Non-linear perturbations from cosmological inflation

Size: px
Start display at page:

Download "Non-linear perturbations from cosmological inflation"

Transcription

1 JGRG0, YITP, Kyoto 5 th September 00 Non-linear perturbations from cosmological inflation David Wands Institute of Cosmology and Gravitation University of Portsmouth

2 summary: non-linear perturbations offer distinctive observational signatures of physics of inflation

3 gravity + inflation: accelerated expansion of FLRW cosmologies horizon, entropy, flatness... relativistic perturbations quantum fluctuations of free scalar and tensor modes non-linear perturbations second-order tensor modes from scalar fluctuations second-order density perturbations and non-gaussian distributions inflation driven by modified gravity e.g., Starobinsy 980

4 coming of age... c Masashi Kio 00

5 inflation circa 990

6 extended inflation simple, compelling model for gravity-driven inflation... false vacuum + first-order transition + Brans-Dice gravity L R V false vacuum La & Steinhardt 989 Barrow & Maeda 990 Steinhardt & Accetta 990 solves graceful exit problem of Guth s old inflation Φ grows during inflation, Hubble rate decreases, until first-order transition completes scale-free gravity one dimensionless parameter

7 dynamical solution to hierarchy problem E. Weinberg 989 Liddle & Wands 99 start near Planc scale bubble nucleation rate H M M 4 GUT Pl 4 GUT exp S E M M Pl M GUT S E >> is dimensionless Euclidean action shape parameter percolation parameter P H 4 Pl 4 GUT P grows as Φ grows gravity gets weaer and H decreases 4 M M exp S E phase transition completes / inflation ends when p= M M exp 4 Pl GUT S E / MGUT

8 power law inflation power-law inflation a t p ; p 4 linear perturbations [conformal transform to Einstein frame Brans 96, Maeda 989] reproduces scale-invariant spectrum as ω non-linear perturbations CoBE 994 first-order transition leads to distribution of bubbles spectrum of bubbles also becomes scale-invariant as ω big bubble problem Weinberg 989; Liddle & Wands; Maeda & Saai 99

9

10 hybrid inflation Linde 99 inflaton field changes shape of false vacuum potential S E t => t~ M 4 exp[- S E t] t ends by sudden phase transition first- or second-order non-linear perturbations only on small scales inhomogeneous bubbles or tachyonic preheating Lyth; Fonseca, Sasai & Wands 00 + see poster by Gong spectrum of relic gravitational waves on characteristic scale Easther 09

11 Sources of primordial gravitational waves: Quantum fluctuations of gravitational field First-order phase transitions? Preheating after inflation? Cosmic string cusps? Primordial density perturbations

12 Second-order GW from first-order density perturbations Tomita 967; Matarrese et al 994; Hwang; K. Naamura; Ananda, Clarson & Wands 006 scalar, vector and tensor modes couple at second and higher order tensor perturbations become gauge-dependent in longitudinal gauge for general FRW cosmology w=p/, c s =dp/d where second-order source is transverse-tracefree part of Baumann, Steinhardt, Taahashi, Ichii, hep-th/07090

13 GW from density perturbations in radiation era Ananda, Clarson & Wands, gr-qc/060 almost scale-invariant primordial density power spectrum 4 P R for ah 9 generates almost scale-invariant gravitational wave bacground GW,0 0,0 c 4 R for ah d d ln GW e.g., 0 9 GW,0 0 for ΔR 0 ah

14 Constraints on primordial density perturbations GW,0 0,0 4 R Assadullahi & Wands, arxiv: LIGO/VIRGO Δ R 0. 07, 00Hz Advanced LIGO/VIRGO Δ R 80 4 LISA Δ R 0 4, mhz BBO/DECIGO Δ R 0 7, Hz Pulsar timing data rules out intermediate mass primordial blac holes Saito & Yooyama, arxiv:08.49 Phys Rev Lett Bugaev & Klimai, arxiv:

15 second-order density perturbations non-linear evolution lead to non-gaussian distribution non-zero bispectrum and higher-order correlators Local-type non-gaussianity super-hubble evolution of Gaussian random field from multi-field inflation Equilateral-type non-gaussianity sub-hubble interactions in -inflation/dbi inflation Topological defects cosmic strings from phase transitions templates required to develop optimal estimators matched filtering to extract small non-gaussian signal

16 the N formalism for primordial perturbations in radiation-dominated era curvature perturbation on uniform-density hypersurface t during inflation field perturbations I x,t i on initial spatially-flat hypersurface N final initial H dt x on large scales, neglect spatial gradients, treat as separate universes N N initial N I I I Starobinsy `85; Sasai & Stewart `96 Lyth & Rodriguez 05 wors to any order

17 the N formalism order by order at Hubble exit I I I... I N I... I I N I I t I, J N I I I J... sub-hubble quantum interactions super-hubble classical evolution N N N N N N Byrnes, Koyama, Sasai & DW

18 N is local function of single Gaussian random field, where odd factors of /5 because Komatsu & Spergel, 00, used /5 simplest local form of non-gaussianity applies to many models inflation including curvaton, modulated reheating, etc x x x x f x x x N N x x x x x N x x N N N NL

19 large non-gaussianity from inflation? single inflaton field adiabatic perturbations => constant on large scales during conventional slow-roll inflation for any * adiabatic model Creminelli&Zaldarriaga 004 /DBI - inflation N N multi-field models typically f NL ~ for slow-roll inflation could be much larger from sudden transition at end of inflation? modulated reheating curvaton f NL ~/ decay >>? f f local NL equil f NL c local NL s 5 n new epyrotic models f NL >> * but as Sasai-san!

20 V curvaton scenario: Linde & Muhanov 997; Enqvist & Sloth, Lyth & Wands, Moroi & Taahashi 00 curvaton = a wealy-coupled, late-decaying scalar field - light during inflation m<<h hence acquires an almost scaleinvariant, Gaussian distribution of field fluctuations on large scales - energy density for massive field, =m / - spectrum of initially isocurvature density perturbations - transferred to radiation when curvaton decays with some efficiency,decay, decay G 4, decay G f NL 5 4, decay

21 Liguori, Matarrese and Moscardini 00

22 f NL =+000 Liguori, Matarrese and Moscardini 00

23 f NL =-000 Liguori, Matarrese and Moscardini 00

24 remember: f NL < 00 implies Gaussian to better than 0.%

25 evidence for local non-gaussianity? T/T -/, so positive f NL more cold spots in CMB various groups have attempted to measure this with the WMAP CMB data using estimators based on matched filtering all 95% CL : 7 < f NL < 47 Yadav & Wandelt WMAP data -9 < f NL < Komatsu et al WMAP5-4 < f NL < 80 Smith et al. Optimal WMAP5-0 < f NL < 74 Komatsu et al WMAP7 Large scale structure observations have recently given independent indications due to non-local bias on large scales Dalal et al 007: -9 < f NL < 70 95% CL Slosar et al < f NL < 7 95% CL Xia et al 00 [NVSS survey of AGNs]

26 inflation non-gaussianity from inflation Source of non- Gaussianity Initial vacuum Excited state Folded? Sub-Hubble evolution Hubble-exit Higher-derivative interactions e.g. -inflation, DBI, ghost Features in potential Super-Hubble evolution Self-interactions+gravity Local End of inflation Tachyonic instability Local preheating Modulated preheating Local After inflation Curvaton decay Local primordial non-gaussianity Radiation + matter + last-scattering Primary anisotropies Bispectrum type Equilateral +orthogonal? Local+equilateral ISW/lensing Secondary anisotropies Local+equilateral 8//008 David Wands 6

27 templates for primordial bispectra local type Komatsu&Spergel 00 local in real space fnl=constant max for squeezed triangles: <<, equilateral type Creminelli et al 005 peas for ~~ orthogonal type Senatore et al 009 8//008 David Wands 7,, 6/5,,, / P P P P P P f B P NL P 6/ 5,, f B local NL P 6/5,, f B equil NL P 8 6 / 5,, f B orthog NL P

28 the N formalism order by order at Hubble exit I I I... I N I... I I N I I t I, J N I I I J... sub-hubble quantum interactions super-hubble classical evolution N N N N N N Byrnes, Koyama, Sasai & DW

29 sub-hubble interactions: requires non-minimal inetic Lagrangian -inflation Armendariz-Picon & Muhanov 999 super-luminal c s > DBI brane inflation Alishahiha, Silverstein & Tong 004 probe brane in AdS bul c s <, f NL ~ /c s L f Galileon fields Nicolis, Ratazzi & Trincherini 009 f ghost-free DGP lie scalar field with second-order equations of motion c s <, f NL ~ /c s see posters by Kobayashi & Mizuno 00 L P, f Galileon and DBI reunited de Rham & Tolley 00 brane + most general second-order gravity in AdS bul L M 4 R M5 KGH M 5 K GB

30 summary: non-linear perturbations offer distinctive observational signatures of gravitational physics of inflation Happy Birthday!

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012

Non-Gaussianity in the CMB. Kendrick Smith (Princeton) Whistler, April 2012 Non-Gaussianity in the CMB Kendrick Smith (Princeton) Whistler, April 2012 Why primordial non-gaussianity? Our best observational windows on the unknown physics of inflation are: The gravity wave amplitude

More information

What s left of non-gaussianity (i) after Planck? (ii) after BICEP2?

What s left of non-gaussianity (i) after Planck? (ii) after BICEP2? PONT 04, Avignon 4th April 04 What s left of non-gaussianity (i) after Planc? (ii) after BICEP? David Wands Institute of Cosmology and Gravitation University of Portsmouth Conclusions from Planc+BICEP

More information

Curvaton model for origin of structure! after Planck

Curvaton model for origin of structure! after Planck Implications of Planck for Fundamental Physics Manchester, 8 th May 013 Curvaton model for origin of structure! after Planck David Wands Institute of Cosmology and Gravitation, University of Portsmouth

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth

Large Primordial Non- Gaussianity from early Universe. Kazuya Koyama University of Portsmouth Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth Primordial curvature perturbations Proved by CMB anisotropies nearly scale invariant n s = 0.960 ± 0.013 nearly

More information

arxiv: v3 [hep-th] 24 Apr 2008

arxiv: v3 [hep-th] 24 Apr 2008 Non-Gaussianities in New Epyrotic Cosmology Evgeny I. Buchbinder 1, Justin Khoury 1, Burt A. Ovrut 2 1 Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5, Canada 2 Department

More information

New Ekpyrotic Cosmology and Non-Gaussianity

New Ekpyrotic Cosmology and Non-Gaussianity New Ekpyrotic Cosmology and Non-Gaussianity Justin Khoury (Perimeter) with Evgeny Buchbinder (PI) Burt Ovrut (UPenn) hep-th/0702154, hep-th/0706.3903, hep-th/0710.5172 Related work: Lehners, McFadden,

More information

Primordial nongaussianities I: cosmic microwave background. Uros Seljak, UC Berkeley Rio de Janeiro, August 2014

Primordial nongaussianities I: cosmic microwave background. Uros Seljak, UC Berkeley Rio de Janeiro, August 2014 Primordial nongaussianities I: cosmic microwave bacground Uros Selja, UC Bereley Rio de Janeiro, August 2014 Outline Primordial nongaussianity Introduction and basic physics CMB temperature power spectrum

More information

Inflationary density perturbations

Inflationary density perturbations Cosener s House 7 th June 003 Inflationary density perturbations David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! some motivation! Primordial Density Perturbation (and

More information

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian?

Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Observing Primordial Fluctuations From the Early Universe: Gaussian, or non- Gaussian? Eiichiro Komatsu The University of Texas at Austin Colloquium at the University of Oklahoma, February 21, 2008 1 Messages

More information

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知 Beyond N-formalism Resceu, University of Tokyo Yuichi Takamizu 29th Aug, 2010 @ 高知 Collaborator: Shinji Mukohyama (IPMU,U of Tokyo), Misao Sasaki & Yoshiharu Tanaka (YITP,Kyoto U) Ref: JCAP06 019 (2010)

More information

Inflation and the Primordial Perturbation Spectrum

Inflation and the Primordial Perturbation Spectrum PORTILLO 1 Inflation and the Primordial Perturbation Spectrum Stephen K N PORTILLO Introduction The theory of cosmic inflation is the leading hypothesis for the origin of structure in the universe. It

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ]

Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv: ] Completing the curvaton model Rose Lerner (Helsinki University) with K. Enqvist and O. Taanila [arxiv:1105.0498] Origin of? super-horizon Origin of (almost) scale-invariant? perturbations Outline What

More information

Observing Quantum Gravity in the Sky

Observing Quantum Gravity in the Sky Observing Quantum Gravity in the Sky Mark G. Jackson Instituut-Lorentz for Theoretical Physics Collaborators: D. Baumann, M. Liguori, P. D. Meerburg, E. Pajer, J. Polchinski, J. P. v.d. Schaar, K. Schalm,

More information

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign

Measuring Primordial Non-Gaussianity using CMB T & E data. Amit Yadav University of illinois at Urbana-Champaign Measuring Primordial Non-Gaussianity using CMB T & E data Amit Yadav University of illinois at Urbana-Champaign GLCW8, Ohio, June 1, 2007 Outline Motivation for measuring non-gaussianity Do we expect primordial

More information

New Insights in Hybrid Inflation

New Insights in Hybrid Inflation Dr. Sébastien Clesse TU Munich, T70 group: Theoretical Physics of the Early Universe Excellence Cluster Universe Based on S.C., B. Garbrecht, Y. Zhu, Non-gaussianities and curvature perturbations in hybrid

More information

CMB Polarization in Einstein-Aether Theory

CMB Polarization in Einstein-Aether Theory CMB Polarization in Einstein-Aether Theory Masahiro Nakashima (The Univ. of Tokyo, RESCEU) With Tsutomu Kobayashi (RESCEU) COSMO/CosPa 2010 Introduction Two Big Mysteries of Cosmology Dark Energy & Dark

More information

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation

Guido D Amico Center for Cosmology and Particle Physics New York University. Unwinding Inflation Guido D Amico Center for Cosmology and Particle Physics New York University Unwinding Inflation New Lights in Cosmology from the CMB ICTP Trieste, Summer 2013 with Roberto Gobbetti, Matthew Kleban, Marjorie

More information

Exact Inflationary Solution. Sergio del Campo

Exact Inflationary Solution. Sergio del Campo Exact Inflationary Solution Sergio del Campo Instituto de Física Pontificia Universidad Católica de Valparaíso Chile I CosmoSul Rio de Janeiro, 1 al 5 de Agosto, 2011 Inflation as a paradigm. Models Slow-roll

More information

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky.

Inflation from High Energy Physics and non-gaussianities. Hassan Firouzjahi. IPM, Tehran. Celebrating DBI in the Sky. Inflation from High Energy Physics and non-gaussianities Hassan Firouzjahi IPM, Tehran Celebrating DBI in the Sky 31 Farvardin 1391 Outline Motivation for Inflation from High Energy Physics Review of String

More information

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017 Misao Sasaki KIAS-YITP joint workshop September, 017 Introduction Inflation: the origin of Big Bang Brout, Englert & Gunzig 77, Starobinsky 79, Guth 81, Sato 81, Linde 8, Inflation is a quasi-exponential

More information

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden

A STATUS REPORT ON SINGLE-FIELD INFLATION. Raquel H. Ribeiro. DAMTP, University of Cambridge. Lorentz Center, Leiden A STATUS REPORT ON SINGLE-FIELD INFLATION Raquel H. Ribeiro DAMTP, University of Cambridge R.Ribeiro@damtp.cam.ac.uk Lorentz Center, Leiden July 19, 2012 1 Message to take home Non-gaussianities are a

More information

Stable violation of the null energy condition and non-standard cosmologies

Stable violation of the null energy condition and non-standard cosmologies Paolo Creminelli (ICTP, Trieste) Stable violation of the null energy condition and non-standard cosmologies hep-th/0606090 with M. Luty, A. Nicolis and L. Senatore What is the NEC? Energy conditions: Singularity

More information

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University PPP11 Tamkang University 13,14 May, 015 Misao Sasaki Yukawa Institute for Theoretical Physics Kyoto University General Relativity 1 8 G G R g R T ; T 0 4 c Einstein (1915) GR applied to homogeneous & isotropic

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

WMAP 5-Year Results: Measurement of fnl

WMAP 5-Year Results: Measurement of fnl WMAP 5-Year Results: Measurement of fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Non-Gaussianity From Inflation, Cambridge, September 8, 2008 1 Why is Non-Gaussianity Important? Because a

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Current status of inflationary cosmology. Gunma National college of Technology,Japan

Current status of inflationary cosmology. Gunma National college of Technology,Japan Current status of inflationary cosmology Shinji Tsujikawa Gunma National college of Technology,Japan Bright side of the world Recent observations have determined basic cosmological parameters in high precisions.

More information

The Theory of Inflationary Perturbations

The Theory of Inflationary Perturbations The Theory of Inflationary Perturbations Jérôme Martin Institut d Astrophysique de Paris (IAP) Indian Institute of Technology, Chennai 03/02/2012 1 Introduction Outline A brief description of inflation

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives

Patrick Peter. Institut d Astrophysique de Paris Institut Lagrange de Paris. Evidences for inflation constraints on alternatives Patrick Peter Institut d Astrophysique de Paris Institut Lagrange de Paris Evidences for inflation constraints on alternatives Thanks to Jérôme Martin For his help Planck 2015 almost scale invariant quantum

More information

A modal bispectrum estimator for the CMB bispectrum

A modal bispectrum estimator for the CMB bispectrum A modal bispectrum estimator for the CMB bispectrum Michele Liguori Institut d Astrophysique de Paris (IAP) Fergusson, Liguori and Shellard (2010) Outline Summary of the technique 1. Polynomial modes 2.

More information

Particle Astrophysics, Inflation, and Beyond

Particle Astrophysics, Inflation, and Beyond Particle Astrophysics, Inflation, and Beyond - A Historical Perspective - KIAS, December, 017 Yukawa Institute for Theoretical Physics, Kyoto University Misao Sasaki 1 Progress in Particle Cosmology (1)

More information

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld.

Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK. Kosmologietag, Bielefeld. Single versus multi field inflation post Planck Christian Byrnes University of Sussex, Brighton, UK Kosmologietag, Bielefeld. 7th May 15+5 min What have we learnt from the precision era? Planck completes

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Connecting Quarks to the Cosmos

Connecting Quarks to the Cosmos Connecting Quarks to the Cosmos Institute for Nuclear Theory 29 June to 10 July 2009 Inflationary Cosmology II Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Michael

More information

Inflation and String Theory

Inflation and String Theory Inflation and String Theory Juan Maldacena Strings 2015, Bangalore Based on: Arkani Hamed and JM, JM and Pimentel Inflation is the leading candidate for a theory that produces the primordial fluctuations.

More information

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171

XIII. The Very Early Universe and Inflation. ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 XIII. The Very Early Universe and Inflation ASTR378 Cosmology : XIII. The Very Early Universe and Inflation 171 Problems with the Big Bang The Flatness Problem The Horizon Problem The Monopole (Relic Particle)

More information

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute Alternatives To Inflation Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute PLANCK data A simple universe: approximately homogeneous, isotropic, flat With, in addition, nearly scale-invariant,

More information

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008

Hunting for Primordial Non-Gaussianity. Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 Hunting for Primordial Non-Gaussianity fnl Eiichiro Komatsu (Department of Astronomy, UT Austin) Seminar, IPMU, June 13, 2008 1 What is fnl? For a pedagogical introduction to fnl, see Komatsu, astro-ph/0206039

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Inflationary cosmology after Planck. Takahiro Tanaka (YITP)

Inflationary cosmology after Planck. Takahiro Tanaka (YITP) Inlationary cosmology ater Planc Taahiro Tanaa (YITP) Big Bang Cosmology The universe starts with a ireball. Friedmann Universe ~Hubble s law ucleosynthesis Baryon/Photon~0-9~-0 Cosmic Microwave Bacground

More information

Stringy Origins of Cosmic Structure

Stringy Origins of Cosmic Structure The D-brane Vector Curvaton Department of Mathematics University of Durham String Phenomenology 2012 Outline Motivation 1 Motivation 2 3 4 Fields in Type IIB early universe models Figure: Open string inflation

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Constraining dark energy and primordial non-gaussianity with large-scale-structure studies!

Constraining dark energy and primordial non-gaussianity with large-scale-structure studies! Constraining dark energy and primordial non-gaussianity with large-scale-structure studies! Cristiano Porciani, AIfA, Bonn! porciani@astro.uni-bonn.de! Research interests! Cosmology, large-scale structure,

More information

arxiv: v2 [astro-ph.co] 11 Sep 2011

arxiv: v2 [astro-ph.co] 11 Sep 2011 Orthogonal non-gaussianities from irac-born-infeld Galileon inflation Sébastien Renaux-Petel Centre for Theoretical Cosmology, epartment of Applied Mathematics and Theoretical Physics, University of Cambridge,

More information

Curvature perturbations and non-gaussianity from waterfall phase transition. Hassan Firouzjahi. In collaborations with

Curvature perturbations and non-gaussianity from waterfall phase transition. Hassan Firouzjahi. In collaborations with Curvature perturbations and non-gaussianity from waterfall phase transition Hassan Firouzjahi IPM, Tehran In collaborations with Ali Akbar Abolhasani, Misao Sasaki Mohammad Hossein Namjoo, Shahram Khosravi

More information

Inflazione nell'universo primordiale: modelli e predizioni osservabili

Inflazione nell'universo primordiale: modelli e predizioni osservabili Inflazione nell'universo primordiale: modelli e predizioni osservabili Sabino Matarrese Dipartimento di Fisica Galileo Galilei, Università degli Studi di Padova, ITALY email: sabino.matarrese@pd.infn.it

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye

Inflation and the SLAC Theory Group I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye Inflation and the SLAC Theory Group 1979 1980 I was a one-year visitor from a postdoc position at Cornell. My research problem (working with Henry Tye back at Cornell): Why were so few magnetic monopoles

More information

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second Lecture 3 With Big Bang nucleosynthesis theory and observations we are confident of the theory of the early Universe at temperatures up to T 1 MeV, age t 1 second With the LHC, we hope to be able to go

More information

Anisotropic signatures in cosmic structures from primordial tensor perturbations

Anisotropic signatures in cosmic structures from primordial tensor perturbations Anisotropic signatures in cosmic structures from primordial tensor perturbations Emanuela Dimastrogiovanni FTPI, Univ. of Minnesota Cosmo 2014, Chicago based on:!! ED, M. Fasiello, D. Jeong, M. Kamionkowski!

More information

Inflation and the origin of structure David Wands Institute of Cosmology and Gravitation University of Portsmouth

Inflation and the origin of structure David Wands Institute of Cosmology and Gravitation University of Portsmouth Cody Astronomical Society 7 th December 2011 Inflation and the origin of structure David Wands Institute of Cosmology and Gravitation University of Portsmouth outline of my talk: large-structure in the

More information

Inflationary cosmology

Inflationary cosmology Inflationary cosmology T H E O U N I V E R S I T Y H Andrew Liddle February 2013 Image: NASA/WMAP Science Team F E D I N U B R G Inflation is... A prolonged period of accelerated expansion in the very

More information

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP)

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP) Workshop, 03 Aug 2016 @ Hirosaki Univ. CMB bispectrum Takashi Hiramatsu Yukawa Institute for Theoretical Physics (YITP) Kyoto University Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao

More information

General formula for the running of fnl

General formula for the running of fnl General formula for the running of fnl Christian Byrnes University of Sussex, Brighton CB & Gong; 1210.1851 CB, Kari Enqvist, Nurmi & Tomo Takahashi; 1108.2708 CB, Enqvist, Takahashi; 1007.5148 CB, Mischa

More information

Non-Gaussianities in String Inflation. Gary Shiu

Non-Gaussianities in String Inflation. Gary Shiu Non-Gaussianities in String Inflation Gary Shiu University of Wisconsin, Madison Frontiers in String Theory Workshop Banff, February 13, 2006 Collaborators: X.G. Chen, M.X. Huang, S. Kachru Introduction

More information

Observational signatures of holographic models of inflation

Observational signatures of holographic models of inflation Observational signatures of holographic models of inflation Paul McFadden Universiteit van Amsterdam First String Meeting 5/11/10 This talk I. Cosmological observables & non-gaussianity II. Holographic

More information

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2 S E.H. +S.F. = d 4 x [ 1 g 2 M PlR 2 + MPlḢg 2 00 MPl(3H 2 2 + Ḣ)+ + 1 2! M 2(t) 4 (g 00 + 1) 2 + 1 3! M 3(t) 4 (g 00 + 1) 3 + M 1 (t) 3 2 (g 00 + 1)δK µ µ M 2 (t) 2 δk µ µ 2 M 3 (t) 2 2 2 ] δk µ νδk ν

More information

G-inflation. Tsutomu Kobayashi. RESCEU, Univ. of Tokyo. COSMO/CosPA The Univ. of Tokyo

G-inflation. Tsutomu Kobayashi. RESCEU, Univ. of Tokyo. COSMO/CosPA The Univ. of Tokyo COSMO/CosPA 2010 @ The Univ. of Tokyo G-inflation Tsutomu Kobayashi RESCEU, Univ. of Tokyo Based on work with: Masahide Yamaguchi (Tokyo Inst. Tech.) Jun ichi Yokoyama (RESCEU & IPMU) arxiv:1008.0603 G-inflation

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Quantum generation of density perturbations in the early Universe. (Tokyo Institute of Technology) Quantum generation of density perturbations in the early Universe MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 03/07/16@Symposium: New Generation Quantum Theory -Particle Physics, Cosmology, and

More information

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013

Shant Baghram. Séminaires de l'iap. IPM-Tehran 13 September 2013 Structure Formation: à la recherche de paramètre perdu Séminaires de l'iap Shant Baghram IPM-Tehran 13 September 013 Collaborators: Hassan Firoujahi IPM, Shahram Khosravi Kharami University-IPM, Mohammad

More information

Cosmic Inflation Lecture 16 - Monday Mar 10

Cosmic Inflation Lecture 16 - Monday Mar 10 Physics 224 Spring 2008 Origin and Evolution of the Universe Cosmic Inflation Lecture 16 - Monday Mar 10 Joel Primack University of California, Santa Cruz Outline L15 L16 WMAP 5-year Data and Papers Released

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

Phenomenology of Axion Inflation

Phenomenology of Axion Inflation Phenomenology of Axion Inflation based on Flauger & E.P. 1002.0833 Flauger, McAllister, E.P., Westphal & Xu 0907.2916 Barnaby, EP & Peloso to appear Enrico Pajer Princeton University Minneapolis Oct 2011

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum

Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum 4th workshop on observational cosmology @ Yukawa Institute 18/11/2015 Halo/Galaxy bispectrum with Equilateral-type Primordial Trispectrum Shuntaro Mizuno (Waseda) With Shuichiro Yokoyama (Rikkyo) Phys.

More information

Aspects of Inflationary Theory. Andrei Linde

Aspects of Inflationary Theory. Andrei Linde Aspects of Inflationary Theory Andrei Linde New Inflation 1981-1982 V Chaotic Inflation 1983 Eternal Inflation Hybrid Inflation 1991, 1994 Predictions of Inflation: 1) The universe should be homogeneous,

More information

Observational evidence for Dark energy

Observational evidence for Dark energy Observational evidence for Dark energy ICSW-07 (Jun 2-9, 2007) Tarun Souradeep I.U.C.A.A, Pune, India Email: tarun@iucaa.ernet.in Observational evidence for DE poses a major challenge for theoretical cosmology.

More information

Will Planck Observe Gravity Waves?

Will Planck Observe Gravity Waves? Will Planck Observe Gravity Waves? Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Archaeology of Our Universe YIFU CAI ( 蔡一夫 )

Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) Archaeology of Our Universe YIFU CAI ( 蔡一夫 ) 2013-11-05 Thermal History Primordial era 13.8 billion years by WMAP/NASA Large Scale Structure (LSS) by 2MASS Cosmic Microwave Background (CMB) by ESA/Planck

More information

Contents. Part I The Big Bang and the Observable Universe

Contents. Part I The Big Bang and the Observable Universe Contents Part I The Big Bang and the Observable Universe 1 A Historical Overview 3 1.1 The Big Cosmic Questions 3 1.2 Origins of Scientific Cosmology 4 1.3 Cosmology Today 7 2 Newton s Universe 13 2.1

More information

Inflationary cosmology from higher-derivative gravity

Inflationary cosmology from higher-derivative gravity Inflationary cosmology from higher-derivative gravity Sergey D. Odintsov ICREA and IEEC/ICE, Barcelona April 2015 REFERENCES R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher-derivative

More information

Inflationary model building, reconstructing parameters and observational limits

Inflationary model building, reconstructing parameters and observational limits Inflationary model building, reconstructing parameters and observational limits Sayantan Choudhury Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata Date: 30/09/2014 Contact: sayanphysicsisi@gmail.com

More information

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain School Observational Cosmology Angra Terceira Açores 3 rd June 2014 Juan García-Bellido Física Teórica UAM Madrid, Spain Outline Lecture 1 Shortcomings of the Hot Big Bang The Inflationary Paradigm Homogeneous

More information

Non-Gaussianity from Curvatons Revisited

Non-Gaussianity from Curvatons Revisited RESCEU/DENET Summer School @ Kumamoto July 28, 2011 Non-Gaussianity from Curvatons Revisited Takeshi Kobayashi (RESCEU, Tokyo U.) based on: arxiv:1107.6011 with Masahiro Kawasaki, Fuminobu Takahashi The

More information

Second Order CMB Perturbations

Second Order CMB Perturbations Second Order CMB Perturbations Looking At Times Before Recombination September 2012 Evolution of the Universe Second Order CMB Perturbations 1/ 23 Observations before recombination Use weakly coupled particles

More information

QUINTESSENTIAL INFLATION

QUINTESSENTIAL INFLATION QUINTESSENTIAL INFLATION Relic gravity waves M. SAMI Centre for Theoretical Physics Jamia Millia University New Delhi GC-2018 BRIEF OVER VIEW Acceleration Generic feature of cosmic history Late time acceleration:

More information

GRAVITATIONAL WAVES AND THE END OF INFLATION. Richard Easther (Yale)

GRAVITATIONAL WAVES AND THE END OF INFLATION. Richard Easther (Yale) GRAVITATIONAL WAVES AND THE END OF INFLATION Richard Easther (Yale) OUTLINE Inflation: a reminder Ending inflation: Parametric resonance / preheating [SKIP: technical calculation] Gravitational wave generation

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 9 Inflation - part I Having discussed the thermal history of our universe and in particular its evolution at times larger than 10 14 seconds

More information

Issues in Non-Linear Cosmological Dynamics

Issues in Non-Linear Cosmological Dynamics Issues in Non-Linear Cosmological Dynamics Marco Bruni Institute of Cosmology and Gravitation University of Portsmouth NLCP Workshop - Kyoto - 22/05/09 Outline a couple of reminders on Newtonian cosmology

More information

Prospects for Inflation from String Theory

Prospects for Inflation from String Theory Prospects for Inflation from String Theory Hassan Firouzjahi IPM IPM School on Early Universe Cosmology, Tehran, Dec 7-11, 2009 Outline Motivation for Inflation from String Theory A quick Review on String

More information

Effects of the field-space metric on Spiral Inflation

Effects of the field-space metric on Spiral Inflation Effects of the field-space metric on Spiral Inflation Josh Erlich College of William & Mary digitaldante.columbia.edu Miami 2015 December 20, 2015 The Cosmic Microwave Background Planck collaboration Composition

More information

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

Inflation. By The amazing sleeping man, Dan the Man and the Alices

Inflation. By The amazing sleeping man, Dan the Man and the Alices Inflation By The amazing sleeping man, Dan the Man and the Alices AIMS Introduction to basic inflationary cosmology. Solving the rate of expansion equation both analytically and numerically using different

More information

The self-interacting (subdominant) curvaton

The self-interacting (subdominant) curvaton Corfu.9.010 The self-interacting (subdominant) curvaton Kari Enqvist Helsinki University and Helsinki Institute of Physics in collaboration with C. Byrnes (Bielefeld), S. Nurmi (Heidelberg), A. Mazumdar

More information

State of the Universe Address

State of the Universe Address State of the Universe Address Prof. Scott Watson ( Syracuse University ) This talk is available online at: https://gswatson.expressions.syr.edu This research was supported in part by: Theoretical Cosmology

More information

Inflationary cosmology. Andrei Linde

Inflationary cosmology. Andrei Linde Inflationary cosmology Andrei Linde Problems of the Big Bang theory: What was before the Big Bang? Why is our universe so homogeneous? Why is it isotropic? Why its parts started expanding simultaneously?

More information

PREHEATING THE UNIVERSE IN HYBRID INFLATION

PREHEATING THE UNIVERSE IN HYBRID INFLATION PREHEATING THE UNIVERSE IN HYBRID INFLATION JUAN GARCÍA-BELLIDO Theory Division, C.E.R.N., CH-1211 Genève 23, Switzerland One of the fundamental problems of modern cosmology is to explain the origin of

More information

Claudia de Rham July 30 th 2013

Claudia de Rham July 30 th 2013 Claudia de Rham July 30 th 2013 GR has been a successful theory from mm length scales to Cosmological scales Then why Modify Gravity? Why Modify Gravity in the IR? Late time acceleration & CC problem First

More information

Sergei D. Odintsov (ICREA and IEEC-CSIC) Misao Sasaki (YITP, Kyoto University and KIAS) Presenter : Kazuharu Bamba (KMI, Nagoya University)

Sergei D. Odintsov (ICREA and IEEC-CSIC) Misao Sasaki (YITP, Kyoto University and KIAS) Presenter : Kazuharu Bamba (KMI, Nagoya University) Screening scenario for cosmological constant in de Sitter solutions, phantom-divide crossing and finite-time future singularities in non-local gravity Reference: K. Bamba, S. Nojiri, S. D. Odintsov and

More information