Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky.

Size: px
Start display at page:

Download "Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky."

Transcription

1 Inflation from High Energy Physics and non-gaussianities Hassan Firouzjahi IPM, Tehran Celebrating DBI in the Sky 31 Farvardin 1391

2 Outline Motivation for Inflation from High Energy Physics Review of String Theory Brane Inflation DBI Inflation Conclusion

3

4 Motivation for String Cosmology Recent observations strongly support inflation as the origin of big bang and the structure formation in universe. However, the origin of the inflation is not known from a fundamental theory point of view. String theory, on the other hand, is a consistent theory of quantum gravity. Furthermore it is expected to provide a framework for a unified theory. So far String theory did not make direct contact with observations. Since the scale of inflation is very high, possibly GUT scale, it is natural to expect that string theory was relevant in driving inflation. This would provide a unique chance to test the relevance of string theory to the real world.

5 Inflation in the context of ever changing fundamental theory inflation Old Inflation Lev Kofman New Inflation Chaotic inflation SUGRA inflation 1990 Double Inflation Power-law inflation Hybrid inflation Extended inflation SUSY F-term inflation SUSY D-term inflation Assisted inflation Brane inflation 2000 SUSY P-term inflation N-flation Super-natural Inflation K-flation inflation Racetrack inflation Tachyon inflation DBI inflation Matrix-inflation Warped Brane inflation

6 Slow Roll Inflation In most models, inflation is derived by a scalar field, the inflaton. This creates a negative pressure required for acceleration. For a scalar field ρ = 1 2 φ 2 + V (φ) p = 1 2 φ 2 V (φ) a(t) e H t, H 2 = 8πG 3 V Baumann.

7 Predictions of slow roll inflation 1-The quantum fluctuations from the inflaton field source the curvature perturbation R Ḣ φ δφ 2- The perturbations are almost scale invariant, almost Gaussian and almost adiabatic ( R k R k = 1 ( ) H 2k 3 δ3 (k + k 2 2 ) φ P R 10 9 k n s 1 3- There would be tensor perturbations with the relative amplitude r < The level of non-gaussianity is given by parameter fnl

8 All Known particles are low-lying string vibrations. String theory is a consistent theory of quantum gravity. All interactions consist of the splitting and joining of these elementary strings: In string theory, gauge fields (photons) are given by open strings while graviton is represented by closed strings. Originally it was a theory of strings but subsequent developments showed that that it also contains higher dimensional defects, D-branes. Photons are confined to the branes, representing the Standard Model Particle Physics while graviton, the closed string modes, propagate to the bulk.

9 The Brane World Scenario In brane world picture, we (the Standard Model particle physics) are confined to a D3-brane, a threedimensional hyper-surface in a higher dimensional space-time. The D3-brane spans our entire Universe. The gravity can propagate in the extra dimensions, bulk. This can explain why gravity is so weak compared to electro magnetic interactions. Force laws fall faster in higher dimensions because there are more rooms for gravity to escape. For example in 4+n space-time: If n=2, then the size of the extra dimensions can be as large as 0.01 mm! This is within the reach of the current table-top experiments.

10 Moduli In String Theory String theory is a higher dimensional theory. After compactification to four dimensions one gets many scalar fields, moduli, depending on details of compactifications. Good News: Due to large number of moduli, it is possible that some of them play the role of inflaton field. Examples are: Tachyon Inflation, Racetrack Inflation, DBI-Inflation, D3-D7 Inflation, Brane Inflation, Warped Brane Inflation. In general, the inflaton field is either an open string mode(brane position) or a closed string mode (complex Kahler moduli). Bad News: These moduli may couple to the inflaton field and interfere with the slow roll conditions. Furthermore, If they are not stabilized they will destroy the success of late time big bang cosmology, like big bang nucleosynthesis. The first task in string cosmology is the understanding of moduli and their stabilization mechanism.

11 Brane Inflation G. Dvali and H. Tye, hep-ph/ In brane inflation the inflaton field is the distance between brane and anti-brane. There is an attractive force between brane and anti-brane. If the potential is flat enough one can get enough inflation. When the distance between brane and anti-brane is at the order of string scale, a tachyon develops. Inflation ends when brane and anti-brane collide. Problem: In flat CY, the potential is too strong to achieve the slow-roll conditions for inflation. brane anti-brane

12 Problem with the Original Brane Inflation L The potential between D3 and anti-d3 branes is r The where r is the distance between them in extra dimensions. In terms of canonically normalized field the potential is To have slow-roll inflation one requires that where Noting that where L is the typical size of extra dimension yields Hence is possible only for r > L which is a contradiction!

13 Warped Brane Inflation KKLMMT: hep-th/ ) The background geometry is locally an AdS where N is the background charges(branes). The action is where the local action is with The local action becomes

14 In the slow-roll limit the gravitational attraction and the RR repulsion of D3-branes forces cancel out and and On the other hand for the anti-d3 branes, both forces are attractive and the anti brane is attracted towards the bottom of the throat with potential Once the anti-brane is at the bottom of the throat it attracts the D3-branes with the Coulombic potential The total potential of the system is

15 DBI brane inflation Alishahiha, Silverstein, Tong, hep-th/ The action of mobile D3-brane (inflaton field) is where considerations from the throat geometry and AdS/CFT Now the cosmological evolutions are given by The energy density and the pressure are Here is the Lorentz factor Pindicating the ultra-relativistic motion of the brane: γ = 1 1 f φ = 1 2 c 2 s

16 An overview of brane inflation Combining the ideas studied so far, one can obtain different variation of brane inflation: 1- Single throat slow-roll brane inflation 2- multiple throat slow-roll brane inflation 3- Slow-roll + DBI brane inflation 4- D3-D7 brane inflation in the bulk or in the throat How to embed SM in models of brane inflation? It multiple throats scenario one can consider that in some throat brane inflation takes place while in other throats SM is located. The question of reheating in brane inflation? This seems to be challenging, specially in multi-throat brane inflation.

17 Cosmological Perturbation Theory Now we allow for the perturbations in metric and inflaton field In terms of gauge invariant curvature perturbation the dynamics of perturbation in momentum space is Now the fluctuations propagate with the speed of sound

18 Non-Gaussianities on CMB Simple models of slow-roll inflation predicts almost Gaussian perturbations However, DBI inflation predicts large non-gaussian perturbations k1 What is non-gaussianity? k2 k3 In slow-roll inflation there is not much interaction, Hint ~ 0, so there is no significant non-gaussinities Defining non-gaussianity parameter fnl via ( Simple models of slow roll inflation predict P f NL n s Maldacena, 2002

19 Non-Gaussianities in DBI Inflation The interacting Hamiltonian in DBI inflation is Σ = H2 ɛ c 2 s = Ḣ c 2 s k1 In slow-roll inflation there is no interaction and the level of non-gaussianity is very small. However, for DBI model with a small sound speed, cs << 1, a large non-gaussianity can be obtained. k2 k3 ( f NL 1 c 2 s One can obtain fnl as big as 100, which is easily observed by PLANCK. P This should be compared to slow-roll calculation in which f NL n s Maldacena, 2002

20 The Shapes of Non-Gaussianities Consider the three-point function as so A determines the shapes of the non-gaussianity Shape in DBI inflation Shape in multiple-field models

21

22

23 Alternatives to Inflation: prospects Alternative to inflation includes models of bounce and string gas cosmology. Predictions of bounce scenarios: Produce adiabatic, almost scale invariant perturbations. No appreciable amount of gravitational waves. Significant amount of non-gaussianity. PLANCK may have a good chance to verify or rule out bounce (ekpyrotic)/inflationary scenarios. Open questions and future directions: How to achieve bounce or bypass NEC? Can ekpyrotic models be embedded in high energy physics?

24 Conclusion All observations strongly support inflation as the leading theory of early universe and cosmological structure formation. Simple models of inflation predict almost Gaussian and almost scale invariant perturbations which are in very good agreements with data. Future observations such as PLANCK can put strong constraints on the level of non-gaussianity and may detect the anticipated gravitational waves. Despite its observational successes there is no deep theoretical understanding of inflation dynamics and the nature of the inflaton field. It is an open question if inflation can be embedded in a fundamental theory of high energy physics such as string theory. DBI Inflation is an interesting realization of inflation from high energy physics. It provides a theoretical mechanism to generate large non-gaussianities on CMB which can be detected observationally.

Prospects for Inflation from String Theory

Prospects for Inflation from String Theory Prospects for Inflation from String Theory Hassan Firouzjahi IPM IPM School on Early Universe Cosmology, Tehran, Dec 7-11, 2009 Outline Motivation for Inflation from String Theory A quick Review on String

More information

Cosmological Signatures of Brane Inflation

Cosmological Signatures of Brane Inflation March 22, 2008 Milestones in the Evolution of the Universe http://map.gsfc.nasa.gov/m mm.html Information about the Inflationary period The amplitude of the large-scale temperature fluctuations: δ H =

More information

Non-Gaussianities in String Inflation. Gary Shiu

Non-Gaussianities in String Inflation. Gary Shiu Non-Gaussianities in String Inflation Gary Shiu University of Wisconsin, Madison Frontiers in String Theory Workshop Banff, February 13, 2006 Collaborators: X.G. Chen, M.X. Huang, S. Kachru Introduction

More information

Cosmology of moving branes and spinflation

Cosmology of moving branes and spinflation Cosmology of moving branes and spinflation 8 Dark Energy in the Universe Damien Easson University of Tokyo Outline Brane Inflation, Moduli Stabilization and Flux Compactifications Cyclic, Mirage cosmologies

More information

String Inflation. C.P. PONT Avignon 2008

String Inflation. C.P. PONT Avignon 2008 String Inflation @ C.P. Burgess with N. Barnaby, J.Blanco-Pillado, J.Cline, K. das Gupta, C.Escoda, H. Firouzjahi, M.Gomez-Reino, R.Kallosh, A.Linde,and F.Quevedo Outline String inflation Why build models

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Spinflation. Ivonne Zavala IPPP, Durham

Spinflation. Ivonne Zavala IPPP, Durham Spinflation Ivonne Zavala IPPP, Durham Based on: JHEP04(2007)026 and arxiv:0709.2666 In collaboration with: R.Gregory, G. Tasinato, D.Easson and D. Mota Motivation Inflation: very successful scenario in

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

CMB Features of Brane Inflation

CMB Features of Brane Inflation CMB Features of Brane Inflation Jiajun Xu Cornell University With R. Bean, X. Chen, G. Hailu, S. Shandera and S.H. Tye hep-th/0702107, arxiv:0710.1812, arxiv:0802.0491 Cosmo 08 Brane Inflation (Dvali &

More information

Inflationary cosmology

Inflationary cosmology Inflationary cosmology T H E O U N I V E R S I T Y H Andrew Liddle February 2013 Image: NASA/WMAP Science Team F E D I N U B R G Inflation is... A prolonged period of accelerated expansion in the very

More information

Brane inflation in string cosmology. Shinji Mukohyama (University of Tokyo) based on collaboration with S.Kinoshita, T.Kobayashi, L.

Brane inflation in string cosmology. Shinji Mukohyama (University of Tokyo) based on collaboration with S.Kinoshita, T.Kobayashi, L. Brane inflation in string cosmology Shinji Mukohyama (University of Tokyo) based on collaboration with S.Kinoshita, T.Kobayashi, L.Kofman Three mysteries: Inflation, Dark Energy & Dark Matter String Theory?

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Curvature perturbations and non-gaussianity from waterfall phase transition. Hassan Firouzjahi. In collaborations with

Curvature perturbations and non-gaussianity from waterfall phase transition. Hassan Firouzjahi. In collaborations with Curvature perturbations and non-gaussianity from waterfall phase transition Hassan Firouzjahi IPM, Tehran In collaborations with Ali Akbar Abolhasani, Misao Sasaki Mohammad Hossein Namjoo, Shahram Khosravi

More information

Aspects of Inflationary Theory. Andrei Linde

Aspects of Inflationary Theory. Andrei Linde Aspects of Inflationary Theory Andrei Linde New Inflation 1981-1982 V Chaotic Inflation 1983 Eternal Inflation Hybrid Inflation 1991, 1994 Predictions of Inflation: 1) The universe should be homogeneous,

More information

Cosmology and astrophysics of extra dimensions

Cosmology and astrophysics of extra dimensions Cosmology and astrophysics of extra dimensions Astrophysical tests of fundamental physics Porto, 27-29 March 2007 P. Binétruy, APC Paris Why extra dimensions? Often appear in the context of unifying gravitation

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

Archaeology of Our Universe YIFU CAI ( 蔡一夫 )

Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) 2013-11-05 Thermal History Primordial era 13.8 billion years by WMAP/NASA Large Scale Structure (LSS) by 2MASS Cosmic Microwave Background (CMB) by ESA/Planck

More information

Inflationary cosmology. Andrei Linde

Inflationary cosmology. Andrei Linde Inflationary cosmology Andrei Linde Problems of the Big Bang theory: What was before the Big Bang? Why is our universe so homogeneous? Why is it isotropic? Why its parts started expanding simultaneously?

More information

Theoretical implications of detecting gravitational waves

Theoretical implications of detecting gravitational waves Theoretical implications of detecting gravitational waves Ghazal Geshnizjani Department of Applied Mathematics University of Waterloo ggeshniz@uwaterloo.ca In collaboration with: William H. Kinney arxiv:1410.4968

More information

Cosmic Strings. Joel Meyers

Cosmic Strings. Joel Meyers Cosmic Strings Joel Meyers Outline History and Motivations Topological Defects Formation of Cosmic String Networks Cosmic Strings from String Theory Observation and Implications Conclusion History In the

More information

Duality Cascade in the Sky

Duality Cascade in the Sky Duality Cascade in the Sky (R.Bean, X.Chen, G.Hailu, S.H.Tye and JX, to appear) Jiajun Xu Cornell University 02/01/2008 Our Current Understanding of the Early Universe - Homogeneous and isotropic δh 2

More information

Inflation in String Theory. mobile D3-brane

Inflation in String Theory. mobile D3-brane Inflation in String Theory mobile D3-brane Outline String Inflation as an EFT Moduli Stabilization Examples of String Inflation Inflating with Branes Inflating with Axions (Inflating with Volume Moduli)

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

On Power Law Inflation in DBI Models

On Power Law Inflation in DBI Models Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0702196v2 26 Apr 2007 On Power Law Inflation in DBI Models Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681 Warszawa,

More information

A Consistency Relation for Power Law Inflation in DBI Models

A Consistency Relation for Power Law Inflation in DBI Models Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0703248v2 15 Jun 2007 A Consistency Relation for Power Law Inflation in DBI Models Micha l Spaliński So ltan Institute for Nuclear Studies ul.

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

Cosmology with Warped String Compactification. Shinji Mukohyama University of Tokyo

Cosmology with Warped String Compactification. Shinji Mukohyama University of Tokyo Cosmology with Warped String Compactification Shinji Mukohyama University of Tokyo There are Frontiers in Physics: at Short and Long Scales 10-10 m There is a story going 10-15 m 10-18 m into smaller and

More information

Observing Brane Inflation

Observing Brane Inflation Preprint typeset in JHEP style. - HYPER VERSION Observing Brane Inflation arxiv:hep-th/0601099v1 16 Jan 2006 Sarah E. Shandera and S.-H. Henry Tye Laboratory for Elementary Particle Physics Cornell University

More information

Strings and the Cosmos

Strings and the Cosmos Strings and the Cosmos Yeuk-Kwan Edna Cheung Perimeter Institute for Theoretical Physics University of Science and Technology, China May 27th, 2005 String Theory as a Grand Unifying Theory 60 s: theory

More information

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY

ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Summer Institute 2011 @ Fujiyoshida August 5, 2011 ASPECTS OF D-BRANE INFLATION IN STRING COSMOLOGY Takeshi Kobayashi (RESCEU, Tokyo U.) TODAY S PLAN Cosmic Inflation and String Theory D-Brane Inflation

More information

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004 An introduction to brane world cosmology Andreas Müller Theory group LSW http://www.lsw.uni-heidelberg.de/users/amueller Advanced seminar LSW Heidelberg 03/03/2004 Overview principles bulk and brane extradimensions

More information

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation Guido D Amico Center for Cosmology and Particle Physics New York University Unwinding Inflation New Lights in Cosmology from the CMB ICTP Trieste, Summer 2013 with Roberto Gobbetti, Matthew Kleban, Marjorie

More information

Cordes et Branes: des outils pour la cosmologie primordiale. Strings & branes: tools for primordial cosmology. Dan Israël, iap

Cordes et Branes: des outils pour la cosmologie primordiale. Strings & branes: tools for primordial cosmology. Dan Israël, iap Cordes et Branes: des outils pour la cosmologie primordiale Strings & branes: tools for primordial cosmology Dan Israël, iap D. Israël, Strings & branes 1 Preamble Despite its exotic aspects, string theory

More information

Brane Inflation: Observational Signatures and Non-Gaussianities. Gary Shiu. University of Wisconsin

Brane Inflation: Observational Signatures and Non-Gaussianities. Gary Shiu. University of Wisconsin Brane Inflation: Observational Signatures and Non-Gaussianities Gary Shiu University of Wisconsin Collaborators Reheating in D-brane inflation: D.Chialva, GS, B. Underwood Non-Gaussianities in CMB: X.Chen,

More information

Effective field theory for axion monodromy inflation

Effective field theory for axion monodromy inflation Effective field theory for axion monodromy inflation Albion Lawrence Brandeis University Based on work in progress with Nemanja Kaloper and L.orenzo Sorbo Outline I. Introduction and motivation II. Scalar

More information

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 XIII. The Very Early Universe and Inflation ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 Problems with the Big Bang The Flatness Problem The Horizon Problem The Monopole (Relic Particle)

More information

Lecture 3. The inflation-building toolkit

Lecture 3. The inflation-building toolkit Lecture 3 The inflation-building toolkit Types of inflationary research Fundamental physics modelling of inflation. Building inflation models within the context of M-theory/braneworld/ supergravity/etc

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives Patrick Peter Institut d Astrophysique de Paris Institut Lagrange de Paris Evidences for inflation constraints on alternatives Thanks to Jérôme Martin For his help Planck 2015 almost scale invariant quantum

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

String Phenomenology. Gary Shiu University of Wisconsin. Symposium

String Phenomenology. Gary Shiu University of Wisconsin. Symposium String Phenomenology Gary Shiu University of Wisconsin YITP@40 Symposium YITP s Theory Space QCD/Collider Physics Strings/SUGRA YITP Statistical Mechanics Neutrinos Standard Model & Beyond + a lot more...

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

EKPYROTIC SCENARIO IN STRING THEORY. Kunihito Uzawa Kwansei Gakuin University

EKPYROTIC SCENARIO IN STRING THEORY. Kunihito Uzawa Kwansei Gakuin University EKPYROTIC SCENARIO IN STRING THEORY Kunihito Uzawa Kwansei Gakuin University [1] Introduction The Ekpyrosis inspired by string theory and brane world model suggests alternative solutions to the early universe

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

Ghost Bounce 鬼跳. Chunshan Lin. A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arxiv:1007.

Ghost Bounce 鬼跳. Chunshan Lin. A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arxiv:1007. Ghost Bounce 鬼跳 A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arxiv:1007.2654 Chunshan Lin IPMU@UT Outline I. Alternative inflation models Necessity Matter bounce

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Phenomenology of Axion Inflation

Phenomenology of Axion Inflation Phenomenology of Axion Inflation based on Flauger & E.P. 1002.0833 Flauger, McAllister, E.P., Westphal & Xu 0907.2916 Barnaby, EP & Peloso to appear Enrico Pajer Princeton University Minneapolis Oct 2011

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal

The Big Crunch/Big Bang Transition. 1. Measure for inflation 2. Passing through singularities - no beginning proposal The Big Crunch/Big Bang Transition Neil Turok, Perimeter Institute 1. Measure for inflation 2. Passing through singularities - no beginning proposal 2 inflation * initial conditions * fine-tuned potentials

More information

On the Slow Roll Expansion for Brane Inflation

On the Slow Roll Expansion for Brane Inflation Preprint typeset in JHEP style - HYPER VERSION arxiv:hep-th/0702118v3 29 Apr 2007 On the Slow Roll Expansion for Brane Inflation Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681

More information

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München An up-date on Brane Inflation Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München Leopoldina Conference, München, 9. October 2008 An up-date on Brane Inflation Dieter Lüst, LMU (Arnold

More information

Inflation. Week 9. ASTR/PHYS 4080: Introduction to Cosmology

Inflation. Week 9. ASTR/PHYS 4080: Introduction to Cosmology Inflation ASTR/PHYS 4080: Intro to Cosmology Week 9 1 Successes of the Hot Big Bang Model Consists of: General relativity Cosmological principle Known atomic/nuclear/particle physics Explains: dark night

More information

Planck 2013 results: constraints on inflation

Planck 2013 results: constraints on inflation Planck 2013 results: constraints on inflation arxiv: 1303.5082 Hassan Firouzjahi School of Astronomy, IPM IPM, Ordibehesht, 1392 Golden Age of Cosmology Planck Website Selected by ESA in 1996. Facts and

More information

Microwave Background Polarization: Theoretical Perspectives

Microwave Background Polarization: Theoretical Perspectives Microwave Background Polarization: Theoretical Perspectives Department of Physics and Astronomy University of Pittsburgh CMBpol Technology Workshop Outline Tensor Perturbations and Microwave Polarization

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis International Francqui Chair Inaugural Lecture Leuven, 11 February 2005 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model

More information

Holographic Model of Cosmic (P)reheating

Holographic Model of Cosmic (P)reheating Holographic Model of Cosmic (P)reheating Yi-Fu Cai 蔡一夫 University of Science & Technology of China New perspectives on Cosmology, APCTP, Feb 13 th 2017 In collaboration with S. Lin, J. Liu & J. Sun, Based

More information

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye Inflation and the SLAC Theory Group 1979 1980 I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye back at Cornell): Why were so few magnetic monopoles

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1

Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1 Rigid Holography and 6d N=(2,0) Theories on AdS 5 xs 1 Ofer Aharony Weizmann Institute of Science 8 th Crete Regional Meeting on String Theory, Nafplion, July 9, 2015 OA, Berkooz, Rey, 1501.02904 Outline

More information

Will Planck Observe Gravity Waves?

Will Planck Observe Gravity Waves? Will Planck Observe Gravity Waves? Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Cosmology with Extra Dimensions

Cosmology with Extra Dimensions Cosmology with Extra Dimensions Johannes Martin University of Bonn May 13th 2005 Outline Motivation and Introduction 1 Motivation and Introduction Motivation From 10D to 4D: Dimensional Reduction Common

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Inflation in DBI models with constant γ

Inflation in DBI models with constant γ Preprint typeset in JHEP style - HYPER VERSION arxiv:0711.4326v1 [astro-ph] 27 Nov 2007 Inflation in DBI models with constant Micha l Spaliński So ltan Institute for Nuclear Studies ul. Hoża 69, 00-681

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

Pedro and the WOLF: the quantum and the vacuum in cosmology

Pedro and the WOLF: the quantum and the vacuum in cosmology Pedro's Universes, 4 December 2018 Guillermo A. Mena Marugán, IEM-CSIC Pedro and the WOLF: the quantum and the vacuum in cosmology Pedro's Universes, 4 December 2018 Guillermo A. Mena Marugán, IEM-CSIC

More information

Observational signatures in LQC?

Observational signatures in LQC? Observational signatures in LQC? Ivan Agullo Penn State International Loop Quantum Gravity Seminar, March 29 2011 Talk based on: I.A., A. Ashtekar, W. Nelson: IN PROGRESS! CONTENT OF THE TALK 1. Inflation

More information

Current status of inflationary cosmology. Gunma National college of Technology,Japan

Current status of inflationary cosmology. Gunma National college of Technology,Japan Current status of inflationary cosmology Shinji Tsujikawa Gunma National college of Technology,Japan Bright side of the world Recent observations have determined basic cosmological parameters in high precisions.

More information

Stable bouncing universe in Hořava-Lifshitz Gravity

Stable bouncing universe in Hořava-Lifshitz Gravity Stable bouncing universe in Hořava-Lifshitz Gravity (Waseda Univ.) Collaborate with Yosuke MISONOH (Waseda Univ.) & Shoichiro MIYASHITA (Waseda Univ.) Based on Phys. Rev. D95 044044 (2017) 1 Inflation

More information

String cosmology and the index of the Dirac operator

String cosmology and the index of the Dirac operator String cosmology and the index of the Dirac operator Renata Kallosh Stanford STRINGS 2005 Toronto, July 12 Outline String Cosmology, Flux Compactification,, Stabilization of Moduli, Metastable de Sitter

More information

Inflation and Cosmic Strings in Heterotic M-theory

Inflation and Cosmic Strings in Heterotic M-theory Inflation and Cosmic Strings in Heterotic M-theory Melanie Becker Texas A&M July 31st, 2006 Talk at the Fourth Simons Workshop in Mathematics and Physics Stony Brook University, July 24 - August 25, 2006

More information

Review of Small Field Models of Inflation

Review of Small Field Models of Inflation Review of Small Field Models of Inflation Ram Brustein אוניברסיטת ב ן -גוריון I. Ben-Dayan 0907.2384 + in progress I. Ben-Dayan, S. de Alwis 0802.3160 Small field models of inflation - Designing small

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

III. Stabilization of moduli in string theory II

III. Stabilization of moduli in string theory II III. Stabilization of moduli in string theory II A detailed arguments will be given why stabilization of certain moduli is a prerequisite for string cosmology. New ideas about stabilization of moduli via

More information

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS 1 BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS Based on : - W.Buchmuller, E.D., L.Heurtier and C.Wieck, arxiv:1407.0253 [hep-th], JHEP 1409 (2014) 053. - W.Buchmuller, E.D., L.Heurtier, A.Westphal,

More information

Dilaton and IR-Driven Inflation

Dilaton and IR-Driven Inflation Dilaton and IR-Driven Inflation Chong-Sun Chu National Center for Theoretical Science NCTS and National Tsing-Hua University, Taiwan Third KIAS-NCTS Joint Workshop High 1 Feb 1, 2016 1506.02848 in collaboration

More information

String Phenomenology ???

String Phenomenology ??? String Phenomenology Andre Lukas Oxford, Theoretical Physics d=11 SUGRA IIB M IIA??? I E x E 8 8 SO(32) Outline A (very) basic introduction to string theory String theory and the real world? Recent work

More information

COSMOLOGY IN HIGHER DIMENSIONS

COSMOLOGY IN HIGHER DIMENSIONS COSMOLOGY IN HIGHER DIMENSIONS 1. Introduction 2. Overview of Higher Dimensional Cosmology 3. Cosmology in Higher Dimensions 4. String Frame 5. Summary Kei-ichi MAEDA Waseda University 1. INTRODUCTION

More information

New Insights in Hybrid Inflation

New Insights in Hybrid Inflation Dr. Sébastien Clesse TU Munich, T70 group: Theoretical Physics of the Early Universe Excellence Cluster Universe Based on S.C., B. Garbrecht, Y. Zhu, Non-gaussianities and curvature perturbations in hybrid

More information

What is the Universe Made Of?

What is the Universe Made Of? What is the Universe Made Of? The case for Dark Matter and Dark Energy, and for what they might be Cliff Burgess What is the Universe Made Of? From best fits to the Concordance Cosmology Courtesy: Ned

More information

Planar diagrams in light-cone gauge

Planar diagrams in light-cone gauge Planar diagrams in light-cone gauge M. Kruczenski Purdue University Based on: hep-th/0603202 Summary Introduction Motivation: large-n, D-branes, AdS/CFT, results D-brane interactions: lowest order, light-cone

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Connecting Quarks to the Cosmos

Connecting Quarks to the Cosmos Connecting Quarks to the Cosmos Institute for Nuclear Theory 29 June to 10 July 2009 Inflationary Cosmology II Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Michael

More information

Lecture notes 20: Inflation

Lecture notes 20: Inflation Lecture notes 20: Inflation The observed galaxies, quasars and supernovae, as well as observations of intergalactic absorption lines, tell us about the state of the universe during the period where z

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

The Evolving Cosmological Constant (Problem)

The Evolving Cosmological Constant (Problem) The Evolving Cosmological Constant (Problem) N. Itzhaki, (PU) PiPT 2006 Outline The CC problem: then and now (experimental hints). Abbott s model (85). Abbott s model string landscape + anthropic principle.

More information

Signatures of Axion Monodromy Inflation

Signatures of Axion Monodromy Inflation Signatures of Axion Monodromy Inflation Gang Xu Cornell University based on arxiv:0907.2916 with Flauger, McAllister, Pajer and Westphal McGill University December 2009 Gang Xu Signatures of Axion Monodromy

More information

Dark Energy Screening Mechanisms. Clare Burrage University of Nottingham

Dark Energy Screening Mechanisms. Clare Burrage University of Nottingham Dark Energy Screening Mechanisms Clare Burrage University of Nottingham The expansion of the Universe is accelerating "for the discovery of the accelerating expansion of the Universe through observations

More information

arxiv:gr-qc/ v1 13 Sep 2002

arxiv:gr-qc/ v1 13 Sep 2002 Multidimensional Cosmology and Asymptotical AdS U. Günther (1), P. Moniz (2), A. Zhuk (3) (1) Inst. Math., Universität Potsdam, D-14415 Potsdam, Germany, (2) Dept. Phys., UBI, 6200 Covilh~a, Portugal,

More information

Observing Quantum Gravity in the Sky

Observing Quantum Gravity in the Sky Observing Quantum Gravity in the Sky Mark G. Jackson Instituut-Lorentz for Theoretical Physics Collaborators: D. Baumann, M. Liguori, P. D. Meerburg, E. Pajer, J. Polchinski, J. P. v.d. Schaar, K. Schalm,

More information