Projectile Motion. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Masking Tape Plumb Bob

Size: px
Start display at page:

Download "Projectile Motion. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Masking Tape Plumb Bob"

Transcription

1 Purpose: To calculate the initial speed of a projectile by measurin its rane. To predict how far a projectile will travel when fired at different anles, and test these predictions. To predict what anle will produce the maximum rane for a projectile fired off the table onto the round, and test this prediction. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Maskin Tape Plumb Bob 1 of 7

2 Part I - Measurin Initial Speed Today you are oin learn about projectile motions by shootin miniature cannons all evenin. There are three thins that determine how far the projectile will o once it leaves the cannon: 1. The initial speed of the ball, written as v o, 2. The heiht of the launch point above the round, written as h, 3. The acceleration due to ravity,. Recall that is you drop a projectile from a heiht h, then the projectile will free fall, with distance and time related by: 1 h = t 2 2 Solvin for time t, you et: 2h t = Now if you fire the ball horizontally at a speed v o instead of droppin it, it will travel a horizontal distance R (for rane) iven by R = v o t, where t is the time from the free fall equation above. So if you fire a projectile horizontally from a heiht h, with a speed v o the distance it will travel is: 2h R = vo. Equation 1 Prelab question 1: Would increasin the heiht of the launch point from the round increase or decrease the projectile s rane? Why? Prelab question 2: Will increasin the projectile s initial speed increase or decrease its rane? Why? 2 of 7

3 Prelab question 3: Which would cause the rane to chane more: doublin the initial speed or doublin the heiht of the launch point? Show your reasonin. We can rewrite the equation 1 in a way that lets us calculate the initial speed by measurin the rane: v o = R Equation 2 2h We ll use this equation with the measurements you re about to take to determine the speed at which your projectile leaves the launcher Follow these steps to make your measurements: 1. Clamp the cannon to the ede of your table with the muzzle pointin away from the table. Make sure that the cannon is completely horizontal. Also make sure that you aren t pointin toward any humans. 2. Your cannon is sprin loaded, with three different settins. Toniht, you should use the lowest settin. Load the projectile into the cannon by pushin it in until you feel a click. If it clicks twice, you have one too far! Fire the cannon by pullin up on the release lever, and pay attention to where the projectile lands. 3. Tape down a piece of scratch paper on the floor where the projectile landed, and tape a piece of carbon paper, carbon side down, on top of the scratch paper. Now when you fire the cannon the projectile will strike the carbon paper and make a mark. 4. Load and fire the cannon ten times. 5. Use a plumb bob to mark the spot on the floor directly below the cannon muzzle. 6. Pull up the carbon paper, but leave the scratch paper on the floor. Use the twometer stick to measure the distance from the launch point (that you found with the plumb bob) to each mark on your scratch paper. Record your measurements in the table below. Trial Number Rane (R) Trial Number Rane (R) Calculate the averae rane of the projectile. Averae R Meters Uncertainty R (max min)/2 meters 3 of 7

4 8. Measure the heiht of the cannon muzzle above the round. Heiht meters 9. Use equation 2 alon with your answers from steps 7 and 8 to calculate the initial speed of the projectile. Show your work here V 0 Meters/Second Part II - Predictin and Measurin Rane for Different Launch Anles Durin part one, we were launchin the projectile from the table onto the floor. We were also launchin it horizontally each time. If, we launch the projectile so that it lands on the table instead of the floor, we can use this equation to calculate its rane. We can even predict how far the projectile will o when we fire it at an anle instead of just shootin straiht. In this case, the Rane equals the horizontal component of the velocity (v x ) multiplied by the time in the air, so R = vxt Understandin how v x and t relate to the firin anle q (theta) and the initial speed v o requires a bit of trionometry, so we ll leave out the derivation here. However, you can see that the time in the air also depends on the vertical component of the velocity, and the steeper the anle, the loner the projectile will spend in the air! However, there is a bit of a compromise, as the horizontal component of the velocity ets smaller with steeper anles. 4 of 7

5 The final equation for the rane as a function of initial velocity and firin anle is: 2 vo sin 2θ R = Equation 3 The symbol θ in this equation stands for the firin anle of the projectile. Without makin any calculations, what firin anle do you think will produce the lonest rane? 1. Usin equation 3 and your answer to question 9 in part I, predict the rane for several different anles and record them in the column labeled Predicted R on the table below. Show your work for at least one anle here. Before you calculate sin(2θ), do a quick check of your calculation skills and make sure that sin(30 o ) = 0.5. If not, then your calculator needs to be set on deree mode. θ Predicted R 2. Point the cannon so that the projectile will land on the table. Set the anle to fifteen derees and fire once to see where the projectile lands. 3. Tape down a piece of scratch paper on the table where the projectile landed, and tape a piece of carbon paper, carbon side down, on top of the scratch paper. 4. Fire the cannon three times. Lift up the carbon paper and measure the distance from the cannon muzzle to each mark on your scratch paper. Record your measurements in the table below. 5. Repeat steps 2-4 for all the other anles. 6. Calculate the averae rane for each anle and enter it in the final column 5 of 7

6 θ Rane Trial 1 Rane Trial 2 Rane Trial 3 Averae R 7. Copy the results from the last two tables into the table below, and calculate the percent difference between your measurements and your predictions for each anle. θ Predicted R Averae Measured R Percent Difference 8. How close were your measurements to your predictions? 9. What anle produced the maximum rane? Was it the anle you predicted 6 of 7

7 Part III - Launchin from the table to the floor at an anle The last thin we ll do toniht is turn the cannon around so that it is firin onto the floor aain. Instead of firin it horizontally, we will fire it at an anle. What launch anle do you think will produce the maximum rane? Why? 1. With the cannon facin away from the table, launch the projectile at an anle of 35 and measure the rane. Repeat for launch anles of and 55. θ Rane 2. Which anle had the hihest rane? Does this match your prediction? 3. Now that you have finished the lab, write approximately two pararaphs discussin what you did, how you did it, what you learned and how you would interpret your results. 7 of 7

Energizing Math with Engineering Applications

Energizing Math with Engineering Applications Enerizin Math with Enineerin Applications Understandin the Math behind Launchin a Straw-Rocket throuh the use of Simulations. Activity created by Ira Rosenthal (rosenthi@palmbeachstate.edu) as part of

More information

Projectile Motion. x = v ox t (1)

Projectile Motion. x = v ox t (1) Projectile Motion Theory Projectile motion is the combination of different motions in the x and y directions. In the x direction, which is taken as parallel to the surface of the earth, the projectile

More information

Lab 10: Ballistic Pendulum

Lab 10: Ballistic Pendulum Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Lab 10: Ballistic Pendulum Name: Partners: Pre-Lab You are required to finish this section before coming to the lab it will be checked

More information

General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion

General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion MECH-1: Projectile Motion Page 1 of 7 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-1: Projectile Motion 1 Mini Launcher ME-6825 1 Time of Flight Accessory ME-6810 1 Phone Jack Extender

More information

KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER

KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER. A body is projected vertically upwards at time t = 0 and is seen at a heiht at time t and t seconds durin its fliht. The maximum heiht attained is [ =

More information

The Ballistic Pendulum

The Ballistic Pendulum The Ballistic Pendulum Physics 110 Laboratory Angle indicator Vertical upright θ R cm R b Trigger String cm Projectile Launcher Ballistic Pendulum Base m v cm after h Ramrod Steel ball before In this experiment

More information

Experiment 1: Simple Pendulum

Experiment 1: Simple Pendulum COMSATS Institute of Information Technoloy, Islamabad Campus PHY-108 : Physics Lab 1 (Mechanics of Particles) Experiment 1: Simple Pendulum A simple pendulum consists of a small object (known as the bob)

More information

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade

Phy211: General Physics I Lab page 1 of 5 PCC-Cascade Phy11: General Physics I Lab page 1 of 5 Experiment: The Ballistic Pendulum Objectives: Apply the Law of Conservation of Momentum to an inelastic collision Apply the Law of Conservation of Mechanical Energy

More information

Physics 11 Fall 2012 Practice Problems 2 - Solutions

Physics 11 Fall 2012 Practice Problems 2 - Solutions Physics 11 Fall 01 Practice Problems - s 1. True or false (inore any effects due to air resistance): (a) When a projectile is fired horizontally, it takes the same amount of time to reach the round as

More information

THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY

THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY THE BALLISTIC PENDULUM AND THE LAW OF CONSERVATION OF ENERGY Objectives 1) To study the laws of conservation of energy, conservation of momentum, and the elements of projectile motion using the ballistic

More information

Physics 18 Spring 2011 Homework 2 - Solutions Wednesday January 26, 2011

Physics 18 Spring 2011 Homework 2 - Solutions Wednesday January 26, 2011 Physics 18 Sprin 011 Homework - s Wednesday January 6, 011 Make sure your name is on your homework, and please box your final answer. Because we will be ivin partial credit, be sure to attempt all the

More information

Conservation of Momentum in Two Dimensions

Conservation of Momentum in Two Dimensions Conservation of Momentum in Two Dimensions Consider the two-dimensional (glancing) collision shown below. Here, mass m 1 travels to the right along the x-axis with velocity v 1o and strikes mass m 2 initially

More information

Problem Set: Fall #1 - Solutions

Problem Set: Fall #1 - Solutions Problem Set: Fall #1 - Solutions 1. (a) The car stops speedin up in the neative direction and beins deceleratin, probably brakin. (b) Calculate the averae velocity over each time interval. v av0 v 0 +

More information

CONSERVATION OF MOMENTUM. Object: To study the law of conservation of momentum by analyzing collisions in two dimensions.

CONSERVATION OF MOMENTUM. Object: To study the law of conservation of momentum by analyzing collisions in two dimensions. CONSERVATION OF MOMENTUM Object: To study the law of conservation of momentum by analyzing collisions in two dimensions. Apparatus: Digital scale, Ramp, two steel balls, one hollow or plastic ball, C-clamp,

More information

1. Adjust your marble launcher to zero degrees. Place your marble launcher on a table or other flat surface or on the ground.

1. Adjust your marble launcher to zero degrees. Place your marble launcher on a table or other flat surface or on the ground. Conceptual Physics Mrs. Mills Your Name: Group members: Lab: Marble Launcher Purpose: In this lab you will be using the marble launchers in order to examine the path of a projectile. You will be using

More information

Lab 5: Two-Dimensional Motion. To understand the independence of motion in the x- and y- directions

Lab 5: Two-Dimensional Motion. To understand the independence of motion in the x- and y- directions Lab 5: Two-Dimensional Motion Objectives: To study two-dimensional motion To understand the vector nature of velocity To understand the independence of motion in the x- and y- directions Equipment: Ballistic

More information

Ballistics Car P3-3527

Ballistics Car P3-3527 WWW.ARBORSCI.COM Ballistics Car P3-3527 BACKGROUND: The Ballistic Car demonstrates that the horizontal motion of an object is unaffected by forces which act solely in the vertical direction. It consists

More information

PHYS 1111L - Introductory Physics Laboratory I

PHYS 1111L - Introductory Physics Laboratory I PHYS 1111L - Introductory Physics Laboratory I Laboratory Advanced Sheet Projectile Motion Laboratory 1. Objective. The objective of this laboratory is to predict the range of a projectile set in motion

More information

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t Lecture 5: Projectile motion, uniform circular motion 1 REVIEW: Goin from ONE to TWO Dimensions with Kinematics In Lecture 2, we studied the motion of a particle in just one dimension. The concepts of

More information

Experiment 4: Projectile Motion

Experiment 4: Projectile Motion Experiment 4: Projectile Motion EQUIPMENT Figure 4.1: Ballistic Pendulum (Spring Gun) Pasco Ballistic Pendulum (Spring Gun) 2-Meter Stick Meter Stick Ruler Plumb Bob Carbon Paper Target Paper Launch Platform

More information

Projectile Motion (Photogates)

Projectile Motion (Photogates) Projectile Motion (Photogates) Name Section Theory Projectile motion is the combination of different motions in the x and y direction. In the x direction, which is taken as parallel to the surface of the

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [MOTION IN TWO DIMENSIONS] CHAPTER NO. 4 In this chapter we are oin to discuss motion in projectile

More information

PHYS 1114, Lecture 9, February 6 Contents:

PHYS 1114, Lecture 9, February 6 Contents: PHYS 4, Lecture 9, February 6 Contents: Continued with projectile motion: The kicko problem in football was treated analytically, obtainin formulas for maimum heiht and rane in terms of initial speed and

More information

Ballistic Pendulum and Projectile Motion

Ballistic Pendulum and Projectile Motion Ballistic Pendulum and Projectile Motion The initial velocity of a ball shot from a spring gun is determined by the equations for projectile motion and by the equations for a ballistic pendulum. Projectile

More information

PSI AP Physics C Kinematics 2D. Multiple Choice Questions

PSI AP Physics C Kinematics 2D. Multiple Choice Questions PSI AP Physics C Kinematics D Multiple Choice Questions 1. A tennis ball is thrown off a cliff 10 m above the round with an initial horizontal velocity of 5 m/s as shown above. The time between the ball

More information

PHY 133 Lab 1 - The Pendulum

PHY 133 Lab 1 - The Pendulum 3/20/2017 PHY 133 Lab 1 The Pendulum [Stony Brook Physics Laboratory Manuals] Stony Brook Physics Laboratory Manuals PHY 133 Lab 1 - The Pendulum The purpose of this lab is to measure the period of a simple

More information

12-Nov-17 PHYS Inelastic Collision. To study the laws of conservation of linear momentum and energy in a completely inelastic collision.

12-Nov-17 PHYS Inelastic Collision. To study the laws of conservation of linear momentum and energy in a completely inelastic collision. Objectives Inelastic Collision To study the laws of conservation of linear momentum and energy in a completely inelastic collision. Introduction If no net external force acts on a system of particles,

More information

2.2 Differentiation and Integration of Vector-Valued Functions

2.2 Differentiation and Integration of Vector-Valued Functions .. DIFFERENTIATION AND INTEGRATION OF VECTOR-VALUED FUNCTIONS133. Differentiation and Interation of Vector-Valued Functions Simply put, we differentiate and interate vector functions by differentiatin

More information

Exercise 6: The conservation of energy and momentum

Exercise 6: The conservation of energy and momentum Physics 221 Name: Exercise 6: The conservation of energy and momentum Part 1: The projectile launcher s spring constant Objective: Through the use of the principle of conservation of energy (first law

More information

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION

Ballistic Pendulum. Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION Ballistic Pendulum Equipment- ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale PRECAUTION In this experiment a steel ball is projected horizontally

More information

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION The object of this experiment is to examine a perfectly inelastic collision between a steel

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION The object of this experiment is to examine a perfectly inelastic collision between a steel 11 M36 M36.1 OBJECT THEORY ANALYSIS OF A PERFECTLY INELASTIC COLLISION The object of this experiment is to examine a perfectly inelastic collision between a steel ball and a ballistic pendulum. NOTE: Before

More information

v ox Motion in Two Dimensions (Projectile Motion)

v ox Motion in Two Dimensions (Projectile Motion) Motion in Two Dimensions (Projectile Motion) In this experiment we will study motion in two-dimensions. An object which has motion in both the X and Y direction has a two dimensional motion. We will first

More information

Motion in Two Dimensions Teacher s Guide

Motion in Two Dimensions Teacher s Guide Motion in Two Dimensions Teacher s Guide Objectives: 1. Use kinematic equations for motion in two dimensions to determine the range of a projectile.. Use the equation for torque to determine at what point

More information

11 M36 M36.1 ANALYSIS OF A COMPLETELY INELASTIC COLLISION OBJECT The object of this experiment is to examine a completely inelastic collision between

11 M36 M36.1 ANALYSIS OF A COMPLETELY INELASTIC COLLISION OBJECT The object of this experiment is to examine a completely inelastic collision between 11 M36 M36.1 ANALYSIS OF A COMPLETELY INELASTIC COLLISION OBJECT The object of this experiment is to examine a completely inelastic collision between a steel ball and a ballistic pendulum. NOTE: Before

More information

10. Ballistic Pendulum*

10. Ballistic Pendulum* 10. Ballistic Pendulum* Use is made of a ballistic pendulum to determine projectile velocity. Learning Objectives: 1. Explore the ideas of energy and momentum conservation, particularly the conditions

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the

More information

the equations for the motion of the particle are written as

the equations for the motion of the particle are written as Dynamics 4600:203 Homework 02 Due: ebruary 01, 2008 Name: Please denote your answers clearly, ie, box in, star, etc, and write neatly There are no points for small, messy, unreadable work please use lots

More information

Ballistic Pendulum. Caution

Ballistic Pendulum. Caution Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the ball,

More information

Conservation of Energy

Conservation of Energy rev 05/2018 Conservation of Energy Equipment Qty Item Part Number 1 Mini Launcher ME-6800 1 Metal Sphere Projectile 1 and 2 Meter Sticks 1 Large Metal Rod ME-8741 1 Small Metal Rod ME-8736 1 Support Base

More information

Ballistic Pendulum (Inelastic Collision)

Ballistic Pendulum (Inelastic Collision) Ballistic Pendulum (Inelastic Collision) Purpose To determine if momentum and/or kinetic energy is conserved during an inelastic collision. Concepts of 2-D motion will be used to determine the velocity

More information

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0 PROJECTILE MOTION Velocity We seek to explore the velocity of the projectile, includin its final value as it hits the round, or a taret above the round. The anle made by the velocity vector with the local

More information

Problem Set 2 Solutions

Problem Set 2 Solutions UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Sprin 2009 Problem Set 2 Solutions The followin three problems are due 20 January 2009 at the beinnin of class. 1. (H,R,&W 4.39)

More information

Linear Motion. Miroslav Mihaylov. February 13, 2014

Linear Motion. Miroslav Mihaylov. February 13, 2014 Linear Motion Miroslav Mihaylov February 13, 2014 1 Vector components Vector A has manitude A and direction θ with respect to the horizontal. On Fiure 1 we chose the eastbound as a positive x direction

More information

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Purpose: Materials: WARNING! Section: Partner 2: Partner 1: Partner 1: Partner 2: Section: PLEASE NOTE: You will need this particular lab report later in the semester again for the homework of the Rolling Motion Experiment. When you get back this graded report,

More information

Projectiles: Target Practice Student Advanced Version

Projectiles: Target Practice Student Advanced Version Projectiles: Target Practice Student Advanced Version In this lab you will shoot a chopstick across the room with a rubber band and measure how different variables affect the distance it flies. You will

More information

Projectile Motion. Objectives. Materials. Introduction

Projectile Motion. Objectives. Materials. Introduction Projectile Motion Objectives The objectives of this experiment are for you to: 1. Develop confidence in your ability to use the equations of motion to predict the results of an experiment. 2. Gain confidence

More information

(C) 7 s. (C) 13 s. (C) 10 m

(C) 7 s. (C) 13 s. (C) 10 m NAME: Ms. Dwarka, Principal Period: #: WC Bryant HS Ms. Simonds, AP Science Base your answers to questions 1 throuh 3 on the position versus time raph below which shows the motion of a particle on a straiht

More information

Projectile Motion. Figure 1. The system of coordinates for the projectile motion.

Projectile Motion. Figure 1. The system of coordinates for the projectile motion. Projectile Motion (1) Introduction and Theory: Consider a projectile motion of a ball as shown in Fig. 1. At t = 0 the ball is released at the position (0, y0) with horizontal velocity vx. Figure 1. The

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Concepts to explore Scalars vs. vectors Projectiles Parabolic trajectory As you learned in Lab 4, a quantity that conveys information about magnitude only is called a scalar. However, when a quantity,

More information

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION OBJECT The object of this experiment is to examine a perfectly inelastic collision between a

11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION OBJECT The object of this experiment is to examine a perfectly inelastic collision between a 11 M36 M36.1 ANALYSIS OF A PERFECTLY INELASTIC COLLISION OBJECT The object of this experiment is to examine a perfectly inelastic collision between a steel ball and a ballistic pendulum. THEORY Reference:

More information

Firing an Ideal Projectile

Firing an Ideal Projectile 92 Chapter 13: Vector-Valued Functions and Motion in Space 13.2 Modelin Projectile Motion 921 r at time t v v cos i a j (a) v sin j Newton s second law of motion sas that the force actin on the projectile

More information

This Week. Next Week

This Week. Next Week This Week Tutorial and Test 1, in the lab (chapters 1 and 2) Next Week Experiment 1: Measurement of Lenth and Mass WileyPLUS Assinment 1 now available Due Monday, October 5 at 11:00 pm Chapters 2 & 3 28

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Lab 5 Projectile Motion 47 Name Date Partners Lab 5: Projectile Motion OVERVIEW We learn in our study of kinematics that two-dimensional motion is a straightforward application of onedimensional motion.

More information

Conservation of Momentum

Conservation of Momentum Learning Goals Conservation of Momentum After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations for 2-dimensional

More information

Phys207: Lecture 04. Today s Agenda 3-D Kinematics Independence of x and y components Baseball projectile Shoot the monkey Uniform circular motion

Phys207: Lecture 04. Today s Agenda 3-D Kinematics Independence of x and y components Baseball projectile Shoot the monkey Uniform circular motion Phys7: Lecture 4 Reminders All Discussion and Lab sections start meetin this week Homework is posted on course website Solutions to preious hwks will be posted Thursday mornins Today s Aenda 3-D Kinematics

More information

Physics 1050 Experiment 4. Conservation of Energy and Projectile Motion

Physics 1050 Experiment 4. Conservation of Energy and Projectile Motion Conservation of Energy and Projectile Motion Contents! These questions need to be completed before entering the lab. Show all workings. Prelab 1: A 500 kg car is at rest at the top of a 50.0 m high hill.

More information

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name:

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name: Dynamics 4600:03 Homework 03 Due: ebruary 08, 008 Name: Please denote your answers clearly, i.e., bo in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

Lab 2. Projectile Motion

Lab 2. Projectile Motion Lab 2. Projectile Motion Goals To determine the launch speed of a projectile and its uncertainty by measuring how far it travels horizontally before landing on the floor (called the range) when launched

More information

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System)

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Name Class Date Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Momentum P24 Linear Angular.DS P28 Cons

More information

Lab 4: Projectile Motion

Lab 4: Projectile Motion 59 Name Date Partners OVEVIEW Lab 4: Projectile Motion We learn in our study of kinematics that two-dimensional motion is a straightforward extension of one-dimensional motion. Projectile motion under

More information

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance CHAPTER 7 PROJECTILES 7 No Air Resistance We suppose that a particle is projected from a point O at the oriin of a coordinate system, the y-axis bein vertical and the x-axis directed alon the round The

More information

PHYS 100: Lecture 4 PROJECTILE MOTION. y = (v 0 /v T ) x (g/2v T2 )x 2. Velocity of Train v T. Physics 100 Lecture 4, Slide y(m)

PHYS 100: Lecture 4 PROJECTILE MOTION. y = (v 0 /v T ) x (g/2v T2 )x 2. Velocity of Train v T. Physics 100 Lecture 4, Slide y(m) PHYS : Lecture 4 PROJECTILE MOTION.4. Velocity of Train T y(m).8.6.4. 5 5 x(m) y ( / T ) x (/ T )x Physics Lecture 4, Slide Music Who is the Artist? A) Miles Dais B) Wynton Marsalis C) Chris Botti D) Nina

More information

2.5 Velocity and Acceleration

2.5 Velocity and Acceleration 82 CHAPTER 2. VECTOR FUNCTIONS 2.5 Velocity and Acceleration In this section, we study the motion of an object alon a space curve. In other words, as the object moves with time, its trajectory follows

More information

The Ballistic Pendulum

The Ballistic Pendulum The Ballistic Pendulum Experimental Objectives The objective of this experiment is to study the law of conservation of momentum. We will apply the principle of conservation of linear momentum to a case

More information

Ballistic Pendulum. Equipment. Introduction. Setup

Ballistic Pendulum. Equipment. Introduction. Setup 35 Ballistic Pendulum 35 - Page 1 of 5 Equipment Ballistic Pendulum 1 Rotary Motion Sensor PS-2120A 2 Photogate Head ME-9498A 1 Mounting Bracket ME-6821A 1 Large Table Clamp ME-9472 1 90 cm rod ME-8738

More information

PIRATE SHIP EXAMPLE REPORT WRITE UP

PIRATE SHIP EXAMPLE REPORT WRITE UP PIRATE SHIP EXAMPE REPORT WRITE UP Title Aim period Pirate Ship investiation To find the relationship between the lenth of a pendulum and its Independent variable the lenth of the pendulum. I will use

More information

7.2 Maximization of the Range of a Rocket

7.2 Maximization of the Range of a Rocket 138 CHAPTER 7. SOME APPLICATIONS The counterintuitive answer that a supersonic aircraft must dive first in order to climb to a iven altitude in minimum time was first discovered by Walter Denham and Art

More information

AP PHYSICS: Lab #4 Projectile Motion Lab

AP PHYSICS: Lab #4 Projectile Motion Lab AP PHYSICS: Lab #4 Projectile Motion Lab Mr. O Hagan Oct. 11, 2010 I SUMMARY This lab was performed to determine if the equations of motion accurately predict projectile motion. Calculations were made

More information

Free-Fall Motion. All objects near the surface of the Earth experience a downward acceleration caused by gravity. The

Free-Fall Motion. All objects near the surface of the Earth experience a downward acceleration caused by gravity. The Author: Bob Leonard Lab partner: Rob Horne 10/6/2012 Free-Fall Motion Abstract All objects near the surface of the Earth experience a downward acceleration caused by gravity. The acceleration due to gravity

More information

Physics 30 - Ballistic Pendulum Lab 2010, Science Kit All Rights Reserved

Physics 30 - Ballistic Pendulum Lab 2010, Science Kit All Rights Reserved BACKGROUND Energy The maximum height achieved by the pendulum on the Ballistic Pendulum apparatus can be determined by using the angle it achieved. Figure S1 shows the pendulum in two different positions,

More information

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6 Motion in Two Dimensions Sections Covered in the Tet: Chapters 6 & 7, ecept 7.5 & 7.6 It is time to etend the definitions we developed in Note 03 to describe motion in 2D space. In doin so we shall find

More information

Prelab: Complete the prelab section BEFORE class Purpose:

Prelab: Complete the prelab section BEFORE class Purpose: Lab: Projectile Motion Prelab: Complete the prelab section BEFORE class Purpose: What is the Relationship between and for the situation of a cannon ball shot off a with an angle of from the horizontal.

More information

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch)

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Name: Speed of waves Group Members: Date: TA s Name: Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Objectives 1. To directly calculate the speed of waves in a stretched

More information

Experiment P28: Conservation of Linear and Angular Momentum (Smart Pulley)

Experiment P28: Conservation of Linear and Angular Momentum (Smart Pulley) PASCO scientific Physics Lab Manual: P28-1 Experiment P28: Conservation of Linear and Angular Momentum (Smart Pulley) Concept Time SW Interface Macintosh File Windows File rotational motion 45 m 500 or

More information

General Physics I Lab. M7 Conservation of Angular Momentum

General Physics I Lab. M7 Conservation of Angular Momentum Purpose In this experiment, you will investigate the conservation law of angular momentum in a collision between a ball falling along an inclined ramp and a ball catcher fixed on a freely rotating disk.

More information

Experiment 3 The Simple Pendulum

Experiment 3 The Simple Pendulum PHY191 Fall003 Experiment 3: The Simple Pendulum 10/7/004 Pae 1 Suested Readin for this lab Experiment 3 The Simple Pendulum Read Taylor chapter 5. (You can skip section 5.6.IV if you aren't comfortable

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fundamentals of Physics I Lectures 7 and 8 Motion in Two Dimensions Dr Tay Sen Chuan 1 Ground Rules Switch off your handphone and paer Switch off your laptop computer and keep it No talkin while lecture

More information

Physics 111. Lecture 7 (Walker: 4.2-5) 2D Motion Examples Projectile Motion

Physics 111. Lecture 7 (Walker: 4.2-5) 2D Motion Examples Projectile Motion Physics 111 Lecture 7 (Walker: 4.-5) D Motion Eamples Projectile Motion Sept. 16, 9 -D Motion -- Constant Acceleration r r r r = v t at t v t a t y y yt y v t at r r r v = v at v = v a t v = v a t y y

More information

LAB 4: PROJECTILE MOTION

LAB 4: PROJECTILE MOTION 57 Name Date Partners LAB 4: POJECTILE MOTION A famous illustration from Newton s Principia showing the relationship between projectile motion and orbital motion OVEVIEW We learned in our study of kinematics

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2009

AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTI YOU ARE TOD TO BEGIN Use = 10 N/k throuhout this contest.

More information

PHYSICS LAB Experiment 8 Fall 2004 BALLISTIC PENDULUM

PHYSICS LAB Experiment 8 Fall 2004 BALLISTIC PENDULUM PHYSICS 83 - LAB Experiment 8 Fall 004 BALLISTIC PENDULUM In this experiment we will study the application of the laws of conservation of momentum and energy in a ballistic pendulum apparatus. The device

More information

E X P E R I M E N T 11

E X P E R I M E N T 11 E X P E R I M E N T 11 Conservation of Angular Momentum Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 11: Conservation

More information

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2 11 th Physics - Unit 2 Kinematics Solutions for the Textbook Problems One Marks 1. Which one of the followin Cartesian coordinate system is not followed in physics? 5. If a particle has neative velocity

More information

v v y = v sinθ Component Vectors:

v v y = v sinθ Component Vectors: Component Vectors: Recall that in order to simplify vector calculations we change a complex vector into two simple horizontal (x) and vertical (y) vectors v v y = v sinθ v x = v cosθ 1 Component Vectors:

More information

3.1. Types of Forces. Measuring Forces. Force Diagrams

3.1. Types of Forces. Measuring Forces. Force Diagrams 3.1 Fiure 1 Forces are all around you. dynamics the study of the causes of motion Types of Forces Forces are all around you, actin on every object that you see. The motion of cars, trucks, planes, and

More information

Circular Motion. I. Centripetal Impulse. The centripetal impulse was Sir Isaac Newton s favorite force.

Circular Motion. I. Centripetal Impulse. The centripetal impulse was Sir Isaac Newton s favorite force. Circular Motion I. Centripetal Impulse The centripetal impulse was Sir Isaac Newton s favorite force. The Polygon Approximation. Newton made a business of analyzing the motion of bodies in circular orbits,

More information

Physics 20 Homework 1 SIMS 2016

Physics 20 Homework 1 SIMS 2016 Physics 20 Homework 1 SIMS 2016 Due: Wednesday, Auust 17 th Problem 1 The idea of this problem is to et some practice in approachin a situation where you miht not initially know how to proceed, and need

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Physics 1020 Experiment 6. Equilibrium of a Rigid Body

Physics 1020 Experiment 6. Equilibrium of a Rigid Body 1 2 Introduction Static equilibrium is defined as a state where an object is not moving in any way. The two conditions for the equilibrium of a rigid body (such as a meter stick) are 1. the vector sum

More information

As observed from the frame of reference of the sidewalk:

As observed from the frame of reference of the sidewalk: Section 3.1: Inertial and Non-inertial Frames of Reference Tutorial 1 Practice, pae 110 1. a) When the car is movin with constant velocity, I see the ball lie still on the floor. I would see the same situation

More information

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising Exam 2A Solution 1. A baseball is thrown vertically upward and feels no air resistance. As it is risin Solution: Possible answers: A) both its momentum and its mechanical enery are conserved - incorrect.

More information

Static and Kinetic Friction

Static and Kinetic Friction Ryerson University - PCS 120 Introduction Static and Kinetic Friction In this lab we study the effect of friction on objects. We often refer to it as a frictional force yet it doesn t exactly behave as

More information

Planar Motion with Constant Acceleration

Planar Motion with Constant Acceleration Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction

More information

Linear Acceleration and Projectile Path

Linear Acceleration and Projectile Path Linear Acceleration and Projectile Path Objective To study the motion of a body when projected at an angle above the horizontal on an inclined plane. Introduction In this experiment we ll use an air table

More information

PHYS 124 Section A01 Final Examination Autumn 2006

PHYS 124 Section A01 Final Examination Autumn 2006 PHYS 14 Section A1 Final Examination Autumn 6 Name : S Student ID Number : Instructor : Marc de Montiny Time : Monday, December 18, 6 9: 11: AM Room : Tory Lecture (Turtle) TL-B Instructions : This booklet

More information

Mathematics Extension 1 Time allowed: 2 hours (plus 5 minutes reading time)

Mathematics Extension 1 Time allowed: 2 hours (plus 5 minutes reading time) Name: Teacher: Class: FORT STREET HIGH SCHOOL 0 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK : TRIAL HSC Mathematics Extension Time allowed: hours (plus 5 minutes readin time) Syllabus Assessment Area

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST October 3, 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please check): 01

More information

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min Prince Sultan University Physics Department First Semester 01 /01 PHY 105 First Major Exam Allowed Time: 60 min Student Name: 1. Write your name in the specified space NOW.. Any paper without name will

More information

MEASUREMENTS ACCELERATION OF GRAVITY

MEASUREMENTS ACCELERATION OF GRAVITY MEASUREMENTS ACCELERATION OF GRAVITY Purpose: A. To illustrate the uncertainty of a measurement in the laboratory. The measurement is that of time. The data obtained from these measurements will be used

More information

Kinematics 2D ~ Lab. Part 1: Type 1 Projectile Launch. BCLN PHYSICS - Rev. Sept/2011

Kinematics 2D ~ Lab. Part 1: Type 1 Projectile Launch. BCLN PHYSICS - Rev. Sept/2011 Kinematics 2D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Type

More information