KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER

Size: px
Start display at page:

Download "KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER"

Transcription

1 KINEMATICS PREVIOUS EAMCET BITS ENGINEERING PAPER. A body is projected vertically upwards at time t = 0 and is seen at a heiht at time t and t seconds durin its fliht. The maximum heiht attained is [ = acceleration one to ravity] [EAMCET 009E ] ( t ) ( ) ( ) ( ) t t+ t t+ t t t ) ) 3) ) Ans: When a body is projected vertically upwards it occupies the same position while oin up and comin down after time of t and t = ut t t ut + = 0 Sum of roots = max ( + t ) u t t+ t = u = [ + t ] u t. A body thrown vertically up to reach its maximum heiht in t seconds. The total time from the time of projection to reach a point at half of its maximum heiht while returnin (in seconds) is [EAMCET 00 E] ) ) + t 3) 3t Ans: Time taken to reach the maximum heiht = time of ascent = t h t h t as h t = = h t h/ t t = t Time taken to reach half distance of its maximum heiht Total time t+ t = + t 3. A body is projected from the earth at anle 30 with the horizontal with some velocity. If its rane is 0m, the maximum heiht reached by it is [ in metres] [EAMCET 006 E] ) 5 3 ) 5 3 3) 0 3 ) 0 3 Ans : 37 = t ) t

2 Kinematics u sin θ tan θ R u sin θcosθ tan30 5 = = m 0 3. A body is projected vertically upwards at time t = 0 and is seen at a heiht at time t and t seconds durin its fliht. The maximum heiht attained is [ = acceleration due to ravity] [EAMCET 005 E] ( t ) ( ) ( ) ( ) t t+ t t+ t t t ) ) 3) ) Ans: 3 When a body is projected vertically upwards it occupies the same position while oin up and comin down after time of t and t = ut t t ut + = 0 Sum of roots = max ( + t ) u t t+ t = u = [ + t ] u t 5. The horizontal and vertical displacement x and y of a projectile at a ive time t are iven by x = 6t metres and y = t 5t metres. The rane of the projectile in metres is [EAMCET 00 E] ) 9.6 ) 0.6 3) 9. ) 3. Ans: Comparin x = 6t with x = ( u cos θ) t, u cos θ= 6 ( ) ucos [ θ][ usinθ ] 6 Rane = 9.6m 0 y = t 5t with y = u sin θ t t,u sin θ= 6. The equations of motion of a projectile are iven by x = 36t metre and y = 96t- 9.t metre. The anle of projection is [EAMCET 003 E] ) sin 5 Ans: ) sin 5 3 3) sin 3 Comparin x = 36t with x = ( u cos θ) t, u cos θ= 36..() y 96t 9.t y = t.9t ) sin 3 3

3 y= usinθ t t Comparin the equation with ( ) usinθ= () usinθ = tan θ= u cosθ Kinematics (or) sin θ= (or) θ= sin The horizontal and vertical displacement of a projectile at time t are x = 36t and y = t-.9t respectively. Initial velocity of the projectile in m/s is [EAMCET 00 E] ) 5 ) 30 3) 5 ) 6 0 Ans: comparin the equation x = 36t with x = ( ucosθ ) t u cos θ= 36 () y = t.9t with y = ( u sin θ) t t usinθ=..() Squarin () and () and addin u = 60 ms. An object is projected with a velocity of 0 m/s makin an anle of 5 with horizontal. The equation for the trajectory is h = Ax Bx where h is heiht, x is horizontal distance, A and B are constants. The ratio A : B is ( = 0 m/s ) [EAMCET 00 E] ) : 5 ) 5 : 3) : 0 ) 0 : Ans: x h = Ax Bx compared with h = xtanθ u cos θ tan θ= A, B = u cos θ A tan θ A u sin θcos θ 0 = B = B = u cos θ 9. Four bodies P, Q, R and S are projected with equal velocities havin anles of projection 5, 30, 5 and 60 with the horizontal respectively. The body havin shortest rane is [EAMCET 000 E] ) P ) Q 3) R ) S Ans: As Rane = u sin θ R sin θ As θ increases sinθ also increases Shortest rane is for P. 0. A body is thrown horizontally from the top of a tower of 5m heiht. It touches the round at a distance of 0 m from the foot of the tower. The initial velocity of the body is : ( = 0 ms ) [EAMCET 000 E ] ).5 ms ) 5 ms 3) 0 ms ) 0 ms Ans: 3

4 Kinematics u x = y iven x = 0 m, y = 5 m, = 0 ms u = 0ms. A body is thrown vertically upwards with an initial velocity u' reaches maximum heiht in 6 seconds. The ratio of distances travelled by the body in the first second and seventh second is [EAMCET 000 E] ) : ) : 3) : ) : Ans: As time of ascent = 6 s u t = u = t = 6 h = distance travelled by the body in the first Second () () ut t = 6 = h = distance travelled in the seventh second is same as distance travelled in st second in downward motion = / h = : h MEDICAL. A body of mass k is projected from the round with a velocity 0 ms at an anle 30 C with the vertical. If t is the time in seconds at which the body is projected and t is the time in seconds at which it reaches the round, the chane in momentum in k ms durin the time t t is [EAMCET 006 M] ( ) ) 0 ) 0 3 3) 50 3 ) 60 Ans : u = ucosθ ˆi+ usinθ ˆj v= ucosθ ˆ i+ usinθ ˆj Initial velocity ( ) ( ) Final velocity ( ) ( )( ) Chane in velocity = v u = usinθ( ˆj) Manitude of chane in momentum = musinθ as θ = 30 with the vertical. with the horizontal θ = 60 Δ p= 0 3 = A body is projected vertically upwards with a velocity u. It crosses a point in its journey at a heiht h twice, just after and 7 seconds. The value of u in ms is : ( = 0 ms ) [EAMCET 006 M] ) 50 ) 0 3) 30 ) 0 Ans: As the body is projected upwards we can write the equation as 0

5 h = ut t t ut + h = 0 t+ t are the roots of the equation u t+ t = u = ( t+ t) u = 0ms Kinematics. Two balls are projected simultaneously in the same vertical plane from the same point with velocities V and V with anles θ and θ respectively with the horizontal. If V cos θ = V cos θ, the path of one ball as seen from the position of other ball is [EAMCET 006 M] ) Parabola ) orizontal straiht line 3) Vertical straiht line ) Straiht line makin 5 with the vertical Ans:3 It is iven that vcos θ = vcosθ. ence the relative velocity between them is zero. The path of one ball as seen from the position of the other ball is vertical straiht line. 5. The maximum heiht reached by a projectile is metres. The horizontal rane is metres. Velocity of project in ms is ( acceleration due to ravity) [EAMCET 00 M] ) 5 ) Ans: u sin θ tanθ R u sin θcosθ tanθ = tan θ= (or) 3 u 5 u = 5 3 3) 3 sin θ= 5 ) 5 6. Two stones are projected with the same speed but makin different anles with the orizontal. Their horizontal ranes are equal. The anle of projection of one is π/3 and the maximum heiht reached by it is 0 metres. Then the maximum heiht reached by the other in metre is [EAMCET 003 M] ) 336 ) 3) 56 ) 3 Ans: As ranes are equal, the anles of projection are θ and 90 θ One anle is 60 the other anle is 30

6 h u sin 60 sin 60 h u sin 30 sin = h = 3m h Kinematics 7. A projectile has initially the same horizontal velocity as it would acquire if it had moved from rest with uniform acceleration of 3 ms for 0.5 minutes. If the maximum heiht reached by it is 0 m then the anle of projection is : ( = 0 ms ) [EAMCET 00 M ] ) tan 3 ) tan 3) tan 9 Ans: 3 v = u + at = = 90ms u cos θ= 90ms () u sin θ = 0= usinθ= 0.() 0 dividin () and () usinθ = tan θ= ucosθ 9 3 ) sin 9 θ= tan 9. It is possible to project particle with a iven speed in two possible ways so that it has the same horizontal rane R. The product of the times taken by it in the two possible ways is ( = acceleration due to ravity) [EAMCET 00 M] ) R ) R 3) 3R ) R Ans: For same rane two anles of projection are θ and 90 - θ usin θ usin( 90 θ) u cosθ t =,t u sinθcosθ R tt = = 9. The initial velocity of a particle, u = i + 3j. It is movin with uniform acceleration, a = 0.i + 0.3j. Its velocity after 0 seconds is [EAMCET 00 M] ) 3 units ) units 3) 5 units ) 0 units Ans: v = u+ at = i ˆ+ 3j ˆ + 0.i ˆ+ 0.3j ˆ 0 From ( ) ( ) v = 0 units = i ˆ+ 6j ˆ

7 Kinematics 0. A body of mass m projected vertically upwards with an initial velocity u reaches a maximum heiht h. Another body of mass m is projected alon an inclined plane makin an anle 30 with the horizontal and with speed u. The maximum distance travelled alon the incline is [EAMCET 00 M] ) h ) h 3) h/ ) h/ Ans: u h =.() From the equation v u = as ( ) = ( θ ) 0 u sin.h u h h = h [from ()] sin θ sin 30. A stone projected with a velocity u at an anle θ with the horizontal reaches maximum heiht. π When it is projected with velocity u at an anle θ with the horizontal reaches maximum heiht. The relation between horizontal rane, R of the projectile and is [EAMCET 000 M] ) R = ) R = ( ) 3) R ( ) Ans: u sin θ u sin ( 90 θ) u cos θ =, = + ) u sin θcosθ but R = on solvin R =. For a projectile the ratio of maximum heiht reached to the square of time of fliht is [ = 0 ms ] [EAMCET 000 M] ) 5 : ) 5 : 3) 5 : ) 0 : Ans: u sin θ 0 5 = = T u sin θ 3

8 Kinematics 3. The averae velocity of a body movin with uniform acceleration after travelin a distance of 3.06m is 0.3 ms. If the chane in velocity of the body is 0. ms durin this time its uniform acceleration is [EAMCET 000 M] ) 0.0 m/s ) 0.0 ms 3) 0.03 ms ) 0.0 ms Ans: u+ v u+ v s = t 3.06 =.t 306 = 3.06 = ( 0.3) t t 93 3 v u 0. but a = 0.0ms t 9

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [MOTION IN TWO DIMENSIONS] CHAPTER NO. 4 In this chapter we are oin to discuss motion in projectile

More information

Get Solution of These Packages & Learn by Video Tutorials on PROJECTILE MOTION

Get Solution of These Packages & Learn by Video Tutorials on  PROJECTILE MOTION FREE Download Study Packae from website: www.tekoclasses.com & www.mathsbysuha.com Get Solution of These Packaes & Learn by Video Tutorials on www.mathsbysuha.com. BASIC CONCEPT :. PROJECTILE PROJECTILE

More information

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2

(a) 1m s -2 (b) 2 m s -2 (c) zero (d) -1 m s -2 11 th Physics - Unit 2 Kinematics Solutions for the Textbook Problems One Marks 1. Which one of the followin Cartesian coordinate system is not followed in physics? 5. If a particle has neative velocity

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fundamentals of Physics I Lectures 7 and 8 Motion in Two Dimensions Dr Tay Sen Chuan 1 Ground Rules Switch off your handphone and paer Switch off your laptop computer and keep it No talkin while lecture

More information

Problem Set: Fall #1 - Solutions

Problem Set: Fall #1 - Solutions Problem Set: Fall #1 - Solutions 1. (a) The car stops speedin up in the neative direction and beins deceleratin, probably brakin. (b) Calculate the averae velocity over each time interval. v av0 v 0 +

More information

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0

v( t) g 2 v 0 sin θ ( ) ( ) g t ( ) = 0 PROJECTILE MOTION Velocity We seek to explore the velocity of the projectile, includin its final value as it hits the round, or a taret above the round. The anle made by the velocity vector with the local

More information

Linear Motion. Miroslav Mihaylov. February 13, 2014

Linear Motion. Miroslav Mihaylov. February 13, 2014 Linear Motion Miroslav Mihaylov February 13, 2014 1 Vector components Vector A has manitude A and direction θ with respect to the horizontal. On Fiure 1 we chose the eastbound as a positive x direction

More information

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min

Prince Sultan University Physics Department First Semester 2012 /2013. PHY 105 First Major Exam Allowed Time: 60 min Prince Sultan University Physics Department First Semester 01 /01 PHY 105 First Major Exam Allowed Time: 60 min Student Name: 1. Write your name in the specified space NOW.. Any paper without name will

More information

the equations for the motion of the particle are written as

the equations for the motion of the particle are written as Dynamics 4600:203 Homework 02 Due: ebruary 01, 2008 Name: Please denote your answers clearly, ie, box in, star, etc, and write neatly There are no points for small, messy, unreadable work please use lots

More information

Physics 111. Lecture 7 (Walker: 4.2-5) 2D Motion Examples Projectile Motion

Physics 111. Lecture 7 (Walker: 4.2-5) 2D Motion Examples Projectile Motion Physics 111 Lecture 7 (Walker: 4.-5) D Motion Eamples Projectile Motion Sept. 16, 9 -D Motion -- Constant Acceleration r r r r = v t at t v t a t y y yt y v t at r r r v = v at v = v a t v = v a t y y

More information

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name:

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name: Dynamics 4600:03 Homework 03 Due: ebruary 08, 008 Name: Please denote your answers clearly, i.e., bo in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

Projectile Motion. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Masking Tape Plumb Bob

Projectile Motion. Equipment: Ballistic Gun Apparatus Projectiles Table Clamps 2-meter Stick Carbon Paper, Scratch Paper, Masking Tape Plumb Bob Purpose: To calculate the initial speed of a projectile by measurin its rane. To predict how far a projectile will travel when fired at different anles, and test these predictions. To predict what anle

More information

Motion in Two Dimension (Projectile Motion)

Motion in Two Dimension (Projectile Motion) Phsics Motion in Two Dimension (Projectile Motion) www.testprepkart.com Table of Content. Introdction.. Projectile. 3. Assmptions of projectile motion. 4. Principle of phsical independence of motions.

More information

PHYS 1114, Lecture 9, February 6 Contents:

PHYS 1114, Lecture 9, February 6 Contents: PHYS 4, Lecture 9, February 6 Contents: Continued with projectile motion: The kicko problem in football was treated analytically, obtainin formulas for maimum heiht and rane in terms of initial speed and

More information

ISSUED BY K V - DOWNLOADED FROM KINEMATICS

ISSUED BY K V - DOWNLOADED FROM   KINEMATICS KINEMATICS *rest and Motion are relative terms, nobody can exist in a state of absolute rest or of absolute motion. *One dimensional motion:- The motion of an object is said to be one dimensional motion

More information

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance

1 CHAPTER 7 PROJECTILES. 7.1 No Air Resistance CHAPTER 7 PROJECTILES 7 No Air Resistance We suppose that a particle is projected from a point O at the oriin of a coordinate system, the y-axis bein vertical and the x-axis directed alon the round The

More information

2.2 Differentiation and Integration of Vector-Valued Functions

2.2 Differentiation and Integration of Vector-Valued Functions .. DIFFERENTIATION AND INTEGRATION OF VECTOR-VALUED FUNCTIONS133. Differentiation and Interation of Vector-Valued Functions Simply put, we differentiate and interate vector functions by differentiatin

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Kinematics Pae: 1 fo/u fopkjr Hkh# tu] uha kjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k fla ladyi dj] lrs foifr usd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks

More information

MOTION IN A STRAIGHT LINE. time interval t and as t approaches zero, the ratio. has a finite limiting value.(where x is the distance

MOTION IN A STRAIGHT LINE. time interval t and as t approaches zero, the ratio. has a finite limiting value.(where x is the distance KINEMATICS Rest and Motion, Distance and Displacement, Speed, Velocity, and Acceleration, Averae Velocity, Averae Acceleration, Instantaneous Velocity, Instantaneous Acceleration, Motion with Constant

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

(C) 7 s. (C) 13 s. (C) 10 m

(C) 7 s. (C) 13 s. (C) 10 m NAME: Ms. Dwarka, Principal Period: #: WC Bryant HS Ms. Simonds, AP Science Base your answers to questions 1 throuh 3 on the position versus time raph below which shows the motion of a particle on a straiht

More information

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions

Ground Rules. PC1221 Fundamentals of Physics I. Position and Displacement. Average Velocity. Lectures 7 and 8 Motion in Two Dimensions PC11 Fndamentals of Physics I Lectres 7 and 8 Motion in Two Dimensions A/Prof Tay Sen Chan 1 Grond Rles Switch off yor handphone and paer Switch off yor laptop compter and keep it No talkin while lectre

More information

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t

REVIEW: Going from ONE to TWO Dimensions with Kinematics. Review of one dimension, constant acceleration kinematics. v x (t) = v x0 + a x t Lecture 5: Projectile motion, uniform circular motion 1 REVIEW: Goin from ONE to TWO Dimensions with Kinematics In Lecture 2, we studied the motion of a particle in just one dimension. The concepts of

More information

Physics 11 Fall 2012 Practice Problems 2 - Solutions

Physics 11 Fall 2012 Practice Problems 2 - Solutions Physics 11 Fall 01 Practice Problems - s 1. True or false (inore any effects due to air resistance): (a) When a projectile is fired horizontally, it takes the same amount of time to reach the round as

More information

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6

Motion in Two Dimensions Sections Covered in the Text: Chapters 6 & 7, except 7.5 & 7.6 Motion in Two Dimensions Sections Covered in the Tet: Chapters 6 & 7, ecept 7.5 & 7.6 It is time to etend the definitions we developed in Note 03 to describe motion in 2D space. In doin so we shall find

More information

Phys207: Lecture 04. Today s Agenda 3-D Kinematics Independence of x and y components Baseball projectile Shoot the monkey Uniform circular motion

Phys207: Lecture 04. Today s Agenda 3-D Kinematics Independence of x and y components Baseball projectile Shoot the monkey Uniform circular motion Phys7: Lecture 4 Reminders All Discussion and Lab sections start meetin this week Homework is posted on course website Solutions to preious hwks will be posted Thursday mornins Today s Aenda 3-D Kinematics

More information

STUDY PACKAGE. Subject : PHYSICS Topic : KINEMATICS. Available Online :

STUDY PACKAGE. Subject : PHYSICS Topic : KINEMATICS. Available Online : fo/u fopkjr Hkh# tu] uha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k fla ladyi dj] lrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth

More information

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1

Phys101 First Major-111 Zero Version Monday, October 17, 2011 Page: 1 Monday, October 17, 011 Page: 1 Q1. 1 b The speed-time relation of a moving particle is given by: v = at +, where v is the speed, t t + c is the time and a, b, c are constants. The dimensional formulae

More information

PSI AP Physics C Kinematics 2D. Multiple Choice Questions

PSI AP Physics C Kinematics 2D. Multiple Choice Questions PSI AP Physics C Kinematics D Multiple Choice Questions 1. A tennis ball is thrown off a cliff 10 m above the round with an initial horizontal velocity of 5 m/s as shown above. The time between the ball

More information

Newton's laws of motion

Newton's laws of motion Episode No - 5 Date: 03-04-2017 Faculty: Sunil Deshpande Newton's laws of motion * A plank with a box on it at one end is slowly raised about the other end. As the anle with the horizontal slowly reaches

More information

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising

Exam 2A Solution. 1. A baseball is thrown vertically upward and feels no air resistance. As it is rising Exam 2A Solution 1. A baseball is thrown vertically upward and feels no air resistance. As it is risin Solution: Possible answers: A) both its momentum and its mechanical enery are conserved - incorrect.

More information

Geodesics as gravity

Geodesics as gravity Geodesics as ravity February 8, 05 It is not obvious that curvature can account for ravity. The orbitin path of a planet, for example, does not immediately seem to be the shortest path between points.

More information

2.5 Velocity and Acceleration

2.5 Velocity and Acceleration 82 CHAPTER 2. VECTOR FUNCTIONS 2.5 Velocity and Acceleration In this section, we study the motion of an object alon a space curve. In other words, as the object moves with time, its trajectory follows

More information

Energizing Math with Engineering Applications

Energizing Math with Engineering Applications Enerizin Math with Enineerin Applications Understandin the Math behind Launchin a Straw-Rocket throuh the use of Simulations. Activity created by Ira Rosenthal (rosenthi@palmbeachstate.edu) as part of

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

This Week. Next Week

This Week. Next Week This Week Tutorial and Test 1, in the lab (chapters 1 and 2) Next Week Experiment 1: Measurement of Lenth and Mass WileyPLUS Assinment 1 now available Due Monday, October 5 at 11:00 pm Chapters 2 & 3 28

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2016 17 ENGINEERING MATHEMATICS AND MECHANICS ENG-4004Y Time allowed: 2 Hours Attempt QUESTIONS 1 and 2, and ONE other question.

More information

7.2 Maximization of the Range of a Rocket

7.2 Maximization of the Range of a Rocket 138 CHAPTER 7. SOME APPLICATIONS The counterintuitive answer that a supersonic aircraft must dive first in order to climb to a iven altitude in minimum time was first discovered by Walter Denham and Art

More information

Physics 18 Spring 2011 Homework 2 - Solutions Wednesday January 26, 2011

Physics 18 Spring 2011 Homework 2 - Solutions Wednesday January 26, 2011 Physics 18 Sprin 011 Homework - s Wednesday January 6, 011 Make sure your name is on your homework, and please box your final answer. Because we will be ivin partial credit, be sure to attempt all the

More information

As observed from the frame of reference of the sidewalk:

As observed from the frame of reference of the sidewalk: Section 3.1: Inertial and Non-inertial Frames of Reference Tutorial 1 Practice, pae 110 1. a) When the car is movin with constant velocity, I see the ball lie still on the floor. I would see the same situation

More information

= M. L 2. T 3. = = cm 3

= M. L 2. T 3. = = cm 3 Phys101 First Major-1 Zero Version Sunday, March 03, 013 Page: 1 Q1. Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension

More information

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS

Projectile Motion. Chin- Sung Lin STEM GARAGE SCIENCE PHYSICS Projectile Motion Chin- Sung Lin Introduction to Projectile Motion q What is Projectile Motion? q Trajectory of a Projectile q Calculation of Projectile Motion Introduction to Projectile Motion q What

More information

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3)

Homework # 2. SOLUTION - We start writing Newton s second law for x and y components: F x = 0, (1) F y = mg (2) x (t) = 0 v x (t) = v 0x (3) Physics 411 Homework # Due:..18 Mechanics I 1. A projectile is fired from the oriin of a coordinate system, in the x-y plane (x is the horizontal displacement; y, the vertical with initial velocity v =

More information

Parametric Equations

Parametric Equations Parametric Equations Suppose a cricket jumps off of the round with an initial velocity v 0 at an anle θ. If we take his initial position as the oriin, his horizontal and vertical positions follow the equations:

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS Problem 1: We define a vertical coordinate system with positive upwards. The only forces actin

More information

PROJECTILE MOTION. ( ) g y 0. Equations ( ) General time of flight (TOF) General range. Angle for maximum range ("optimum angle")

PROJECTILE MOTION. ( ) g y 0. Equations ( ) General time of flight (TOF) General range. Angle for maximum range (optimum angle) PROJECTILE MOTION Equations General time of fliht (TOF) T sin θ y 0 sin( θ) General rane R cos( θ) T R cos θ sin( θ) sin( θ) y 0 Anle for maximum rane ("optimum anle") θ opt atan y 0 atan v f atan v f

More information

UNITS, DIMENSION AND MEASUREMENT

UNITS, DIMENSION AND MEASUREMENT UNITS, DIMENSION AND MEASUREMENT Measurement of large distance (Parallax Method) D = b θ Here D = distance of the planet from the earth. θ = parallax angle. b = distance between two place of observation

More information

Mathematics Extension 1 Time allowed: 2 hours (plus 5 minutes reading time)

Mathematics Extension 1 Time allowed: 2 hours (plus 5 minutes reading time) Name: Teacher: Class: FORT STREET HIGH SCHOOL 0 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK : TRIAL HSC Mathematics Extension Time allowed: hours (plus 5 minutes readin time) Syllabus Assessment Area

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST October 3, 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please check): 01

More information

OCR Maths M2. Topic Questions from Papers. Projectiles. Answers

OCR Maths M2. Topic Questions from Papers. Projectiles. Answers OCR Maths M Topic Questions from Papers Projectiles Answers PhysicsAndMathsTutor.com 1 v = x9.8x10 energy:½mv =½mu + mgh v = 14 ½v = ½.36 + 9.8x10 speed = (14 + 6 ) (must be 6 ) v = 36+196=3 speed = 15.

More information

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION SEPTEMBER 2018 ( ) CLASS XI PHYSICS

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION SEPTEMBER 2018 ( ) CLASS XI PHYSICS INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION SEPTEMBER 2018 (23-09-2018) CLASS XI PHYSICS MARKING SCHEME SET A Q.N Answers Marks O. 1 Gravitational force < weak nuclear force < electromagnetic force < strong

More information

Topic 3 Motion in two dimensions Position of points in two dimensions is represented in vector form

Topic 3 Motion in two dimensions  Position of points in two dimensions is represented in vector form Page1 Position of points in two dimensions is represented in vector form r 1 = x 1 i + y 1 j and r = x i + y j If particle moves from r1 position to r position then Displacement is final position initial

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D

PHY 1114: Physics I. Quick Question 1. Quick Question 2. Quick Question 3. Quick Question 4. Lecture 5: Motion in 2D PHY 1114: Physics I Lecture 5: Motion in D Fall 01 Kenny L. Tapp Quick Question 1 A child throws a ball vertically upward at the school playground. Which one of the following quantities is (are) equal

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Problem Set 2 Solutions

Problem Set 2 Solutions UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Sprin 2009 Problem Set 2 Solutions The followin three problems are due 20 January 2009 at the beinnin of class. 1. (H,R,&W 4.39)

More information

CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS

CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS CHAPTER 4 GENERAL MOTION OF A PARTICLE IN THREE DIMENSIONS --------------------------------------------------------------------------------------------------------- Note to instructors there is a tpo in

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N.

ANALYZE In all three cases (a) (c), the reading on the scale is. w = mg = (11.0 kg) (9.8 m/s 2 ) = 108 N. Chapter 5 1. We are only concerned with horizontal forces in this problem (ravity plays no direct role). We take East as the +x direction and North as +y. This calculation is efficiently implemented on

More information

SIMPLE HARMONIC MOTION PREVIOUS EAMCET QUESTIONS ENGINEERING. the mass of the particle is 2 gms, the kinetic energy of the particle when t =

SIMPLE HARMONIC MOTION PREVIOUS EAMCET QUESTIONS ENGINEERING. the mass of the particle is 2 gms, the kinetic energy of the particle when t = SIMPLE HRMONIC MOION PREVIOUS EMCE QUESIONS ENGINEERING. he displacement of a particle executin SHM is iven by :y = 5 sin 4t +. If is the time period and 3 the mass of the particle is ms, the kinetic enery

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . A particle of mass m is projected vertically upwards, at time t =, with speed. The particle is mv subject to air resistance of manitude, where v is the speed of the particle at time t and is a positive

More information

Math Review 1: Vectors

Math Review 1: Vectors Math Review 1: Vectors Coordinate System Coordinate system: used to describe the position of a point in space and consists of 1. An origin as the reference point 2. A set of coordinate axes with scales

More information

Vector Valued Functions

Vector Valued Functions SUGGESTED REFERENCE MATERIAL: Vector Valued Functions As you work throuh the problems listed below, you should reference Chapters. &. of the recommended textbook (or the equivalent chapter in your alternative

More information

Motion in Two or Three Dimensions

Motion in Two or Three Dimensions Chapter 3 Motion in Two or Three Dimensions PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 3 To use vectors

More information

v v y = v sinθ Component Vectors:

v v y = v sinθ Component Vectors: Component Vectors: Recall that in order to simplify vector calculations we change a complex vector into two simple horizontal (x) and vertical (y) vectors v v y = v sinθ v x = v cosθ 1 Component Vectors:

More information

Vertical motion under gravity *

Vertical motion under gravity * OpenStax-CNX module: m13833 1 Vertical motion under gravity * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Vertical motion under

More information

PHY 133 Lab 1 - The Pendulum

PHY 133 Lab 1 - The Pendulum 3/20/2017 PHY 133 Lab 1 The Pendulum [Stony Brook Physics Laboratory Manuals] Stony Brook Physics Laboratory Manuals PHY 133 Lab 1 - The Pendulum The purpose of this lab is to measure the period of a simple

More information

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Using + or signs is not always sufficient to fully describe motion in more than one dimension Vectors can be used to more fully describe motion

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Chapter Units and Measurement

Chapter Units and Measurement 2 Chapter Units and Measurement 1. Identify the pair whose dimensions are equal [2002] torque and work stress and energy force and stress force and work 2. [2003] [L -1 T] ] [L -2 T 2 ] [L 2 T -2 ] [LT

More information

Demo: x-t, v-t and a-t of a falling basket ball.

Demo: x-t, v-t and a-t of a falling basket ball. Demo: x-t, v-t and a-t of a falling basket ball. I-clicker question 3-1: A particle moves with the position-versus-time graph shown. Which graph best illustrates the velocity of the particle as a function

More information

Firing an Ideal Projectile

Firing an Ideal Projectile 92 Chapter 13: Vector-Valued Functions and Motion in Space 13.2 Modelin Projectile Motion 921 r at time t v v cos i a j (a) v sin j Newton s second law of motion sas that the force actin on the projectile

More information

Physics 20 Homework 1 SIMS 2016

Physics 20 Homework 1 SIMS 2016 Physics 20 Homework 1 SIMS 2016 Due: Wednesday, Auust 17 th Problem 1 The idea of this problem is to et some practice in approachin a situation where you miht not initially know how to proceed, and need

More information

Ballistics Car P3-3527

Ballistics Car P3-3527 WWW.ARBORSCI.COM Ballistics Car P3-3527 BACKGROUND: The Ballistic Car demonstrates that the horizontal motion of an object is unaffected by forces which act solely in the vertical direction. It consists

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS

CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS CHAPTER 3 MOTION IN TWO AND THREE DIMENSIONS General properties of vectors displacement vector position and velocity vectors acceleration vector equations of motion in 2- and 3-dimensions Projectile motion

More information

Need to have some new mathematical techniques to do this: however you may need to revise your basic trigonometry. Basic Trigonometry

Need to have some new mathematical techniques to do this: however you may need to revise your basic trigonometry. Basic Trigonometry Kinematics in Two Dimensions Kinematics in 2-dimensions. By the end of this you will 1. Remember your Trigonometry 2. Know how to handle vectors 3. be able to handle problems in 2-dimensions 4. understand

More information

Bell Ringer: What is constant acceleration? What is projectile motion?

Bell Ringer: What is constant acceleration? What is projectile motion? Bell Ringer: What is constant acceleration? What is projectile motion? Can we analyze the motion of an object on the y-axis independently of the object s motion on the x-axis? NOTES 3.2: 2D Motion: Projectile

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVRSITY OF SASKATCHWAN Department of Physics and nineerin Physics Physics 115.3 MIDTRM TST Alternative Sittin October 009 Time: 90 minutes NAM: (Last) Please Print (Given) STUDNT NO.: LCTUR SCTION (please

More information

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm.

Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius cm and height cm. Coordinator: W. Al-Basheer Sunday, June 28, 2015 Page: 1 Q1. The density of aluminum is 2700 kg/m 3. Find the mass of a uniform solid aluminum cylinder of radius 10.00 cm and height 30.48 cm. A) 25.85

More information

LAWS OF MOTION. Chapter Five MCQ I

LAWS OF MOTION. Chapter Five MCQ I Chapter Five LAWS OF MOTION MCQ I 5. A ball is travelling with uniform translatory motion. This means that (a) it is at rest. (b) the path can be a straight line or circular and the ball travels with uniform

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2009

AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2009 2009 F = ma Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTI YOU ARE TOD TO BEGIN Use = 10 N/k throuhout this contest.

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

Experiment 1: Simple Pendulum

Experiment 1: Simple Pendulum COMSATS Institute of Information Technoloy, Islamabad Campus PHY-108 : Physics Lab 1 (Mechanics of Particles) Experiment 1: Simple Pendulum A simple pendulum consists of a small object (known as the bob)

More information

International Examinations. Advanced Level Mathematics Mechanics 2 Douglas Quadling

International Examinations. Advanced Level Mathematics Mechanics 2 Douglas Quadling International Examinations Advanced Level Mathematics Mechanics Douglas Quadling The publishers would like to acknowledge the contributions of the following people to this series of books: Tim Cross, Richard

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

11.1 Introduction Galilean Coordinate Transformations

11.1 Introduction Galilean Coordinate Transformations 11.1 Introduction In order to describe physical events that occur in space and time such as the motion of bodies, we introduced a coordinate system. Its spatial and temporal coordinates can now specify

More information

INTRODUCTION. 3. Two-Dimensional Kinematics

INTRODUCTION. 3. Two-Dimensional Kinematics INTRODUCTION We now extend our study of kinematics to motion in two dimensions (x and y axes) This will help in the study of such phenomena as projectile motion Projectile motion is the study of objects

More information

Mark on the diagram the position of the ball 0.50 s after projection.

Mark on the diagram the position of the ball 0.50 s after projection. IB Kinematics Problems 1. This question is about projectile motion. A small steel ball is projected horizontally from the edge of a bench. Flash photographs of the ball are taken at.1 s intervals. The

More information

Parameterization and Vector Fields

Parameterization and Vector Fields Parameterization and Vector Fields 17.1 Parameterized Curves Curves in 2 and 3-space can be represented by parametric equations. Parametric equations have the form x x(t), y y(t) in the plane and x x(t),

More information

Planar Motion with Constant Acceleration

Planar Motion with Constant Acceleration Planar Motion with Constant Acceleration 1. If the acceleration vector of an object is perpendicular to its velocity vector, which of the following must be true? (a) The speed is changing. (b) The direction

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

Question 3: Projectiles. Page

Question 3: Projectiles. Page Question 3: Projectiles Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Page Commencement date Questions covered Introduction: breaking velocity

More information

OSCILLATIONS

OSCILLATIONS OSCIAIONS Important Points:. Simple Harmonic Motion: a) he acceleration is directly proportional to the displacement of the body from the fixed point and it is always directed towards the fixed point in

More information

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday

Announcement. Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday Going over HW3.05 Announcement Quiz on Friday (Graphing and Projectile Motion) No HW due Wednesday As the red ball rolls off the edge, a green ball is dropped from rest from the same height at the same

More information

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 4 Two-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 4-1 Motion

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

2D Kinematics. Note not covering scalar product or vector product right now we will need it for material in Chap 7 and it will be covered then.

2D Kinematics. Note not covering scalar product or vector product right now we will need it for material in Chap 7 and it will be covered then. Announcements: 2D Kinematics CAPA due at 10pm tonight There will be the third CAPA assignment ready this evening. Chapter 3 on Vectors Note not covering scalar product or vector product right now we will

More information

CONTENTS. 1. Measurement Scalars and Vectors Projectile Motion Force Friction in Solids and Liquids 31-38

CONTENTS. 1. Measurement Scalars and Vectors Projectile Motion Force Friction in Solids and Liquids 31-38 CONTENTS Sr. No. Subject Page No. 1. Measurement 1-6. Scalars and Vectors 7-14 3. Projectile Motion 15-4 4. Force 5-30 5. Friction in Solids and Liquids 31-38 6. Sound Waves 39-45 7. Thermal Expansion

More information