 Geologic landforms Purpose: By studying aerial photographs you will learn to identify different kinds of geologic features based on their different morphologies and learn

More information

Where do they come from?

Where do they come from? Exploring Meteorite Mysteries Lesson 7 Crater Hunters Objectives Students will: observe impact craters on Earth and other solar system bodies. discuss geologic forces that have removed most of the evidence

More information

FIFTH GRADE WORKBOOK

FIFTH GRADE WORKBOOK FIFTH GRADE WORKBOOK student PLATE TECTONIC CYCLE - VOLCANOES (5) LAB PROBLEM: Do rocks produced by volcanoes provide clues about that volcanic eruption? PREDICTION: Look at a map and locate where the

More information

Conservation of Momentum: Marble Collisions Advanced Version

Conservation of Momentum: Marble Collisions Advanced Version Conservation of Momentum: Marble Collisions Advanced Version In this lab you will roll a marble down a ramp, and at the bottom of the ramp the marble will collide with another marble. You will measure

More information

Forensics with TI-Nspire Technology

Forensics with TI-Nspire Technology Forensics with TI-Nspire Technology 2013 Texas Instruments Incorporated 1 education.ti.com Science Objectives Determine the height of a source of blood spatters or drops Graph data to find quantitative

More information

Igneous Rocks. How Do Igneous Rocks Form? Liquid to Solid

Igneous Rocks. How Do Igneous Rocks Form? Liquid to Solid Igneous Rocks Answering the Big Question The activities in this lesson will help students answer the Big Question by modeling the result of different cooling rates of magma and lava and by learning how

More information

CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds

CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds PART 1: OBSERVATIONS AND PRELIMINARY QUESTIONS The images below are of impact craters from different planetary worlds

More information

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a "geologic history" for a planet or moon is?

Mapping the Surface of Mars Prelab. 1. Explain in your own words what you think a geologic history for a planet or moon is? Prelab 1. Explain in your own words what you think a "geologic history" for a planet or moon is? 2. Describe some of the major features seen on the Martian surface by various spacecraft missions over the

More information

1.2: Observing the Surfaces of Mars and Earth

1.2: Observing the Surfaces of Mars and Earth GEOLOGY ON MARS Unit 1 - Chapter 1-2 Comparing Rocky Planets 1.2: Observing the Surfaces of Mars and Earth Log on to Amplify Geology on Mars Chapter 1.2 In a moment, you will watch a video made by other

More information

EROSION RATES (1 Hour)

EROSION RATES (1 Hour) EROSION RATES (1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: 3-5 OVERVIEW In this activity, students will conduct simple investigations to collect data on erosion rates of different Earth

More information

Introduction. Background

Introduction. Background Introduction In introducing our research on mars we have asked the question: Is there a correlation between the width of an impact crater and the depth of that crater? This will lead to answering the question:

More information

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria?

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria? Page 184 7.1 The Surface of the Moon Surface Features To the naked eye, the Moon is a world of grays. Some patches are darker than others, creating a vague impression of what some see as a face ( the man

More information

Essential Knowledge #1

Essential Knowledge #1 Essential Knowledge #1 It is essential for students to analyze and interpret data demonstrating that matter is anything that has mass and volume. All matter is made up of very small particles too small

More information

Lesson Plan Craters and Inquiry on their formation Monday, August 13, Prepared by Bill Lammela

Lesson Plan Craters and Inquiry on their formation Monday, August 13, Prepared by Bill Lammela NYS Standards Addressed Lesson Plan Craters and Inquiry on their formation Monday, August 13, 2007 Prepared by Bill Lammela Standard 1: Analysis, Inquiry, and Design--Students will use mathematical analysis,

More information

Teacher Background. Impact! Down to Earth KS 3&4

Teacher Background. Impact! Down to Earth KS 3&4 Teacher Background Impact! Impact! - Teacher Background- 2 Meteorites What Are They, and Where Do They Come From? Meteorites are rocks from space that have passed through the atmosphere and landed on the

More information

What is Crater Number Density?

What is Crater Number Density? Ronald Wilhelm & Jennifer Wilhelm, University of Kentucky 2008 What is Crater Number Density? REAL Curriculum Crater Number Density Today we will learn some math that is necessary in order to learn important

More information

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables 1 I can How to Write a Hypothesis http://www.myteacherpages.com/webpages/jflynt/portfolio.cfm?subpage=1001394

More information

Teachers Guide. Making Regolith. Down to Earth KS3

Teachers Guide. Making Regolith. Down to Earth KS3 Teachers Guide Making Regolith Making Regolith - Teachers Guide - 2 Making Regolith on the Earth and the Moon Background All Moon rocks originated through hightemperature processes with little or no involvement

More information

Mystery Substance Laboratory Experiment

Mystery Substance Laboratory Experiment Mystery Substance Laboratory Experiment Name: 5 th Grade PSI Science Score: / 5 Experiment Question: How effectively can you determine what a mystery substance is by testing its observable properties?

More information

Chemistry Period 3 Group 5 Section 2: Matter October 7, 2010 Hailey Benesch

Chemistry Period 3 Group 5 Section 2: Matter October 7, 2010 Hailey Benesch Chemistry Period 3 Group 5 Section 2: Matter October 7, 2010 Hailey Benesch Title: Mixture Separation Lab Objective: The goal of this experiment is to clearly determine what the unknown substance is by

More information

Geologic Landforms Seen on Aerial Photos Instructor Notes

Geologic Landforms Seen on Aerial Photos Instructor Notes 1.5 hours Exercise Two Geologic Landforms Instructor Notes Suggested Correlation of Topics Geomorphology, gradation, impact cratering, tectonism, volcanism, photography Purpose The objective of this exercise

More information

STUDENT GUIDE. Written and Developed by:

STUDENT GUIDE. Written and Developed by: CRATER COMPARISONS Investigating Impact Craters on Earth and Other Planetary Worlds STUDENT GUIDE Written and Developed by: Paige Valderrama Graff Science Education Specialist, Jacobs Astromaterials Research

More information

Classroom Space Regolith Formation Teacher s Guide

Classroom Space Regolith Formation Teacher s Guide Regolith Formation on the Earth and the Moon. Background The loose fragments of material on the Moon s surface are called regolith. This regolith, a product of bombardment by meteorites, is the debris

More information

Effect of Height and Surface Texture on Blood Spatter

Effect of Height and Surface Texture on Blood Spatter Effect of Height and Surface Texture on Blood Spatter Name PART ONE Directions: 1. Spread newspaper on the floor of your work area 2. You will prepare one ½ sheet of paper for each height used. 3. Label

More information

The picture of an atom that you may have in your mind that of a nucleus

The picture of an atom that you may have in your mind that of a nucleus Electron Probability Visualizing a Probability Region Chemistry Electron Probability Chemistry MATERIALS beans, pinto cup, 3-oz plastic graduated cylinder, 100 ml meter stick string tape, masking target,

More information

Edible Space Rocks Previsit Activity for Solar System Grades 4-8 CDE Standards

Edible Space Rocks Previsit Activity for Solar System Grades 4-8 CDE Standards Edible Space Rocks Previsit Activity for Solar System courtesy NASA/JSC Grades 4-8 CDE Standards Science: 1,4.1,4.4 Math: 5 Preparation and Materials Estimated Preparation Time: 45 minutes Estimated Activity

More information

Name Date. Partners. Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna

Name Date. Partners. Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna Name Date Partners Comparative Planetology by Mary Lou West after Paul Johnson and Ron Canterna Purpose : to become familiar with the major features of the planets of the solar system, especially the Earth,

More information

Supporting Video:

Supporting Video: Mars Habitation Earth, Earth's moon, and Mars Balloons Students construct scale models of Earth, Moon, & Mars to discover size and scale. Associated Mars Information Slideshow: Through a PowerPoint Presentation,

More information

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS OBJECTIVES: I. Understand the three basic types of tectonic interactions that can occur II. Identify tectonic interactions on other planets MATERIALS:

More information

Explore Marvel Moon: KID MOON: SPLAT!

Explore Marvel Moon: KID MOON: SPLAT! ~ LPI EDUCATION/PUBLIC ENGAGEMENT SCIENCE ACTIVITIES ~ Explore Marvel Moon: KID MOON: SPLAT! OVERVIEW Participants model ancient lunar impacts using water balloons. Like huge asteroids, the water balloons

More information

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 8 Astronomy Today 7th Edition Chaisson/McMillan Chapter 8 The Moon and Mercury Units of Chapter 8 8.1 Orbital Properties 8.2 Physical Properties 8.3 Surface Features on the Moon

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

PLANETARY TEMPERATURES

PLANETARY TEMPERATURES APS 1010 Astronomy Lab 97 Planetary Temperatures PLANETARY TEMPERATURES Mars is essentially in the same orbit. Mars is somewhat the same distance from the Sun, which is very important. We have seen pictures

More information

Student Exploration: Roller Coaster Physics

Student Exploration: Roller Coaster Physics Name: Date: Student Exploration: Roller Coaster Physics Vocabulary: friction, gravitational potential energy, kinetic energy, momentum, velocity Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Geology - Workbook. Hvíluklettur, Tunguskjól and Myrkrastofa- Pseudo-craters

Geology - Workbook. Hvíluklettur, Tunguskjól and Myrkrastofa- Pseudo-craters Geology - Workbook Hvíluklettur, Tunguskjól and Myrkrastofa- Pseudo-craters Walk from Hæðagarðsvatn lake and along the Klausturstígur path down to Hvíluklettur (Resting Hillock), Tunguskjól and Myrkrastofa

More information

Concepts in Physics Lab 9: Equipotential Lines

Concepts in Physics Lab 9: Equipotential Lines INTRODUCTION Concepts in Physics Lab 9: Equipotential Lines Taner Edis Fall 2018 Introduction We will play around with electrical energy, seeing how very abstract, invisible concepts like electrical energy

More information

Lunar Cratering and Surface Composition

Lunar Cratering and Surface Composition Lunar Cratering and Surface Composition Earth vs. Moon On Earth, the combined actions of wind and water erode our planet s surface and reshape its appearance almost daily Most of the ancient history of

More information

How can you tell rocks on another planet apart?

How can you tell rocks on another planet apart? How can you tell rocks on another planet apart? Grade Range: K - 6 G.L.E Focus: 1.1.5 Time Budget: 1 hour WASL Vocabulary: Overview: Students learn that scientists send rovers to other planets to learn

More information

Highs and Lows Floods and Flows

Highs and Lows Floods and Flows Highs and Lows Floods and Flows Planetary Mapping Facilitator Guide Becky Nelson Education Specialist The Lunar and Planetary Institute Highs and Lows, Floods and Flows Planetary Mapping Overview In this

More information

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons ESCI 110: Planetary Surfaces Page 3-1 Introduction Exercise 3 Surfaces of the Planets and Moons Our knowledge of the solar system has exploded with the space exploration programs of the last 40 years.

More information

Lecture 15 Crater counting on Mars (Matt Smith, ESS)

Lecture 15 Crater counting on Mars (Matt Smith, ESS) Tuesday, 24 February Lecture 15 Crater counting on Mars (Matt Smith, ESS) Reading assignment: Ch. 8.1-8.5 Radar Basics (p.626 648) Ch 8.20 - Passive microwave (p. 709-714) Next lecture Forest remote sensing,

More information

Illustrate It! You will need to set out colored pencil and markers at this station.

Illustrate It! You will need to set out colored pencil and markers at this station. Kesler Science Station Lab Comets, Meteors, and Asteroids Teacher Directions Explore It! I will spend much of my time at this station making sure that the students are doing the orbits correctly. I have

More information

Mahopac Central School District Curriculum Introduction to Science 8

Mahopac Central School District Curriculum Introduction to Science 8 Introduction to Science 8 A. The goal of science is to understand the natural world 1. As you make new observations and test new explanations your view of the natural world may change again and again 2.

More information

Physical and Chemical Properties of Matter Lab

Physical and Chemical Properties of Matter Lab Physical and Chemical Properties of Matter Lab Purpose To introduce the student to physical and chemical properties of matter and their use for the identification and separation of compounds. Each student

More information

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet Part II: Solar System The Moon Audio update: 2014Feb23 The Moon A. Orbital Stuff B. The Surface C. Composition and Interior D. Formation E. Notes 2 A. Orbital Motion 3 Earth-Moon is a Binary Planet 4 1.

More information

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy LESSON 2 THE EARTH-SUN-MOON SYSTEM Chapter 8 Astronomy OBJECTIVES Investigate how the interaction of Earth, the Moon, and the Sun causes lunar phases. Describe conditions that produce lunar and solar eclipses.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E). A) This

More information

UNIVERSITY COLLEGE LONDON

UNIVERSITY COLLEGE LONDON UNIVERSITY COLLEGE LONDON University Of London Observatory PHAS1510 Certicate in Astronomy 1213.01 PHAS1510-03: Impact Craters on the Moon, Mars and Mercury Name: An experienced student should aim to complete

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version B of the exam. Please fill in (B). A) This

More information

TEMPERATURE AND DEEP OCEAN CIRCULATION

TEMPERATURE AND DEEP OCEAN CIRCULATION TEMPERATURE AND DEEP OCEAN CIRCULATION OVERVIEW Ocean currents arise in several ways. For example, wind pushes the water along the surface to form wind-driven currents. Over larger areas, circular wind

More information

Replica Rocks - Teacher Notes

Replica Rocks - Teacher Notes Replica Rock Recipes Conglomerate(left), breccia (top) and sandstone(right) This activity helps students remember the difference between matrix and clasts. It also reinforces that clastic sedimentary rocks

More information

Measure with a Centimeter Model

Measure with a Centimeter Model Lesson 9.1 Measure with a Centimeter Model 1 2 3 4 5 6 7 8 Place unit cubes on the squares. How many cubes long is the pencil? The pencil is 8 cubes long. Each unit cube is about 1 centimeter long. So,

More information

Problem How can I find and mine valuable resources from a simulated moon surface?

Problem How can I find and mine valuable resources from a simulated moon surface? National Aeronautics and Space Administration MOON MINING Student Section Student Name Lesson Objective This lesson simulates the locating and the mining of ilmenite for oxygen on the moon. During this

More information

SCI-5 Deane_Units1_2_SOL_Practice_Test Exam not valid for Paper Pencil Test Sessions

SCI-5 Deane_Units1_2_SOL_Practice_Test Exam not valid for Paper Pencil Test Sessions SCI-5 Deane_Units1_2_SOL_Practice_Test Exam not valid for Paper Pencil Test Sessions [Exam ID:1PEFE2 1 Directions: Type your answer in the box. Use a whole number. What is the mass of the rock shown? g

More information

Static Electricity Lab Part 1

Static Electricity Lab Part 1 Static Electricity Lab Part 1 Objective: Understand how electric charges interact and how static electricity builds up and transfers. Materials: balloons unflavored gelatin flat plate ping-pong ball Procedure:

More information

Impact Cratering. David A. Hardy MARS EDUCATION PROGRAM

Impact Cratering. David A. Hardy MARS EDUCATION PROGRAM Impact Cratering David A. Hardy MARS EDUCATION PROGRAM Impact cratering overview: What we will learn about impact craters today: Causes of impacts - meteorites! Impact craters in our solar system Formation

More information

Astro 210 Lecture 19 October 8, 2010

Astro 210 Lecture 19 October 8, 2010 Astro 210 Lecture 19 October 8, 2010 Announcements Remember me? HW 5 due HW 6 available, due in class next Friday Night Observing continues next week Last time: The Moon Q: from Earth we only see one side

More information

Welcome to Class 12: Mars Geology & History. Remember: sit only in the first 10 rows of the room

Welcome to Class 12: Mars Geology & History. Remember: sit only in the first 10 rows of the room Welcome to Class 12: Mars Geology & History Remember: sit only in the first 10 rows of the room What are we going to discuss today? How easily could humans live on Mars? Is there water on Mars? PRS: If

More information

ASTROVENTURE Extend Lesson Concept Activities

ASTROVENTURE Extend Lesson Concept Activities Extend Lesson Concept: Carbon dioxide and water vapor are greenhouse gases that absorb energy radiated from Earth s surface and release some of it back towards the Earth, increasing the surface temperature.

More information

WONDERING ABOUT WEATHER

WONDERING ABOUT WEATHER NAME DATE PARTNERS WONDERING ABOUT WEATHER You are lying in the grass enjoying a few relaxing hours in the summer sun. You have your favorite cold drink and magazine close at hand. You close your eyes

More information

ASTRONOMY. Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow

ASTRONOMY. Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow ASTRONOMY Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow FIGURE 9.1 Apollo 11 Astronaut Edwin Buzz Aldrin on the Surface of the Moon. Because there is no atmosphere, ocean, or geological activity

More information

MIDTERM PRACTICE EXAM ANSWERS

MIDTERM PRACTICE EXAM ANSWERS MIDTERM PRACTICE EXAM ANSWERS 1. (2) Location B shows that the altitude of the noon Sun increases between Dec 21. and June 21. Location B also shows that the Dec. 21 noon Sun is at an altitude of approximately

More information

Introduction. Background

Introduction. Background Introduction Our question was What is the affect of the elevation of an area on the state of the crater found there?. This question is important because it shows us how the weather at each elevation affects

More information

Glacier Group Purpose Lesson Overview Materials Fig 1

Glacier Group Purpose Lesson Overview Materials Fig 1 Glacier Group Name Purpose To determine which of the following parameters slope, ice temperature, or basal conditions affects the glacier speed the most. Lesson Overview This lesson is intended to teach

More information

National Center for Atmospheric Research: Climate Discovery Teacher s Guide

National Center for Atmospheric Research: Climate Discovery Teacher s Guide Lesson Summary Students use a photo of the Bhutan glaciers in order to investigate the different effects albedo has on solar absorption. Prior Knowledge & Skills Graphing skills Data collection skills

More information

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth The Moon What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth Location, location, location! About 384,000 km (240,000 miles) from Earth

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

College Physics II Lab 5: Equipotential Lines

College Physics II Lab 5: Equipotential Lines INTRODUCTION College Physics II Lab 5: Equipotential Lines Peter Rolnick and Taner Edis Spring 2018 Introduction You will learn how to find equipotential lines in a tray of tap water. (Consult section

More information

The Moon & Mercury: Dead Worlds

The Moon & Mercury: Dead Worlds The Moon & Mercury: Dead Worlds There are many similarities between the Moon and Mercury, and some major differences we ll concentrate mostly on the Moon. Appearance of the Moon from the Earth We ve already

More information

Patterns on Earth 4.8C

Patterns on Earth 4.8C Have you ever made shadow puppets? If you put your hand between a flashlight and a wall, you will make a shadow. You might have made a rabbit shape or some other animal shape with your hands. Your hand

More information

STRUCTURAL GEOLOGY. Deformation

STRUCTURAL GEOLOGY. Deformation eformation STRUCTURAL GEOLOGY Styles of deformation These items can be used to demonstrate different styles of deformation to the class. To show elastic deformation: elastic band, sponge or plastic ruler,

More information

A billion miles from the Sun a tiny moon, Enceladus, orbits Saturn.

A billion miles from the Sun a tiny moon, Enceladus, orbits Saturn. Life on Enceladus? A billion miles from the Sun a tiny moon, Enceladus, orbits Saturn. Enceladus is one of the brightest objects in the solar system. 2 Starter Main Plenary Enceladus is covered in clean

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation

1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation Loulousis 1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation moon -a body that revolves around a planet and that has less mass than the

More information

Table of Contents. Diagnostic Pre-test... 5 Lesson 1: What Is an Atom? Lesson 5: Gases. Lesson 6: Melting and Freezing. Lesson 2: What Are Molecules?

Table of Contents. Diagnostic Pre-test... 5 Lesson 1: What Is an Atom? Lesson 5: Gases. Lesson 6: Melting and Freezing. Lesson 2: What Are Molecules? Table of Contents Diagnostic Pre-test................. 5 Lesson 1: What Is an Atom? What Can You See?................ 11 What Is Matter Made Of?........... 12 Describing the Atom............... 13 What

More information

Activity 95, Universal Gravitation! Issues & Earth Science: Student Book!!

Activity 95, Universal Gravitation! Issues & Earth Science: Student Book!! Activity 95, Universal Gravitation! from! Issues & Earth Science: Student Book!!! 2012 The Regents of the University of California! 95 I N V E S T I G AT I O N force is any push or pull. The force due

More information