SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING

Size: px
Start display at page:

Download "SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING"

Transcription

1 SEARCHING FOR LOCAL CUBIC- ORDER NON-GAUSSIANITY WITH GALAXY CLUSTERING Vincent Desjacques ITP Zurich with: Nico Hamaus (Zurich), Uros Seljak (Berkeley/Zurich) Horiba 2010 cosmology conference, Tokyo, 27/09

2 ARE PRIMORDIAL FLUCTUATIONS (NON-)GAUSSIAN? Single field slow roll inflation gives thus far the best fit to cosmic microwave background (CMB) and large scale structure (LSS) data. It predicts a negligible level of primordial non-gaussianity (NG) Any evidence for or against primordial NG would strongly constrain mechanisms for the generation of primordial curvature perturbations. cf. Leonardo Senatore s talk on Tuesday

3 OUTLINE Primordial NG of the local cubic type Scale-dependent bias of dark matter haloes Constraints on a cubic order contribution Optimal weighting schemes of halo/mass density fields Desjacques V., Seljak U., 2010, PRD, 81, 3006 (arxiv: ) Seljak U., Hamaus N., Desjacques V., 2009, PRL, 103, 1303 (arxiv: ) Hamaus N., Seljak U., Desjacques V., in progress

4 PRIMORDIAL NG OF THE LOCAL CUBIC TYPE Local mapping: Φ(x) =φ(x)+f NL φ(x) 2 + g NL φ(x) 3 φ Gaussian, φ 10 5, P φ (k) k n s 4 (Salopek & Bond 1990;...) O(f NL ) O(g NL ) In some models, f NL g NL so that the cubic order contribution dominates Sasaki, Valiviita & Wands (2006); Enqvist & Takahashi (2008); Huang & Wang (2008); Chingangbam & Huang (2009); Ichikawa, Suyama, Takahashi & Yamaguchi (2008); Huang (2008,2009); Byrnes & Tasinato (2009); Lehners & Renaux-Petel (2009);... Leading contribution to the primordial four-point (trispectrum) function: T Φ (k 1, k 2, k 3, k 4 )=6g NL [P φ (k 1 )P φ (k 2 )P φ (k 3 )+(cyclic)] +4fNL 2 [P φ (k 13 P φ (k 3 )P φ (k 4 ) + (11 perms)]

5 PROBES OF PRIMORDIAL NG: CMB AND LSS CMB advantage: linearity LSS advantage: biasing d a m =4π( i) 3 k (2π) 3 Φ(k)g T (k)y m (ˆk) δ g = b 1 δ m + b2 2 2 δ2 m +

6 SCALE-DEPENDENT BIAS IN THE LOCAL fnl MODEL Dalal, Dore, Huterer & Shirokov (2008); Matarrese & Verde (2008) κ (k, f NL )=3f NL [b(m) 1] δ c Ω m H 2 0 k 2 T (k)d(z)

7 TESTING THE THEORY WITH N- BODY SIMULATIONS particles in a periodic cubic box of size L=1600 Mpc/h (simulations described in Desjacques, Seljak & Iliev 2009; Desjacques & Seljak 2010) Several realisations of the following models (f NL,g NL )=(±100, 0) (f NL,g NL )=(0, ±10 6 ) (f NL,g NL )=(±100, ) Identify dark matter haloes with a spherical overdensity (SO) finder Compute halo and dark matter auto- and cross-power spectrum

8 HALO MASS FUNCTION The solid curve (Eq.18) is ν 4 R(ν,g NL )=exp 4! σ2 S 4 + ν 2 δσ 8 1 ν2 4 σs 4 ν4 d(σ 2 S 4 ) 4! d ln ν There is a first order correction to σ8 because the simulations have identical primordial scalar amplitude δσ

9 SCALE-DEPENDENT BIAS IN gnl MODELS The scale-dependent bias contribution can be derived from the statistics of highly overdense regions n 1 ν n σ n x1,, x ξ hh ( x 1 x 2 )= 1 + exp 1, x 2,, x 2 j!(n j)! ξ(n) j times (n j) times n=2 j=1 (Matarrese, Bonometto & Lucchin 1986) We find b(k, g NL )= b κ (k, g NL )+ b I (g NL ) b κ (k, g NL )= 3 4 g NL S (1) 3 (M) [b(m) 1] δ 2 c skewness 10 4 g NL D(0) D(z) Ω m H 2 0 k 2 T (k)

10 To match the simulations, we consider b = κ b κ +[ b I + I ]

11 Fractional non-gaussian bias correction Best-fit εκ and εi b s b t = theory simulation

12 OBSERVATIONAL LIMITS ON gnl FROM LSS We can translate the limits on fnl obtained by Slosar et al. (2008) into limits on gnl (assuming fnl=0) <g NL < (95% C.L.)

13 FORECAST FOR DETECTION OF GNL Signal-to-noise for a survey of volume V centred at redshift z: 2 S g 2 N NL 2 κ D(z) 4 S (1) 2 4/3 3 V b 10 4 h 3 Gpc 3 For a single population of tracers with bias b(m)=2, the miminum gnl detectable is (BOSS) (EUCLID)

14 gnl FROM THE CMB TRISPECTRUM gnlφ 3 generates a connected CMB trispectrum at first order a m 1 1 a m 2 2 a m 3 3 a m 4 4 = L,M ( 1) M 1 2 L m 1 m 2 M 3 4 L m 3 m 4 M Q (L)+T (L) Hu (2002)

15 In the Sachs-Wolfe approximation and for cosmic variance dominated errors: S N g 2 NL As max No significant detection of a trispectrum would imply g NL (WMAP) g NL (PLANCK)

16 TIGHTENING CONSTRAINTS WITH OPTIMAL WEIGHTING A measurement of the galaxy power spectrum implies two sources of errors: cosmic variance (limited number of modes accessible) and shot noise (discreteness of the tracers) Taking the ratio of measurements obtained with two different tracer populations can take out most of cosmic variance (Seljak 2008), but there are residual fluctuations induced by discrete sampling Mass weighting can considerably reduce the shot noise level (Seljak, Hamaus & Desjacques 2009)

17 Idealized case: we know the halo and dark matter distributions mass weighting Error bars go down by a factor of ~ 5 Note also that central values are lower that input fnl=±100

18 CONCLUSION The statistics of thresholded regions can be used to predict the scale-dependent bias for local cubic primordial NG In contrast to models with the quadratic coupling fnlφ 2, the theory strongly overestimates the effect for the cubic coupling gnlφ 3 The power spectrum of SDSS quasars sets limits on gnl, <g NL < (95% C.L.) Future galaxy surveys will improve these limits by a factor of Optimal weighting of several tracers populations may further improve the constraints by a factor of a few

Probing Cosmic Origins with CO and [CII] Emission Lines

Probing Cosmic Origins with CO and [CII] Emission Lines Probing Cosmic Origins with CO and [CII] Emission Lines Azadeh Moradinezhad Dizgah A. Moradinezhad Dizgah, G. Keating, A. Fialkov arxiv:1801.10178 A. Moradinezhad Dizgah, G. Keating, A. Fialkov (in prep)

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

Science with large imaging surveys

Science with large imaging surveys Science with large imaging surveys Hiranya V. Peiris University College London Science from LSS surveys: A case study of SDSS quasars Boris Leistedt (UCL) with Daniel Mortlock (Imperial) Aurelien Benoit-Levy

More information

Primordial Non-Gaussianity and Galaxy Clusters

Primordial Non-Gaussianity and Galaxy Clusters Primordial Non-Gaussianity and Galaxy Clusters Dragan Huterer (University of Michigan) Why study non-gaussianity (NG)? 1. NG presents a window to the very early universe (t~10-35 seconds after Big Bang).

More information

General formula for the running of fnl

General formula for the running of fnl General formula for the running of fnl Christian Byrnes University of Sussex, Brighton CB & Gong; 1210.1851 CB, Kari Enqvist, Nurmi & Tomo Takahashi; 1108.2708 CB, Enqvist, Takahashi; 1007.5148 CB, Mischa

More information

Learning about Primordial Physics from Large Scale Structure

Learning about Primordial Physics from Large Scale Structure Learning about Primordial Physics from Large Scale Structure Sarah Shandera Penn State University 100 100 z = 0.00 Y [Mpc/h] 80 60 40 20 80 60 40 20 0 0 0 0 20 20 40 60 40 60 X [Mpc/h] 80 100 80 100 From

More information

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum 4th workshop on observational cosmology @ Yukawa Institute 18/11/2015 Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum Shuntaro Mizuno (Waseda) With Shuichiro Yokoyama (Rikkyo) Phys.

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

WMAP 5-Year Results: Measurement of fnl

WMAP 5-Year Results: Measurement of fnl WMAP 5-Year Results: Measurement of fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Non-Gaussianity From Inflation, Cambridge, September 8, 2008 1 Why is Non-Gaussianity Important? Because a

More information

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 Hunting for Primordial Non-Gaussianity fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 1 What is fnl? For a pedagogical introduction to fnl, see Komatsu, astro-ph/0206039

More information

Implications of the Planck Results for Inflationary and Cyclic Models

Implications of the Planck Results for Inflationary and Cyclic Models Implications of the Planck Results for Inflationary and Cyclic Models Jean-Luc Lehners Max-Planck-Institute for Gravitational Physics Albert-Einstein-Institute Potsdam, Germany New Data from Planck Cosmic

More information

COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS

COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS COSMOLOGICAL N-BODY SIMULATIONS WITH NON-GAUSSIAN INITIAL CONDITIONS Takahiro Nishimichi (Univ. of Tokyo IPMU from Apr.) Atsushi Taruya (Univ. of Tokyo) Kazuya Koyama, Cristiano Sabiu (ICG, Portsmouth)

More information

Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing

Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing Cross-Correlation of CFHTLenS Galaxy Catalogue and Planck CMB Lensing A 5-month internship under the direction of Simon Prunet Adrien Kuntz Ecole Normale Supérieure, Paris July 08, 2015 Outline 1 Introduction

More information

Curvaton model for origin of structure! after Planck

Curvaton model for origin of structure! after Planck Implications of Planck for Fundamental Physics Manchester, 8 th May 013 Curvaton model for origin of structure! after Planck David Wands Institute of Cosmology and Gravitation, University of Portsmouth

More information

Inflazione nell'universo primordiale: modelli e predizioni osservabili

Inflazione nell'universo primordiale: modelli e predizioni osservabili Inflazione nell'universo primordiale: modelli e predizioni osservabili Sabino Matarrese Dipartimento di Fisica Galileo Galilei, Università degli Studi di Padova, ITALY email: sabino.matarrese@pd.infn.it

More information

Review Article Primordial Non-Gaussianity in the Large-Scale Structure of the Universe

Review Article Primordial Non-Gaussianity in the Large-Scale Structure of the Universe Advances in Astronomy Volume 2010, Article ID 908640, 23 pages doi:10.1155/2010/908640 Review Article Primordial Non-Gaussianity in the Large-Scale Structure of the Universe Vincent Desjacques 1 and UrošSeljak

More information

Synergistic cosmology across the spectrum

Synergistic cosmology across the spectrum Synergistic cosmology across the spectrum Stefano Camera Dipartimento di Fisica, Università degli Studi di Torino, Italy Fundamental Cosmology Lion Panther She-wolf Fundamental Cosmology Dark matter Dark

More information

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = 0.960 ± 0.013 nearly

More information

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian?

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Eiichiro Komatsu The University of Texas at Austin Colloquium at the University of Oklahoma, February 21, 2008 1 Messages

More information

Signatures of primordial NG in CMB and LSS. Kendrick Smith (Princeton/Perimeter) Munich, November 2012

Signatures of primordial NG in CMB and LSS. Kendrick Smith (Princeton/Perimeter) Munich, November 2012 Signatures of primordial NG in CMB and LSS Kendrick Smith (Princeton/Perimeter) Munich, November 2012 Primordial non-g + observations 1. CMB: can we independently constrain every interesting non-gaussian

More information

Cosmological surveys. Lecture 2. Will Percival

Cosmological surveys. Lecture 2. Will Percival Cosmological surveys Lecture 2 Will Percival Physics from the linear galaxy power spectrum Projected clustering Galaxy clustering as a standard ruler BAO or full power spectrum Alcock-Paczynski effect

More information

Enhanced constraints from multi-tracer surveys

Enhanced constraints from multi-tracer surveys Enhanced constraints from multi-tracer surveys or How to beat cosmic variance Raul Abramo Physics Institute, USP & LabCosmos @ USP & J-PAS / Pau-Brasil Collaboration J-PAS Galaxy surveys are evolving We

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

The primordial CMB 4-point function

The primordial CMB 4-point function The primordial CMB 4-point function Kendrick Smith (Perimeter) Minnesota, January 2015 Main references: Smith, Senatore & Zaldarriaga (to appear in a few days) Planck 2014 NG paper (to appear last week

More information

arxiv: v1 [astro-ph.co] 30 Jun 2010

arxiv: v1 [astro-ph.co] 30 Jun 2010 arxiv:006.5793v [astro-ph.co] 30 Jun 200 N-body simulations with generic non-gaussian initial conditions I: Power Spectrum and halo mass function. Introduction Christian Wagner, Licia Verde,2, Lotfi Boubekeur

More information

Mapping the dark universe with cosmic magnification

Mapping the dark universe with cosmic magnification Mapping the dark universe with cosmic magnification 张鹏杰 Zhang, Pengjie 中科院上海天文台 Shanghai Astronomical Observatory (SHAO) Chinese Academy of Sciences All the hard works are done by my student Yang Xinjuan

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

An Estimator for statistical anisotropy from the CMB. CMB bispectrum

An Estimator for statistical anisotropy from the CMB. CMB bispectrum An Estimator for statistical anisotropy from the CMB bispectrum 09/29/2012 1 2 3 4 5 6 ...based on: N. Bartolo, E. D., M. Liguori, S. Matarrese, A. Riotto JCAP 1201:029 N. Bartolo, E. D., S. Matarrese,

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

N-body Simulations and Dark energy

N-body Simulations and Dark energy N-Body Simulations and models of Dark Energy Elise Jennings Supported by a Marie Curie Early Stage Training Fellowship N-body Simulations and Dark energy elise jennings Introduction N-Body simulations

More information

Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos

Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos Eva-Maria Mueller Work in collaboration with Francesco De Bernardis, Michael D. Niemack, Rachel Bean [arxiv:1408.6248,

More information

Probing Primordial Magnetic Fields with Cosmic Microwave Background Radiation

Probing Primordial Magnetic Fields with Cosmic Microwave Background Radiation Probing Primordial Magnetic Fields with Cosmic Microwave Background Radiation Department of Physics and Astrophysics University of Delhi IIT Madras, May 17, 2012 Collaborators: K. Subramanian, Pranjal

More information

Primordial Non-Gaussianity

Primordial Non-Gaussianity Primordial Non-Gaussianity Sam Passaglia 1 1 University of Chicago KICP In This Discussion Non-Gaussianity in Single-Field Slow-Roll Non-Gaussianity in the EFT of Inflation Observational Constraints Non-Gaussianity

More information

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland

Neutrino Mass & the Lyman-α Forest. Kevork Abazajian University of Maryland Neutrino Mass & the Lyman-α Forest Kevork Abazajian University of Maryland INT Workshop: The Future of Neutrino Mass Measurements February 9, 2010 Dynamics: the cosmological density perturbation spectrum

More information

arxiv: v1 [astro-ph.co] 24 Jun 2010

arxiv: v1 [astro-ph.co] 24 Jun 2010 Primordial non-gaussianity in the Large Scale Structure of the Universe arxiv:1006.4763v1 [astro-ph.co] 24 Jun 2010 Vincent Desjacques 1, and Uroš Seljak 1,2, 1 Institute for Theoretical Physics, University

More information

The self-interacting (subdominant) curvaton

The self-interacting (subdominant) curvaton Corfu.9.010 The self-interacting (subdominant) curvaton Kari Enqvist Helsinki University and Helsinki Institute of Physics in collaboration with C. Byrnes (Bielefeld), S. Nurmi (Heidelberg), A. Mazumdar

More information

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration

Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration Primordial and Doppler modulations with Planck Antony Lewis On behalf of the Planck collaboration http://cosmologist.info/ Outline Primordial modulations and power asymmetry τ NL trispectrum Kinematic

More information

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013 Structure Formation: à la recherche de paramètre perdu Séminaires de l'iap Shant Baghram IPM-Tehran 13 September 013 Collaborators: Hassan Firoujahi IPM, Shahram Khosravi Kharami University-IPM, Mohammad

More information

Shear Power of Weak Lensing. Wayne Hu U. Chicago

Shear Power of Weak Lensing. Wayne Hu U. Chicago Shear Power of Weak Lensing 10 3 N-body Shear 300 Sampling errors l(l+1)c l /2π εε 10 4 10 5 Error estimate Shot Noise θ y (arcmin) 200 100 10 6 100 1000 l 100 200 300 θ x (arcmin) Wayne Hu U. Chicago

More information

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Eva-Maria Mueller Work in collaboration with Rachel Bean, Francesco De Bernardis, Michael Niemack (arxiv 1408.XXXX, coming out tonight)

More information

Constraining dark energy and primordial non-gaussianity with large-scale-structure studies!

Constraining dark energy and primordial non-gaussianity with large-scale-structure studies! Constraining dark energy and primordial non-gaussianity with large-scale-structure studies! Cristiano Porciani, AIfA, Bonn! porciani@astro.uni-bonn.de! Research interests! Cosmology, large-scale structure,

More information

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

COSMIC MICROWAVE BACKGROUND ANISOTROPIES COSMIC MICROWAVE BACKGROUND ANISOTROPIES Anthony Challinor Institute of Astronomy & Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk 26

More information

Weak gravitational lensing of CMB

Weak gravitational lensing of CMB Weak gravitational lensing of CMB (Recent progress and future prospects) Toshiya Namikawa (YITP) Lunch meeting @YITP, May 08, 2013 Cosmic Microwave Background (CMB) Precise measurements of CMB fluctuations

More information

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory Cross-correlations of CMB lensing as tools for cosmology and astrophysics Alberto Vallinotto Los Alamos National Laboratory Dark matter, large scales Structure forms through gravitational collapse......

More information

PONT 2011 Avignon - 20 Apr 2011 Non-Gaussianities in Halo Clustering properties. Andrea De Simone

PONT 2011 Avignon - 20 Apr 2011 Non-Gaussianities in Halo Clustering properties. Andrea De Simone PONT 2011 Avignon - 20 Apr 2011 Non-Gaussianities in Halo Clustering properties Andrea De Simone Based on: ADS, M. Maggiore, A. Riotto - 1102.0046 ADS, M. Maggiore, A. Riotto - MNRAS (1007.1903) OUTLINE

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence Antony Lewis http://cosmologist.info/ Evolution of the universe Opaque Transparent Hu & White, Sci. Am., 290 44 (2004) CMB temperature

More information

Observational signatures of holographic models of inflation

Observational signatures of holographic models of inflation Observational signatures of holographic models of inflation Paul McFadden Universiteit van Amsterdam First String Meeting 5/11/10 This talk I. Cosmological observables & non-gaussianity II. Holographic

More information

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You BARYON ACOUSTIC OSCILLATIONS Cosmological Parameters and You OUTLINE OF TOPICS Definitions of Terms Big Picture (Cosmology) What is going on (History) An Acoustic Ruler(CMB) Measurements in Time and Space

More information

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2 S E.H. +S.F. = d 4 x [ 1 g 2 M PlR 2 + MPlḢg 2 00 MPl(3H 2 2 + Ḣ)+ + 1 2! M 2(t) 4 (g 00 + 1) 2 + 1 3! M 3(t) 4 (g 00 + 1) 3 + M 1 (t) 3 2 (g 00 + 1)δK µ µ M 2 (t) 2 δk µ µ 2 M 3 (t) 2 2 2 ] δk µ νδk ν

More information

Large Scale Structure with the Lyman-α Forest

Large Scale Structure with the Lyman-α Forest Large Scale Structure with the Lyman-α Forest Your Name and Collaborators Lecture 1 - The Lyman-α Forest Andreu Font-Ribera - University College London Graphic: Anze Slozar 1 Large scale structure The

More information

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP)

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP) Workshop, 03 Aug 2016 @ Hirosaki Univ. CMB bispectrum Takashi Hiramatsu Yukawa Institute for Theoretical Physics (YITP) Kyoto University Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao

More information

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY N-body Simulations N-body Simulations N-body Simulations Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY Final distribution of dark matter.

More information

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden A STATUS REPORT ON SINGLE-FIELD INFLATION Raquel H. Ribeiro DAMTP, University of Cambridge R.Ribeiro@damtp.cam.ac.uk Lorentz Center, Leiden July 19, 2012 1 Message to take home Non-gaussianities are a

More information

Measuring Neutrino Masses and Dark Energy

Measuring Neutrino Masses and Dark Energy Huitzu Tu UC Irvine June 7, 2007 Dark Side of the Universe, Minnesota, June 5-10 2007 In collaboration with: Steen Hannestad, Yvonne Wong, Julien Lesgourgues, Laurence Perotto, Ariel Goobar, Edvard Mörtsell

More information

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ Non-Gaussianities from Inflation Leonardo Senatore, Kendrick Smith & MZ Lecture Plan: Lecture 1: Non-Gaussianities: Introduction and different take on inflation and inflation modeling. Lecture II: Non-Gaussianities:

More information

Variation in the cosmic baryon fraction and the CMB

Variation in the cosmic baryon fraction and the CMB Variation in the cosmic baryon fraction and the CMB with D. Hanson, G. Holder, O. Doré, and M. Kamionkowski Daniel Grin (KICP/Chicago) Presentation for CAP workshop 09/24/2013 arxiv: 1107.1716 (DG, OD,

More information

Primordial non Gaussianity from modulated trapping. David Langlois (APC)

Primordial non Gaussianity from modulated trapping. David Langlois (APC) Primordial non Gaussianity from modulated trapping David Langlois (APC) Outline 1. Par&cle produc&on during infla&on 2. Consequences for the power spectrum 3. Modulaton and primordial perturba&ons 4. Non

More information

arxiv: v1 [astro-ph.co] 1 Feb 2016

arxiv: v1 [astro-ph.co] 1 Feb 2016 LSS constraints with controlled theoretical uncertainties Tobias Baldauf, Mehrdad Mirbabayi, Marko Simonović, and Matias Zaldarriaga Institute for Advanced Study, Einstein Drive, Princeton, NJ 0840, USA

More information

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK

Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle. Centre for Astrophysics Research University of Hertfordshire, UK Millennium simulation of the cosmic web MEASUREMENTS OF THE LINEAR BIAS OF RADIO GALAXIES USING CMB LENSING FROM PLANCK Dr Carolyn Devereux - Daphne Jackson Fellow Dr Jim Geach Prof. Martin Hardcastle

More information

Cosmology with CMB: the perturbed universe

Cosmology with CMB: the perturbed universe Cosmology with CMB: the perturbed universe Utkal Univ. (Jan 11-12, 2008) Tarun Souradeep I.U.C.A.A, Pune, India How do we know so much now about this model Universe? Cosmic Microwave Background Pristine

More information

Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Final Results

Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Final Results WMAP Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Final Results Eiichiro Komatsu (Max-Planck-Institut für Astrophysik) HEP-GR Colloquium, DAMTP, Cambridge, January 30, 2012 1 used to be

More information

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat Analyzing the CMB Brightness Fluctuations (predicted) 1 st rarefaction Power = Average ( / ) 2 of clouds of given size scale 1 st compression 2 nd compression (deg) Fourier analyze WMAP image: Measures

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

On the correspondence between barrier crossing, peak-background split and local biasing

On the correspondence between barrier crossing, peak-background split and local biasing NRAS 435, 934 94 03 Advance Access publication 03 August 30 doi:0.093/mnras/stt7 On the correspondence between barrier crossing, peak-background split and local biasing Simone Ferraro, Kendrick. Smith,,

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Cosmology from Topology of Large Scale Structure of the Universe

Cosmology from Topology of Large Scale Structure of the Universe RESCEU 2008 Cosmology from Topology of Large Scale Structure of the Universe RESCEU Symposium on Astroparticle Physics and Cosmology 11-14, November 2008 Changbom Park (Korea Institute for Advanced Study)

More information

Microwave Background Polarization: Theoretical Perspectives

Microwave Background Polarization: Theoretical Perspectives Microwave Background Polarization: Theoretical Perspectives Department of Physics and Astronomy University of Pittsburgh CMBpol Technology Workshop Outline Tensor Perturbations and Microwave Polarization

More information

Soft limits in multi-field inflation

Soft limits in multi-field inflation Soft limits in multi-field inflation David J. Mulryne Queen Mary University of London based on arxiv:1507.08629 and forthcoming work with Zac Kenton Soft limits in multi-field inflation David J. Mulryne

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Ben Wibking Department of Astronomy Ohio State University with Andres Salcedo, David Weinberg,

More information

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016 Fundamental cosmology from the galaxy distribution John Peacock Subaru @ Hiroshima 1 Dec 2016 What we learn from LSS Fundamental: Astrophysical: Matter content (CDM, baryons, neutrino mass) Properties

More information

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch. Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS In collaboration with: Marcello Cacciato (Leiden), Surhud More (IPMU), Houjun Mo (UMass), Xiaohu Yang

More information

Dark Matter and Cosmic Structure Formation

Dark Matter and Cosmic Structure Formation Dark Matter and Cosmic Structure Formation Prof. Luke A. Corwin PHYS 792 South Dakota School of Mines & Technology Jan. 23, 2014 (W2-2) L. Corwin, PHYS 792 (SDSM&T) DM & Cosmic Structure Jan. 23, 2014

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld.

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld. Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK Kosmologietag, Bielefeld. 7th May 15+5 min What have we learnt from the precision era? Planck completes

More information

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey David Weinberg, Ohio State University Dept. of Astronomy and CCAPP Based partly on Observational Probes of Cosmic Acceleration

More information

Precision Cosmology from Redshift-space galaxy Clustering

Precision Cosmology from Redshift-space galaxy Clustering 27th June-1st July, 2011 WKYC2011@KIAS Precision Cosmology from Redshift-space galaxy Clustering ~ Progress of high-precision template for BAOs ~ Atsushi Taruya RESearch Center for the Early Universe (RESCEU),

More information

Cosmic Variance from Mode Coupling

Cosmic Variance from Mode Coupling Cosmic Variance from Mode Coupling Sarah Shandera Penn State University L Nelson, Shandera, 1212.4550 (PRL); LoVerde, Nelson, Shandera, 1303.3549 (JCAP); Bramante, Kumar, Nelson, Shandera, 1307.5083; Work

More information

Position space CMB anomalies from multi-stream inflation. Yi Wang, IPMU, May 2013

Position space CMB anomalies from multi-stream inflation. Yi Wang, IPMU, May 2013 Position space CMB anomalies from multi-stream inflation Yi Wang, IPMU, May 2013 Outline: Cosmology after Planck - standard model, extensions and anomalies Multi-stream inflation - the model - hemispherical

More information

arxiv: v4 [astro-ph] 16 Jul 2009

arxiv: v4 [astro-ph] 16 Jul 2009 Mon. Not. R. Astron. Soc. 000, 1 13 (0000) Printed 23 July 2018 (MN LATEX style file v2.2) Scale-dependent bias induced by local non-gaussianity: A comparison to N-body simulations Vincent Desjacques 1,

More information

Chapter 9. Cosmic Structures. 9.1 Quantifying structures Introduction

Chapter 9. Cosmic Structures. 9.1 Quantifying structures Introduction Chapter 9 Cosmic Structures 9.1 Quantifying structures 9.1.1 Introduction We have seen before that there is a very specific prediction for the power spectrum of density fluctuations in the Universe, characterised

More information

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004 NeoClassical Probes in of the Dark Energy Wayne Hu COSMO04 Toronto, September 2004 Structural Fidelity Dark matter simulations approaching the accuracy of CMB calculations WMAP Kravtsov et al (2003) Equation

More information

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

LSS: Achievements & Goals. John Peacock Munich 20 July 2015 LSS: Achievements & Goals John Peacock LSS @ Munich 20 July 2015 Outline (pre-)history and empirical foundations The ΛCDM toolkit Open issues and outlook Fundamentalist Astrophysical A century of galaxy

More information

Caldwell, MK, Wadley (open) (flat) CMB determination of the geometry (MK, Spergel, and Sugiyama, 1994) Where did large scale structure (e.g., galaxies, clusters, larger-scale explosions clustering)

More information

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi Forthcoming CMB experiments and expectations for dark energy Carlo Baccigalupi Outline Classic dark energy effects on CMB Modern CMB relevance for dark energy: the promise of lensing Lensing (B modes)

More information

arxiv: v3 [astro-ph] 27 Mar 2008

arxiv: v3 [astro-ph] 27 Mar 2008 The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects arxiv:0710.4560v3 [astro-ph] 27 Mar 2008 Neal Dalal, 1 Olivier Doré, 1 Dragan

More information

Formation of Primordial Black Holes in Double Inflation

Formation of Primordial Black Holes in Double Inflation Formation of Primordial Black Holes in Double Inflation Masahiro Kawasaki (ICRR and Kavli-IPMU, University of Tokyo) Based on MK Mukaida Yanagida, arxiv:1605.04974 MK Kusenko Tada Yanagida arxiv:1606.07631

More information

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知 Beyond N-formalism Resceu, University of Tokyo Yuichi Takamizu 29th Aug, 2010 @ 高知 Collaborator: Shinji Mukohyama (IPMU,U of Tokyo), Misao Sasaki & Yoshiharu Tanaka (YITP,Kyoto U) Ref: JCAP06 019 (2010)

More information

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign Measuring Primordial Non-Gaussianity using CMB T & E data Amit Yadav University of illinois at Urbana-Champaign GLCW8, Ohio, June 1, 2007 Outline Motivation for measuring non-gaussianity Do we expect primordial

More information

Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering. Roland de Pu+er JPL/Caltech COSMO- 14

Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering. Roland de Pu+er JPL/Caltech COSMO- 14 Constraining Fundamental Physics with Weak Lensing and Galaxy Clustering Roland de Pu+er JPL/Caltech COSMO- 14 Galaxy Clustering: - 3D maps of galaxies - > 3D power spectrum P(k,mu) - BOSS: V = 4.4 (h-

More information

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ]

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ] Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv:1105.0498] Origin of? super-horizon Origin of (almost) scale-invariant? perturbations Outline What

More information

CMB Anisotropies Episode II :

CMB Anisotropies Episode II : CMB Anisotropies Episode II : Attack of the C l ones Approximation Methods & Cosmological Parameter Dependencies By Andy Friedman Astronomy 200, Harvard University, Spring 2003 Outline Elucidating the

More information

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology The Nature of Dark Energy and its Implications for Particle Physics and Cosmology May 3, 27@ University of Tokyo Tomo Takahashi Department of Physics, Saga University 1. Introduction Current cosmological

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing 2017/7/14 13th Rencontres du Vietnam: Cosmology Ken Osato Dept. of Physics,

More information

Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki

Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Non-Gaussianity and Primordial black holes Work in collaboration with Sam Young, Ilia Musco, Ed Copeland, Anne Green and Misao Sasaki Christian Byrnes University of Sussex, Brighton, UK Constraints on

More information

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14

Signatures of MG on. linear scales. non- Fabian Schmidt MPA Garching. Lorentz Center Workshop, 7/15/14 Signatures of MG on non- linear scales Fabian Schmidt MPA Garching Lorentz Center Workshop, 7/15/14 Tests of gravity Smooth Dark Energy (DE): unique prediction for growth factor given w(a) Use evolution

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

Constraints on the Inflation Model

Constraints on the Inflation Model Constraints on the Inflation Model from CMB and LSS data Micol Benetti Meeting on Fundamental Cosmology 18 June 2015 Santander Primordial perturbations According to the inflationary paradigm, the Standard

More information