Constraining dark energy and primordial non-gaussianity with large-scale-structure studies!

Size: px
Start display at page:

Download "Constraining dark energy and primordial non-gaussianity with large-scale-structure studies!"

Transcription

1 Constraining dark energy and primordial non-gaussianity with large-scale-structure studies! Cristiano Porciani, AIfA, Bonn!

2 Research interests! Cosmology, large-scale structure, intergalactic medium! For what regards large-scale structure:! Structure formation (models + simulations)! Models of galaxy biasing! Analysis of galaxy surveys: 2dFGRS, 2Qz, ZCOSMOS (coordinator of the galaxy clustering working group)! Estimation of clustering statistics and of their uncertainties, covariances, etc.! Higher-order statistics (3pt function, bispectrum)! Structure identifiers (pattern recognition)!

3 Estimation of 2-point statistics! New method to estimate 2- point statistics which does not require modeling the observational sampling strategy (Porciani & Lilly 2009)! Particularly important for future dark energy missions using spectroscopic data (e.g. EUCLID)! TRR 33: B8!

4 Galaxy clustering and Dark Energy! MNRAS, 2004, 349, 281! Pre BAOs era! At present it is not realistic to place strong constraints on DE from observed galaxy clustering (strong degeneracy with halo occupation)! Future generation surveys with larger sky coverage when complemented by weak lensing measurements will provide direct constraints on the growth of density fluctuations!

5 Current state of the art! BAO detected with 99.74% confidence in combined sample using all of 2dfGRS + SDSS Main + SDSS LRGs! Combined with WMAP this gives Ω m = ± (68% CL)! PERCIVAL ET AL. (2007)

6 The current state of the art Bennett 2006

7 Telescope / Ongoing/Future Survey! N(Z) / 10BAO surveys! instrument! 6! Dates! Status! WiggleZ! AAT/AAΩ! 0.2! ! In progress! FastSound! Subaru/FMOS! 0.6! ! Proposal! BOSS! SDSS! 1.5! ! Starting! HETDEX! HET/VIRUS! 1.0! ! Part funded! LAMOST-DE! LAMOST! t.b.d.! ?! Proposal! WFMOS-DE! Subaru/wfmos! >2! ! Funding?! EUCLID/JDEM! ESA/NASA/JDEM! >100! 2012+! Status?! SKA! SKA! >100! 2020+! FUTURE!

8 BAO survey comparison! complete, in-progress & future BAO SURVEYS HETDEX 1.9<z<3.5 [? ] FASTSOUND z=1.2 [? ] Courtesy: S. Maddox!

9 Non-linear evolution of BAOs! Crocce & Scoccimarro 2008! Jeong & Komatsu 2006!

10 Biasing and redshift distortions! As far as mass density fluctuations are concerned a few analytical methods are available: standard Eulerian perturbation theory (z>1), renormalized perturbation theory (2 flavors), renormalized Lagrangian perturbation theory! However, simulations tend to be expensive and no analytical method can successfully account for galaxy biasing and redshift distortions! Solving this problem is key to fully exploit the potential of the planned surveys (Interpolation of simulations? New models? Marginalization of meta parameters?)! TRR 33: B8!

11 Beyond 2-point statistics: preserving phase information Coles & Chiang 2000!

12 Tracing the cosmic web Hahn, CP et al. 2007a, 2007b Using the theory of dynamical systems (after getting inspired by the Zel dovich approximation), we have developed a very simple but efficient descriptor of the LSS.! Space is partitioned between structures of different dimensionality (voids, sheets, filaments and knots) based on the dimension of the stable manifold for the orbit of test particles.!

13 Anisotropic correlations! Higher-order statistic and anisotropic correlations depend on the underlying cosmology. Not clear yet what the sensitivity to dark energy is.! Lee, Hahn, CP, 2009!

14 Primordial non-gaussianity! (extra parameters for dark energy studies?)!

15 The origin of structure! One of the major unsolved mysteries in cosmology! Many competing theories that differ in their predictions some of which are accessible to astronomical observations today!

16 Canonical inflation! Our universe derives from the exponential expansion of a tiny causally connected patch! The accelerated expansion is driven by a spatially homogeneous scalar field (the inflaton) which is slowly rolling down its potential! Introduced to address problems that were eating away at the foundations of the hot bigbang model (flatness, horizon, relic density, expansion)! V(ϕ)! ϕ!

17 Perturbations and inflation! Small quantum fluctuations of the inflaton are naturally produced! The exponential expansion rapidly stretches them to longer and longer wavelengths! On super-hubble scales, fluctuations become overdamped, leading to curvature perturbations that can be described as classical! Courtesy of Prof. Sir M. Berry!

18 D-term! oscillating! tachyon! old! hybrid! chaotic! eternal! Inflationary zoo! curvaton! brane! curvaton scenario! new! Two scalar fields: one drives the accelerated expansion (the inflaton) and the second one is responsible for the formation of structure with its quantum fluctuations (the curvaton)! ghost! R 2! extended! natural! super-natural! extra-natural! double! F-term! multi-field!

19 Ekpyrotic/cyclic models! Inspired by heterotic! M-theory! Khoury et al. 2001, 2002, Steinhardt & Turok 2002! The collision of 2 parallel branes embedded in an extradimensional bulk marks the beginning of the hot, expanding phase of the universe! Prior to the collision the universe is contracting, perturbations are generated during this phase!

20 Model predictions! Canonical inflation! Curvaton scenario! Ekpyrotic universe!! Geometry! Flat Flat! Flat! WMAP! WMAP! WMAP! Spectrum of perturbations! Statistics of perturbations! Nearly scaleinvariant! Nearly scaleinvariant! Nearly scaleinvariant! WMAP! WMAP! WMAP! Nearly Non-Gaussian! Non-Gaussian! Gaussian!

21 Spectra and multi-spectra! φ( r k 1 )φ( r k 2 ) = (2π) 3 δ( r k 1 + r k 2 )P(k 1 ) Power spectrum! φ( r k 1 )φ( r k 2 )φ( r k 3 ) = (2π) 3 δ( r k 1 + r k 2 + r k 3 )B(k 1,k 2,k 3 ) For a Gaussian field, B=0! Bispectrum!

22 Shape of non-gaussianity! Depending on the properties of the bispectrum of the gravitational potential, non-gaussianity can be broadly classified into two classes (Babich et al. 2004):! NG of the local (squeezed) form, where B(k 1, k 2, k 3 ) is dominated by the configurations with k 1 «k 2 k 3! (curvaton models, Ekpyrotic/cyclic models)! NG of the equilateral form, where! B(k 1, k 2, k 3 ) is dominated by the configurations with k 1 k 2 k 3! (ghost inflation, DBI inflation)!

23 A particularly simple model! Most of the local models can be reduced to the simple form (Salopek & Bond 1990; Falk et al. 1993; Gangui et al. 1994):! Φ r x [ ] ( ) = φ( x r r ) + f NL φ 2 ( x ) φ 2 Bardeen s potential auxiliary non-linearity parameter! Gaussian field (a real number)! Fractional non-gaussian corrections are 10-5 f NL!

24 Expected non-gaussianity! f NL! Model! References! (n s -1)/4! 0.01! canonical inflation! Maldacena 2003! Acquaviva et al. 2003! -5/(4r)! >10! curvaton! Lyth et al. 2003! 100! multi-field inflation! Linde & Mukhanov 1997! ! new ekpyrotic models! Buchbinder et al. 2007, Creminelli & Senatore 2007, Koyama et al. 2007! 100 (equilateral)! DBI inflation! Alishahiha et al. 2004! 100 (equilateral)! ghost inflation! Arkani-Hamed et al. 2004!

25 The state of the art! f NL (95% CL)! Data! Method! Estimator! Reference! -58<f NL <134! WMAP 1yr! bispectrum! KSW! Komatsu et al. 2003! -27<f NL <121! WMAP 1yr! bispectrum! C+! Creminelli et al. 2006! -54<f NL <114! WMAP 3yr! bispectrum! KSW! Spergel et al. 2007! -36<f NL <100! WMAP 3yr! bispectrum! C+! Creminelli et al. 2006! 27<f NL <147! WMAP 3yr! bispectrum! YW! Yadav & Wandelt 2008! -9<f NL <111! WMAP 5yr! bispectrum! YW! Komatsu et al. 2008! -4<f NL <80! WMAP 5yr! bispectrum! SZ! Smith et al. 2009! -70<f NL <91! WMAP 3yr! Minkowski functionals! -! Hikage et al. 2008! 23<f NL <75! WMAP 3yr! 1-point PDF! -! Jeong & Smoot 2007! -178<f NL <64! WMAP 5yr! Minkowski functionals! -8<f NL <111! WMAP 5yr! wavelet decomposition! -! Komatsu et al. 2008! -! Curto et al. 2008!

26 Summary of CMB studies! Current 95% limits from bispectrum: -9<f NL <111 and -4<f NL <80! Most-likely value f NL 40-60! 7 per cent chance that a Gaussian map gives a higher mostlikely value! Two studies claim detection of non-gaussianity at high confidence! Topological methods give somewhat different results!

27 The near future: Planck! The Planck satellite (a new European CMB probe) will be launched this Spring! The expected Cramer-Rao limit is Δf NL 5 from temperature anisotropies (Komatsu & Spergel 2001)! This reduces to Δf NL 3 from the joint analysis of temperature and polarization maps (Yadav, Komatsu & Wandelt 2007)! Smaller angular scales!

28 Other probes of non-gaussianity?! It would be important to cross-check results against probes with different systematics! What about the large-scale structure? E.g. the galaxy bispectrum?! Unfortunately the non-linear growth of perturbations superimposes a much stronger non-gaussian signal onto the primordial one that is then difficult to recover! (Verde et al. 2000, Scoccimarro et al. 2004, Sefusatti & Komatsu 2007).!

29 Back to life in 2008! The large-scale clustering of collapsed objects (galaxies, galaxy clusters) as measured by the power spectrum depends linearly on f NL!!! Dalal et al. 2008! An approximated model based on linear theory captures all the relevant physics (Dalal et al. 2008, Matarrese & Verde 2008, Slosar et al. 2008, Afshordi & Tolley 2008, McDonald 2008)!

30 Afshordi & Tolley 2008! How does it work?! Gaussian case:! long and short wavelength modes of the density field are independent! Non-Gaussian case:! the long modes modulate the amplitude of the short ones via the gravitational potential! δ s = δ G [1+ 2 f NL φ l /g(z)]

31 Competitive with CMB! Fitting the best datasets for galaxy clustering with the approximated model, gives:! -29<f NL <70 at 95% CL! Slosar et al. 2008! This is competitive with the WMAP 5yr results!! Combined: 0<f NL <69! Caveat: how accurate is the first-order model?!

32 Numerical simulations! We thus decided to run a series of high-resolution simulations of structure formation from non- Gaussian initial conditions! Box-sizes from 150 h -1 Mpc to 1200 h -1 Mpc! 600,000 CPU hours at the Swiss National Super Computing Centre in Manno (CH)!

33 The large-scale structure! 250 h -1 Mpc! f NL = 0 f NL = 750!

34 Testing the model! Good news: the clustering dependence on f NL is clearly present in the simulations! Pillepich, CP & Hahn 2009! Bad news: The simple model overestimates the effect by a scale-dependent amount! An accurate fitting formula has been extracted from the simulations.! see also Desjacques et al. 2009,! Grossi et al. 2009!

35 Higher-order models! Can we do better allowing more model complexity?! Giannantonio & Porciani 2009! Third-order perturbation theory (Feynman diagrams) + model for halo formation (small scales) + model for background evolution (large-scales)!

36 Future prospects! Predicted uncertainties for detection (not for measurement)! q 0.8! Dalal et al. 2008, Carbone et al. 2008, McDonald 2008, Afshordi & Tolley 2008!

37 Degeneracies, degeneracies everywhere! p-euclid, weak lensing: Δf NL =5 for a fixed WMAP5 cosmology but:! CP + Amara, Carron, Giannantonio, Pillepich!

38 Mass power spectrum! Pillepich, CP & Hahn 2009! Primordial non-gaussianity modifies the mass power spectrum on the scales probed by BAO and weak-lensing studies!! How does this impact dark energy studies?!

39 Forecasting: p-euclid! CP + Amara, Carron, Giannantonio, Pillepich! DETF FoM: ! (no priors) no f NL f NL! Primordial non- Gaussianity changes the matter power spectrum! Constraints on the dark-energy equation of state from weak lensing are severely weakened! TRR 33: B5!

40 Forecasting: p-euclid! CMB studies help. Using Planck priors, FoM=200!

41 Forecasting EUCLID! However, the spectroscopic survey in EUCLID will provide additional constraints on f NL from galaxy clustering! The combined dataset would thus be able to constrain both dark energy and f NL at an unprecedented level! TRR33: B8!

42 The large-scale structure! 250 h -1 Mpc! f NL = 0 f NL = 750!

43 Zooming in! 160 h -1 Mpc! f NL = 0 f NL = 750!

44 A massive galaxy cluster! 40 h -1 Mpc! f NL = 0 f NL = 750!

45 f NL from rare events! Rare events have the advantage that they maximize deviations from the Gaussian case! However, they have the obvious disadvantage of being rare!! Early attempts inconclusive due to small number statistics (e.g. Willick 2000)!

46 Mass function! Pillepich, CP & Hahn 2009! We have derived an accurate fitting formula for the mass distribution of galaxy clusters and groups as a function of f NL! The halo mass function extracted from the simulations provides a benchmark for future determinations of f NL with galaxy-cluster surveys!

47 Forecasting: erosita! First imaging all-sky survey in the medium energy X-ray range up to 10 KeV with unprecedented angular resolution (10 5 galaxy clusters!)! We are currently deriving the expected constraints on dark energy, dark matter and f NL from cluster counts and clustering properties - with A. Pillepich (ETHZ) and T. Reiprich (AIfA).! TRR 33: B7!

48 Dark-energy clustering! The effective sound speed of dark energy determines the scale at which DE can cluster (this can be pretty small for phantom energy, k-essence field)! Takada 2006! Can we measure this?! ISW? Hubble diagram as a function of direction on the sky? Galaxy redshift surveys?!

49 ISW effect! Tommaso Giannantonio:! Combined measurement of the ISW effect at 4.5σ! Giannantonio et al. 2008! Applications to dark energy, modified gravity - DGP, f(r) - and primordial non- Gaussianity! TRR 33: B4!

50 Thanks for your attention!

51

WMAP 5-Year Results: Measurement of fnl

WMAP 5-Year Results: Measurement of fnl WMAP 5-Year Results: Measurement of fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Non-Gaussianity From Inflation, Cambridge, September 8, 2008 1 Why is Non-Gaussianity Important? Because a

More information

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 Hunting for Primordial Non-Gaussianity fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 1 What is fnl? For a pedagogical introduction to fnl, see Komatsu, astro-ph/0206039

More information

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian?

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Eiichiro Komatsu The University of Texas at Austin Colloquium at the University of Oklahoma, February 21, 2008 1 Messages

More information

Archaeology of Our Universe YIFU CAI ( 蔡一夫 )

Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) 2013-11-05 Thermal History Primordial era 13.8 billion years by WMAP/NASA Large Scale Structure (LSS) by 2MASS Cosmic Microwave Background (CMB) by ESA/Planck

More information

Primordial Non-Gaussianity and Galaxy Clusters

Primordial Non-Gaussianity and Galaxy Clusters Primordial Non-Gaussianity and Galaxy Clusters Dragan Huterer (University of Michigan) Why study non-gaussianity (NG)? 1. NG presents a window to the very early universe (t~10-35 seconds after Big Bang).

More information

Inflazione nell'universo primordiale: modelli e predizioni osservabili

Inflazione nell'universo primordiale: modelli e predizioni osservabili Inflazione nell'universo primordiale: modelli e predizioni osservabili Sabino Matarrese Dipartimento di Fisica Galileo Galilei, Università degli Studi di Padova, ITALY email: sabino.matarrese@pd.infn.it

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign Measuring Primordial Non-Gaussianity using CMB T & E data Amit Yadav University of illinois at Urbana-Champaign GLCW8, Ohio, June 1, 2007 Outline Motivation for measuring non-gaussianity Do we expect primordial

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

Non-linear perturbations from cosmological inflation

Non-linear perturbations from cosmological inflation JGRG0, YITP, Kyoto 5 th September 00 Non-linear perturbations from cosmological inflation David Wands Institute of Cosmology and Gravitation University of Portsmouth summary: non-linear perturbations offer

More information

Science with large imaging surveys

Science with large imaging surveys Science with large imaging surveys Hiranya V. Peiris University College London Science from LSS surveys: A case study of SDSS quasars Boris Leistedt (UCL) with Daniel Mortlock (Imperial) Aurelien Benoit-Levy

More information

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013 Structure Formation: à la recherche de paramètre perdu Séminaires de l'iap Shant Baghram IPM-Tehran 13 September 013 Collaborators: Hassan Firoujahi IPM, Shahram Khosravi Kharami University-IPM, Mohammad

More information

Observational evidence for Dark energy

Observational evidence for Dark energy Observational evidence for Dark energy ICSW-07 (Jun 2-9, 2007) Tarun Souradeep I.U.C.A.A, Pune, India Email: tarun@iucaa.ernet.in Observational evidence for DE poses a major challenge for theoretical cosmology.

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Baryon acoustic oscillations A standard ruler method to constrain dark energy

Baryon acoustic oscillations A standard ruler method to constrain dark energy Baryon acoustic oscillations A standard ruler method to constrain dark energy Martin White University of California, Berkeley Lawrence Berkeley National Laboratory... with thanks to Nikhil Padmanabhan

More information

COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS

COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS Takahiro Nishimichi (Univ. of Tokyo IPMU from Apr.) Atsushi Taruya (Univ. of Tokyo) Kazuya Koyama, Cristiano Sabiu (ICG, Portsmouth)

More information

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments Intersection of physics (fundamental laws) and astronomy (contents of the universe)

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING

SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING Vincent Desjacques ITP Zurich with: Nico Hamaus (Zurich), Uros Seljak (Berkeley/Zurich) Horiba 2010 cosmology conference, Tokyo,

More information

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute Alternatives To Inflation Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute PLANCK data A simple universe: approximately homogeneous, isotropic, flat With, in addition, nearly scale-invariant,

More information

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK Large-scale structure as a probe of dark energy David Parkinson University of Sussex, UK Question Who was the greatest actor to portray James Bond in the 007 movies? a) Sean Connery b) George Lasenby c)

More information

Probing Cosmic Origins with CO and [CII] Emission Lines

Probing Cosmic Origins with CO and [CII] Emission Lines Probing Cosmic Origins with CO and [CII] Emission Lines Azadeh Moradinezhad Dizgah A. Moradinezhad Dizgah, G. Keating, A. Fialkov arxiv:1801.10178 A. Moradinezhad Dizgah, G. Keating, A. Fialkov (in prep)

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey David Weinberg, Ohio State University Dept. of Astronomy and CCAPP Based partly on Observational Probes of Cosmic Acceleration

More information

Cosmology from Topology of Large Scale Structure of the Universe

Cosmology from Topology of Large Scale Structure of the Universe RESCEU 2008 Cosmology from Topology of Large Scale Structure of the Universe RESCEU Symposium on Astroparticle Physics and Cosmology 11-14, November 2008 Changbom Park (Korea Institute for Advanced Study)

More information

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = 0.960 ± 0.013 nearly

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

The Search for the Complete History of the Cosmos. Neil Turok

The Search for the Complete History of the Cosmos. Neil Turok The Search for the Complete History of the Cosmos Neil Turok * The Big Bang * Dark Matter and Energy * Precision Tests * A Cyclic Universe? * Future Probes BIG Questions * What are the Laws of Nature?

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Inflation in a general reionization scenario

Inflation in a general reionization scenario Cosmology on the beach, Puerto Vallarta,, Mexico 13/01/2011 Inflation in a general reionization scenario Stefania Pandolfi, University of Rome La Sapienza Harrison-Zel dovich primordial spectrum is consistent

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK

Recent BAO observations and plans for the future. David Parkinson University of Sussex, UK Recent BAO observations and plans for the future David Parkinson University of Sussex, UK Baryon Acoustic Oscillations SDSS GALAXIES CMB Comparing BAO with the CMB CREDIT: WMAP & SDSS websites FLAT GEOMETRY

More information

Observing Quantum Gravity in the Sky

Observing Quantum Gravity in the Sky Observing Quantum Gravity in the Sky Mark G. Jackson Instituut-Lorentz for Theoretical Physics Collaborators: D. Baumann, M. Liguori, P. D. Meerburg, E. Pajer, J. Polchinski, J. P. v.d. Schaar, K. Schalm,

More information

Physical Cosmology 6/6/2016

Physical Cosmology 6/6/2016 Physical Cosmology 6/6/2016 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2016 CMB anisotropies The temperature fluctuation in

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky.

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky. Inflation from High Energy Physics and non-gaussianities Hassan Firouzjahi IPM, Tehran Celebrating DBI in the Sky 31 Farvardin 1391 Outline Motivation for Inflation from High Energy Physics Review of String

More information

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum 4th workshop on observational cosmology @ Yukawa Institute 18/11/2015 Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum Shuntaro Mizuno (Waseda) With Shuichiro Yokoyama (Rikkyo) Phys.

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 14 Dec. 2, 2015 Today The Inflationary Universe Origin of Density Perturbations Gravitational Waves Origin and Evolution of

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

A modal bispectrum estimator for the CMB bispectrum

A modal bispectrum estimator for the CMB bispectrum A modal bispectrum estimator for the CMB bispectrum Michele Liguori Institut d Astrophysique de Paris (IAP) Fergusson, Liguori and Shellard (2010) Outline Summary of the technique 1. Polynomial modes 2.

More information

New techniques to measure the velocity field in Universe.

New techniques to measure the velocity field in Universe. New techniques to measure the velocity field in Universe. Suman Bhattacharya. Los Alamos National Laboratory Collaborators: Arthur Kosowsky, Andrew Zentner, Jeff Newman (University of Pittsburgh) Constituents

More information

From quasars to dark energy Adventures with the clustering of luminous red galaxies

From quasars to dark energy Adventures with the clustering of luminous red galaxies From quasars to dark energy Adventures with the clustering of luminous red galaxies Nikhil Padmanabhan 1 1 Lawrence Berkeley Labs 04-15-2008 / OSU CCAPP seminar N. Padmanabhan (LBL) Cosmology with LRGs

More information

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015

Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015 Mario Santos (on behalf of the Cosmology SWG) Stockholm, August 24, 2015 Why is the expansion of the Universe accelerating? Dark energy? Modified gravity? What is the nature of the primordial Universe?

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Variation in the cosmic baryon fraction and the CMB

Variation in the cosmic baryon fraction and the CMB Variation in the cosmic baryon fraction and the CMB with D. Hanson, G. Holder, O. Doré, and M. Kamionkowski Daniel Grin (KICP/Chicago) Presentation for CAP workshop 09/24/2013 arxiv: 1107.1716 (DG, OD,

More information

Aspects of Inflationary Theory. Andrei Linde

Aspects of Inflationary Theory. Andrei Linde Aspects of Inflationary Theory Andrei Linde New Inflation 1981-1982 V Chaotic Inflation 1983 Eternal Inflation Hybrid Inflation 1991, 1994 Predictions of Inflation: 1) The universe should be homogeneous,

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

LSS: Achievements & Goals. John Peacock Munich 20 July 2015 LSS: Achievements & Goals John Peacock LSS @ Munich 20 July 2015 Outline (pre-)history and empirical foundations The ΛCDM toolkit Open issues and outlook Fundamentalist Astrophysical A century of galaxy

More information

Inflation Daniel Baumann

Inflation Daniel Baumann Inflation Daniel Baumann University of Amsterdam Florence, Sept 2017 Cosmological structures formed by the gravitational collapse of primordial density perturbations. gravity 380,000 yrs 13.8 billion yrs

More information

Cosmology with CMB & LSS:

Cosmology with CMB & LSS: Cosmology with CMB & LSS: the Early universe VSP08 lecture 4 (May 12-16, 2008) Tarun Souradeep I.U.C.A.A, Pune, India Ω +Ω +Ω +Ω + Ω +... = 1 0 0 0 0... 1 m DE K r r The Cosmic Triangle (Ostriker & Steinhardt)

More information

arxiv: v2 [astro-ph.co] 26 May 2017

arxiv: v2 [astro-ph.co] 26 May 2017 YITP-SB-17-02 The halo squeezed-limit bispectrum with primordial non-gaussianity: a power spectrum response approach Chi-Ting Chiang C.N. Yang Institute for Theoretical Physics, Department of Physics &

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

COSMIC MICROWAVE BACKGROUND ANISOTROPIES COSMIC MICROWAVE BACKGROUND ANISOTROPIES Anthony Challinor Institute of Astronomy & Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk 26

More information

Inflationary cosmology. Andrei Linde

Inflationary cosmology. Andrei Linde Inflationary cosmology Andrei Linde Problems of the Big Bang theory: What was before the Big Bang? Why is our universe so homogeneous? Why is it isotropic? Why its parts started expanding simultaneously?

More information

Theoretical developments for BAO Surveys. Takahiko Matsubara Nagoya Univ.

Theoretical developments for BAO Surveys. Takahiko Matsubara Nagoya Univ. Theoretical developments for BAO Surveys Takahiko Matsubara Nagoya Univ. Baryon Acoustic Oscillations Photons and baryons are strongly coupled by Thomson & Coulomb scattering before photon decoupling (z

More information

Lecture 3. The inflation-building toolkit

Lecture 3. The inflation-building toolkit Lecture 3 The inflation-building toolkit Types of inflationary research Fundamental physics modelling of inflation. Building inflation models within the context of M-theory/braneworld/ supergravity/etc

More information

Perturbation Theory. power spectrum from high-z galaxy. Donghui Jeong (Univ. of Texas at Austin)

Perturbation Theory. power spectrum from high-z galaxy. Donghui Jeong (Univ. of Texas at Austin) Perturbation Theory Reloaded Toward a precision modeling of the galaxy power spectrum from high-z galaxy surveys Donghui Jeong (Univ. of Texas at Austin) COSMO 08, August 26, 2008 Papers To Talk About

More information

Large Scale Structure (Galaxy Correlations)

Large Scale Structure (Galaxy Correlations) Large Scale Structure (Galaxy Correlations) Bob Nichol (ICG,Portsmouth) QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor

More information

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi Forthcoming CMB experiments and expectations for dark energy Carlo Baccigalupi Outline Classic dark energy effects on CMB Modern CMB relevance for dark energy: the promise of lensing Lensing (B modes)

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University 1 Physics of the Large Scale Structure Pengjie Zhang Department of Astronomy Shanghai Jiao Tong University The observed galaxy distribution of the nearby universe Observer 0.7 billion lys The observed

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 9, sections 9.4 and 9.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Precision Cosmology from Redshift-space galaxy Clustering

Precision Cosmology from Redshift-space galaxy Clustering 27th June-1st July, 2011 WKYC2011@KIAS Precision Cosmology from Redshift-space galaxy Clustering ~ Progress of high-precision template for BAOs ~ Atsushi Taruya RESearch Center for the Early Universe (RESCEU),

More information

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample

Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample Baryon Acoustic Oscillations (BAO) in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample BOMEE LEE 1. Brief Introduction about BAO In our previous class we learned what is the Baryon Acoustic Oscillations(BAO).

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:7 ± 0:2 billion years!) I

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:7 ± 0:2 billion years!) I The Standard Big Bang What it is: Theory that the universe as we know it began 13-15 billion years ago. (Latest estimate: 13:7 ± 0:2 billion years!) Initial state was a hot, dense, uniform soup of particles

More information

The primordial CMB 4-point function

The primordial CMB 4-point function The primordial CMB 4-point function Kendrick Smith (Perimeter) Minnesota, January 2015 Main references: Smith, Senatore & Zaldarriaga (to appear in a few days) Planck 2014 NG paper (to appear last week

More information

Inflation and the origin of structure David Wands Institute of Cosmology and Gravitation University of Portsmouth

Inflation and the origin of structure David Wands Institute of Cosmology and Gravitation University of Portsmouth Cody Astronomical Society 7 th December 2011 Inflation and the origin of structure David Wands Institute of Cosmology and Gravitation University of Portsmouth outline of my talk: large-structure in the

More information

Cosmology with the ESA Euclid Mission

Cosmology with the ESA Euclid Mission Cosmology with the ESA Euclid Mission Andrea Cimatti Università di Bologna Dipartimento di Astronomia On behalf of the Euclid Italy Team ESA Cosmic Vision 2015-2025 M-class Mission Candidate Selected in

More information

Looking Beyond the Cosmological Horizon

Looking Beyond the Cosmological Horizon Looking Beyond the Cosmological Horizon 175 µk 175 µk Observable Universe Adrienne Erickcek in collaboration with Sean Carroll and Marc Kamionkowski A Hemispherical Power Asymmetry from Inflation Phys.

More information

Caldwell, MK, Wadley (open) (flat) CMB determination of the geometry (MK, Spergel, and Sugiyama, 1994) Where did large scale structure (e.g., galaxies, clusters, larger-scale explosions clustering)

More information

Anisotropy in the CMB

Anisotropy in the CMB Anisotropy in the CMB Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Hanson & Lewis: 0908.0963 Evolution of the universe Opaque Transparent Hu &

More information

General formula for the running of fnl

General formula for the running of fnl General formula for the running of fnl Christian Byrnes University of Sussex, Brighton CB & Gong; 1210.1851 CB, Kari Enqvist, Nurmi & Tomo Takahashi; 1108.2708 CB, Enqvist, Takahashi; 1007.5148 CB, Mischa

More information

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!)

The Standard Big Bang What it is: Theory that the universe as we know it began billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!) The Standard Big Bang What it is: Theory that the universe as we know it began 13-14 billion years ago. (Latest estimate: 13:82 ± 0:05 billion years!) Initial state was a hot, dense, uniform soup of particles

More information

Implications of the Planck Results for Inflationary and Cyclic Models

Implications of the Planck Results for Inflationary and Cyclic Models Implications of the Planck Results for Inflationary and Cyclic Models Jean-Luc Lehners Max-Planck-Institute for Gravitational Physics Albert-Einstein-Institute Potsdam, Germany New Data from Planck Cosmic

More information

20 Lecture 20: Cosmic Microwave Background Radiation continued

20 Lecture 20: Cosmic Microwave Background Radiation continued PHYS 652: Astrophysics 103 20 Lecture 20: Cosmic Microwave Background Radiation continued Innocent light-minded men, who think that astronomy can be learnt by looking at the stars without knowledge of

More information

Lecture 20 Cosmology, Inflation, dark matter

Lecture 20 Cosmology, Inflation, dark matter The Nature of the Physical World November 19th, 2008 Lecture 20 Cosmology, Inflation, dark matter Arán García-Bellido 1 News Exam 2: good job! Ready for pick up after class or in my office Average: 74/100

More information

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University PPP11 Tamkang University 13,14 May, 015 Misao Sasaki Yukawa Institute for Theoretical Physics Kyoto University General Relativity 1 8 G G R g R T ; T 0 4 c Einstein (1915) GR applied to homogeneous & isotropic

More information

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2 S E.H. +S.F. = d 4 x [ 1 g 2 M PlR 2 + MPlḢg 2 00 MPl(3H 2 2 + Ḣ)+ + 1 2! M 2(t) 4 (g 00 + 1) 2 + 1 3! M 3(t) 4 (g 00 + 1) 3 + M 1 (t) 3 2 (g 00 + 1)δK µ µ M 2 (t) 2 δk µ µ 2 M 3 (t) 2 2 2 ] δk µ νδk ν

More information

Beyond BAO. Eiichiro Komatsu (Univ. of Texas at Austin) MPE Seminar, August 7, 2008

Beyond BAO. Eiichiro Komatsu (Univ. of Texas at Austin) MPE Seminar, August 7, 2008 Beyond BAO Eiichiro Komatsu (Univ. of Texas at Austin) MPE Seminar, August 7, 2008 1 Papers To Talk About Donghui Jeong & EK, ApJ, 651, 619 (2006) Donghui Jeong & EK, arxiv:0805.2632 Masatoshi Shoji, Donghui

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology) Quantum generation of density perturbations in the early Universe MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 03/07/16@Symposium: New Generation Quantum Theory -Particle Physics, Cosmology, and

More information

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift = Cosmology Study of the structure and origin of the universe Observational science The large-scale distribution of galaxies Looking out to extremely large distances The motions of galaxies Clusters of galaxies

More information

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye Inflation and the SLAC Theory Group 1979 1980 I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye back at Cornell): Why were so few magnetic monopoles

More information

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat Analyzing the CMB Brightness Fluctuations (predicted) 1 st rarefaction Power = Average ( / ) 2 of clouds of given size scale 1 st compression 2 nd compression (deg) Fourier analyze WMAP image: Measures

More information

Current status of inflationary cosmology. Gunma National college of Technology,Japan

Current status of inflationary cosmology. Gunma National college of Technology,Japan Current status of inflationary cosmology Shinji Tsujikawa Gunma National college of Technology,Japan Bright side of the world Recent observations have determined basic cosmological parameters in high precisions.

More information

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence Antony Lewis http://cosmologist.info/ Evolution of the universe Opaque Transparent Hu & White, Sci. Am., 290 44 (2004) CMB temperature

More information

Large Scale Structure with the Lyman-α Forest

Large Scale Structure with the Lyman-α Forest Large Scale Structure with the Lyman-α Forest Your Name and Collaborators Lecture 1 - The Lyman-α Forest Andreu Font-Ribera - University College London Graphic: Anze Slozar 1 Large scale structure The

More information