Type Ia Supernovae, Dark Energy, and the Hubble Constant

Size: px
Start display at page:

Download "Type Ia Supernovae, Dark Energy, and the Hubble Constant"

Transcription

1 Type Ia Supernovae, Dark Energy, and the Hubble Constant Lemaître Workshop: Black Holes, Gravitational Waves, Spacetime Singularities Alex Filippenko University of California, Berkeley Vatican Observatory, 9 May 2017

2 Georges Lemaître ( ) Wikipedia: He proposed the theory of the expansion of the universe, widely misattributed to Edwin Hubble. [3][4] He was the first to derive what is now known as Hubble's law and made the first estimation of what is now called the Hubble constant, which he published in 1927, two years before Hubble's article. [5][6][7][8] Lemaître also proposed what became known as the Big Bang theory of the origin of the universe, which he called his hypothesis of the primeval atom or the Cosmic Egg. [9]

3 Vesto Slipher Edwin Hubble 1917 (1922, 1923) 1929 (NASA/STScI/G. Bacon)

4 Observed low-redshift Hubble diagram (ideal): log d (distance) Hubble s law, v = H 0 d (v = cz) log z (redshift)

5 Scale factor a(t) (Ω M = ρ ave /ρ crit ) Empty (Ω M =0) Low (Ω M =0.3) Medium (Ω M =1) Dense (Ω M > 1) t 0 (now) Time t

6 a(t 0 ) Note: 1 + z = a(t 0 ) / a(t) z = redshic RedshiC z=0 RedshiC z = 1 Age Dense (Ω M >1) Lookback Gmes for the various models at fixed redshic t t 0 (now)

7 Observer s version: Ω M 1 >1 log distance log z (redshift)

8

9 Determining the Hubble Diagram Redshift: easy to measure from galaxy spectrum Distance: Luminosity distance d L L f = 4π d 2 L f = flux (erg/s-cm 2 ) L = luminosity (erg/s) Measure f, know L NOT SO EASY! Need a standard candle

10 Light Curve of Typical Cepheid

11 M31 (Andromeda) Edwin Hubble

12

13 A03-93; SN 1998bu animation (Peter Challis)

14 Spectra of Sne Ia, II a Also discuss (but don t show) Ib, Ic, IIb

15 Type Ia Supernova White Dwarf An explosion resulting from the thermonuclear detonation of a White Dwarf Star An explosion resulting from the thermonuclear runaway of a white dwarf near M(Chandrasekhar)

16 Type Ia Supernova 03W-220, merger of 2 WDs. But not many WD-WD pairs known, that are close enough to merge in a relatively short time (some SN Ia come from billion year old stars). So consider sub-chandra explosions (Next Slide) but these have problems, too. Thermonuclear runaway of some sort, in any case.

17 Calibrating the Nearly Standard Candle Phillips (1993), Riess + (1995), Hamuy+ (1995): established L vs. light-curve shape correlation with ~ 10 nearby SNe Ia Use it to standardize other SNe Ia Measured colors give reddening and extinction Accurately calibrate individual SNe! Absolute light curves of SN Ia in galaxies of known distance Luminous SNe Ia have slower light curves! MLCS: Multi-color Light-Curve Shape (Riess et al.)

18 log d L σ = 0.44 mag log d L σ = 0.15 mag! (Riess et al. 1995, 1996)

19 SN 1994d

20

21 Brian Schmidt (ANU) Nick Suntzeff, Bob Schommer, Chris Smith (CTIO) Mark Phillips (Carnegie) Bruno Leibundgut and Jason Spyromilio (ESO) Bob Kirshner, Peter Challis, Tom Matheson (Harvard) Alex Filippenko, WeidongLi, Saurabh Jha(Berkeley) Peter Garnavich, Stephen Holland (Notre Dame) Chris Stubbs (UW) John Tonry, Brian Barris (University of Hawaii) Adam Reiss (Space Telescope) Alejandro Clocchiatti (Catolica Chile) Jesper Sollerman(Stockholm) S. Perlmutter, G. Aldering, S. Deustua, S. Fabbro, G. Goldhaber, D. Groom, A. Kim, M. Kim, R. Knop, P. Nugent, (LBL & CfPA) N. Walton (Isaac Newton Group) A. Fruchter, N. Panagia (STSci) A. Goobar (Univ of Stockholm) R. Pain (IN2P3, Paris) I. Hook, C. Lidman (ESO) M. DellaValle (Univ of Padova) R. Ellis (CalTech) R. McMahon (IofA, Cambridge) B. Schaefer (Yale) P. Ruiz-Lapuente (Univ of Barcelona) H. Newberg (Fermilab) C. Pennypacker

22 Cerro Tololo Inter-American Observatory, Chile

23 (CTIO)

24 Searching by Subtraction

25 W. M. Keck Observatory, Hawaii (two 10-meter telescopes)

26 Keck LRIS, 1 hour Low-z and High-z SN Ia

27 3 HST supernovae Fainter than expected. So faint that they are farther than they could have been, if Universe decelerating or expanding with constant speed. Therefore, Universe must have accelerated. Cosmic antigravity! Let me explain in more detail

28 Observer s version: Ω Μ < 0?! Ω M 1 >1 log distance Hubble s law, v = H 0 d (v = cz) log z (redshift)

29

30 Cosmological Const. Other galaxy Milky Way galaxy

31 Observer s version: Λ > 0?! Ω M 1 >1 log distance Hubble s law, v = H 0 d (v = cz) log z (redshift)

32 log d L Pre-1998 data: Riess et al. (1998) blue dots Perlmutter et al. (1999) red dots [Δ (log d L )] High-z data: fainter than flat or low- Ω M Univ.

33 Pre-1998 data: Riess et al. (1998) Perlmutter et al. (1999) A nonzero cosmological constant!?

34 THE ACCELERATING UNIVERSE (1998) High-z Team, Sep SCP, June 1999 et al. (AVF, )

35 (SDSS, other LSS studies, and measurements of clusters: large majority agree that Ω M = 0.3 ± 0.1)

36 CMB sky if different geometries

37 (2000/ 2001) LSS Clusters, large-scale structure: Ω M = 0.3 ± 0.1 (CMB) Concordance: (Ω M, Ω Λ = (0.3, 0.7)

38 WMAP CMB Map of the Early Universe, t = 380,000 years old

39 Riess et al. (2004), using all published high-z SN Ia data. SN Ia + LSS: Ω M = 0.28, Ω Λ = 0.72 Precision comparable to CMB + LSS Ω Μ = 1 ruled out at very many σ!

40 Probing the era of deceleration

41 Scale factor a(t) Note: 1+z = a(t 0 ) / a(t) z = redshift "Cosmic Antigravity" (Ω Λ > 0) (Ω M = ρ ave /ρ crit ) Empty(Ω M =0) Low (Ω M =0.3) Medium (Ω M =1) Dense (Ω M > 1) t 0 (now) Time t

42

43 (mag) log d L (Riess et al. 2007)

44 He retained the cosmological constant after Einstein & de Sitter (1932) had renounced it. Advocated a model with Λ in which the expansion initially decelerates and later accelerates (Lemaître 1934)! Georges Lemaître ( ) Among other things, this might remove a conflict between the known ages of stars and the expansion age of the Universe.

45 (Expansion removed) Evolution of Universe: simulation (A. Kravtsov)

46 Simulated 3D flight through Universe (V. Springel) (Expansion removed)

47 A5er%Planck% Average Composition of the Universe (nonbaryonic) Dark%ma1er%% 25%% Ordinary%ma1er% 5%% (atoms) Dark%energy%% 70%%

48 Studies of Universe s Expansion Win Physics Nobel Johns Hopkins University; University Of California At Berkeley; Australian National Univers From left, Adam Riess, Saul Perlmutter and Brian Schmidt shared the Nobel Prize in physics awarded Tuesday. By DENNIS OVERBYE Published: October 4, Nobel Prize in Physics

49 Dec. 8, pm: High-z Team celebratory lunch

50

51

52 The 2015 Breakthrough Prize in Fundamental Physics

53 Since dark energy seems real SN Ia CMB (WMAP, Planck) + ISW, X-ray Clusters LSS what is it?

54 Λ, the Cosmological Constant? Not good quantitative agreement with theoretical expectations! Way too small (Ω Λ 0.7), and Why now? A bone in the throat. Steven Weinberg

55 Define w = P/(ρc 2 ) Equation-of-state parameter ρ (volume) (1+w) w = 0 for normal nonrelativistic matter w = 1/3 for photons w = 1 for Λ w 1 for quintessence, etc. (rolling scalar field, etc.; 1/3 for cosmic strings). In GR, gravitational acceleration (ρc 2 + 3P). If w < 1/3, the Universe accelerates!

56 (mag) Difference in apparent SN brightness vs. z ΩΛ = 0.70, flat universe

57 Betoule et al. (2014) SDSS-II + SNLS joint analysis log d L 0.01 Redshift z Redshift z

58 (Betoule et al. 2014) (Planck+WP: Planck CMB temperature fluctuations, WMAP CMB polarization. JLA: SNLS-SDSS joint SN Ia light-curve analysis. BAO: baryon acoustic osc.)

59 Time-dependent w? Assume w(a) = w 0 + w a (1 a), where a = 1/(1+z) is a scale factor (Linder 2003). For Λ: w 0 = 1 and w a = 0

60 (Betoule et al. 2014)

61

62 The Most Recent Surprise The current rate of expansion still might be too high!

63 Planck satellite map of the early Universe, t = 380,000 years old

64 Planck team, 2015, power spectrum

65 CMB: Measure θ s; know r s (r s = sound horizon length) The angular diameter distance is defined as D A = r s /θ s. (z* = redshift of CMB = 1079)

66 Planck Data: Predict Current Expansion Rate (H 0 ) H 0 = ± 0.62 km/s/mpc (67.8 ± 0.9 km/s/mpc) Previous direct measurements: H 0 = (70 75) ± (4 7) km/s/mpc Possible conflict, but not clear: error bars large and uncertain

67 Planck team, 2015 paper

68 SH0ES (Riess et al. 2005, 2009a,b, 2011, 2014, 2016; see also Macri Hoffman+ 2016, Macri+ 2017) Goal: Measure current value of H 0 to ± 1%, through direct parallaxes of Galactic Cepheids, Cepheid calibration of SN Ia host galaxies, and SN Ia Hubble diagram. Latest results: Riess et al. (2016):

69 SN 1994d

70

71

72 With Cepheids and SNe Ia, we (Riess+ 2016) Measured Current H 0 H 0 = ± 1.74 km/s/mpc Planck: H 0 = 67.8 ± 0.9 (66.93 ± 0.62), ~3σ from Cepheid/SN Ia There may be a conflict! We have smaller uncertainties than before, and we think we understand them very well.

73 Measurements of H0 Planck 2015: ± 0.62 (0.9%) ± 1.74 (2.4%) Riess et al Possible explanations Relaxing constraints; e.g., flatness? Evolving dark energy equation of state? (but data suggest w ~ -1) >3 neutrino species? ("dark radiation") Technique errors? New physics? (GR wrong? Weird DM?) Need independent methods to overcome systematics.

74 H0LiCOW: H0 Lenses in COSMOGRAIL s Wellspring Bonvil et al. (2017) and 4 other papers: use measured time delays in distinct images of gravitationally lensed QSOs

75 Strongly lensed quasars (QSOs) QSOs are powered by accretion into SMBH Light emitted from quasars changes in time ( flickers ) Q length - length

76 The H0LiCOW QSO Sample

77 Current Expansion Rate (H 0 ) H0LiCOW: H 0 = 72.8 ± 2.4 km/s/ Mpc (Bonvin et al. 2017; 3 lenses) H 0 = ± 1.74 km/s/mpc (Riess et al. 2016; SNe Ia + Cepheids) Planck: H 0 = 67.8 ± 0.9 (66.9 ± 0.6) A new, very light, fundamental subatomic particle (neutrino?) exists?! Dark radiation?!

78 ?! Stay tuned!

79 Thank You! Vatican Observatory (invitation to speak) National Science Foundation (NSF) Nat. Aeronautics & Space Adm. (NASA) US Department of Energy AutoScope Corporation TABASGO Foundation (Wayne Rosing) Sylvia and Jim Katzman Foundation Gary and Cynthia Bengier Christopher R. Redlich Fund Richard and Rhoda Goldman Fund

80 bh bh 2 Evidence)for)a)systema3c)error)in)the)Planck)CMB)data?) G. E. Addison 0.13 et al. Claimed 2.5 σ Tension Between Halves of Planck CMB ch 2 data, l>1000 vs l< (WMAP) Addison, Huang, Watts, Bennett, 0.13 Halpern, Hinshaw, Weiland 2016, ApJ, 818, 132 Planck Team, arxiv: σ 0.11 like 1.8 σ for 6 parameters, but we measure H 0! ch MC MC log(10 10 As) m log(10 10 As) H0 m ns ns Planck TT apple ` < H Ase H Ase Planck TT apple ` Planck TT apple ` < 1000 Planck TT apple ` apple 2508 igure 2. Marginalized 68.3% confidence CDM parameter constraints from fits to the ` < 1000 and ` 1000 Planck TT spectra. H e replace Figure the prior 2. on Marginalized with fixed values 68.3% of confidence 0.06, 0.07, 0.08, CDM and 0.09, parameter to more constraints clearly assess from the e ect fits tohas the on` other < 1000 parameters and ` in 10 th H 0

81 Current Status Dark energy exists, or GR wrong. Most data consistent with w 0 = 1, w a = 0: the cosmological constant! But it s possible that dark energy is growing stronger with time (or that there is a new form of relativistic particle: dark radiation ). The future looks hopeful! Larger homogeneous samples, improved techniques (e.g., Gaia parallaxes).

82 However If dark energy really is Λ, we will never know for sure. Cannot prove w 0 = and w a = Can only show w and w a And, it becomes progressively more expensive & time consuming to decrease the error bars.

IX. The Cosmological Constant. ASTR378 Cosmology : IX. The Cosmological Constant 96

IX. The Cosmological Constant. ASTR378 Cosmology : IX. The Cosmological Constant 96 IX. The Cosmological Constant ASTR378 Cosmology : IX. The Cosmological Constant 96 Einstein s Greatest Blunder At the time (~1915), Universe believed static, supported by observational data Universe containing

More information

Supernovae and the Accelerating Universe

Supernovae and the Accelerating Universe Supernovae and the Accelerating Universe Nicholas B. Suntzeff Mitchell Institute for Fundamental Physics Department of Physics & Astronomy Texas A&M University University of Texas/Austin Second Texas Cosmology

More information

Determining the Nature of Dark Energy: The Latest Results from ESSENCE and the Future of Observational Cosmology

Determining the Nature of Dark Energy: The Latest Results from ESSENCE and the Future of Observational Cosmology Determining the Nature of Dark Energy: The Latest Results from ESSENCE and the Future of Observational Cosmology Michael Wood-Vasey Harvard-Smithsonian Center for Astrophysics LCOGT/KITP 2008 February

More information

Measuring the Acceleration of the Cosmic Expansion Using Supernovae

Measuring the Acceleration of the Cosmic Expansion Using Supernovae Measuring the Acceleration of the Cosmic Expansion Using Supernovae Saul Perlmutter University of California, Berkeley Lawrence Berkeley National Laboratory Nobel Lecture Stockholm December 2011 Abel 370:

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

A new cosmic coincidence in conjunction with the cosmic expansion.

A new cosmic coincidence in conjunction with the cosmic expansion. A new cosmic coincidence in conjunction with the cosmic expansion. Christian Nutto 1 1 tba Abstract The discovery of the cosmic acceleration (Perlmutter & Riess, 1999; Perlmutter et al., 1999; Riess et

More information

2 Supernovae as a simple, direct cosmological measurement tool

2 Supernovae as a simple, direct cosmological measurement tool Supernovae, Dark Energy, and the Accelerating Universe: The Saul Perlmutter Supernova Cosmology Project Lawrence Berkeley National Laboratory Berkeley, CA 94720 1 Introduction I was asked to present the

More information

The Direct Contradiction Between Two Popular Hypotheses -- Cosmic Acceleration / Quintessence and Dark Matter, and Its Implications.

The Direct Contradiction Between Two Popular Hypotheses -- Cosmic Acceleration / Quintessence and Dark Matter, and Its Implications. The Direct Contradiction Between Two Popular Hypotheses -- Cosmic Acceleration / Quintessence and Dark Matter, and Its Implications Roger Ellman Abstract Recent distance determinations to Type Ia supernovae

More information

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden

Outline. Cosmological parameters II. Deceleration parameter I. A few others. Covers chapter 6 in Ryden Outline Covers chapter 6 in Ryden Cosmological parameters I The most important ones in this course: M : Matter R : Radiation or DE : Cosmological constant or dark energy tot (or just ): Sum of the other

More information

Short introduction to the accelerating Universe

Short introduction to the accelerating Universe SEMINAR Short introduction to the accelerating Universe Gašper Kukec Mezek Our expanding Universe Albert Einstein general relativity (1917): Our expanding Universe Curvature = Energy Our expanding Universe

More information

The Observable Universe: Redshift, Distances and the Hubble-Law. Max Camenzind Sept 2010

The Observable Universe: Redshift, Distances and the Hubble-Law. Max Camenzind Sept 2010 The Observable Universe: Redshift, Distances and the Hubble-Law Max Camenzind Bremen @ Sept 2010 Key Facts Universe 1. The Universe is expanding and presently even accelerating. Hubble Expansion: Space

More information

Supernovae explosions and the Accelerating Universe. Bodo Ziegler

Supernovae explosions and the Accelerating Universe. Bodo Ziegler Nobel Prize for Physics 2011 Supernovae explosions and the Accelerating Universe Institute for Astronomy University of Vienna Since 09/2010: ouniprof University of Vienna 12/2008-08/10: Staff member European

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

Lecture 7:Our Universe

Lecture 7:Our Universe Lecture 7:Our Universe 1. Traditional Cosmological tests Theta-z Galaxy counts Tolman Surface Brightness test 2. Modern tests HST Key Project (H o ) Nucleosynthesis (Ω b ) BBN+Clusters (Ω M ) SN1a (Ω M

More information

Cosmology: The History of the Universe

Cosmology: The History of the Universe Cosmology: The History of the Universe The Universe originated in an explosion called the Big Bang. Everything started out 13.7 billion years ago with zero size and infinite temperature. Since then, it

More information

arxiv: v2 [astro-ph.sr] 17 Sep 2018

arxiv: v2 [astro-ph.sr] 17 Sep 2018 Light Curve for Type Ia Supernova Candidate AT 2018we arxiv:1809.04479v2 [astro-ph.sr] 17 Sep 2018 T. Willamo [1], J. Ala-Könni [1], J. Arvo [2], I. Pippa [1], T. Salo [1] September 18, 2018 [1] Department

More information

Supernova cosmology. The quest to measure the equation of state of dark energy. Bruno Leibundgut European Southern Observatory

Supernova cosmology. The quest to measure the equation of state of dark energy. Bruno Leibundgut European Southern Observatory Supernova cosmology The quest to measure the equation of state of dark energy Bruno Leibundgut European Southern Observatory Outline Cosmological background Supernovae One-stop shopping for the Hubble

More information

Cosmology and particle physics

Cosmology and particle physics Cosmology and particle physics Lecture notes Timm Wrase Lecture 3 Our universe (and its fate) In this lecture we discuss the observed values for the different forms of energy and matter in our universe.

More information

Observational cosmology: the RENOIR team. Master 2 session

Observational cosmology: the RENOIR team. Master 2 session Observational cosmology: the RENOIR team Master 2 session 2014-2015 Observational cosmology: the RENOIR team Outline A brief history of cosmology Introduction to cosmological probes and current projects

More information

Physics 24: The Big Bang, Week 3: Hubble s Law David Schlegel, LBNL

Physics 24: The Big Bang, Week 3: Hubble s Law David Schlegel, LBNL Physics 24: The Big Bang, Week 3: Hubble s Law David Schlegel, LBNL 1905: Albert Einstein s theory of special relativity 1915: Albert Einstein s theory of general relativity 1920: Harlow Shapley & Heber

More information

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Homework. Set 8now. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Review for Final. In class on Thursday. Course Evaluation. https://rateyourclass.msu.edu /

More information

Electronic class reviews now available.

Electronic class reviews now available. Friday, May 1, 2015 Electronic class reviews now available. Please respond. We find the feedback very valuable. Fifth exam and sky watch, FRIDAY, May 8. Reading for Exam 5: Chapter 9 Sections 9.6.1, 9.6.2,

More information

A Blunder Undone. Fundamentals of Supernova Cosmology. Robert P. Kirshner Harvard-Smithsonian Center for Astrophysics. Robert P.

A Blunder Undone. Fundamentals of Supernova Cosmology. Robert P. Kirshner Harvard-Smithsonian Center for Astrophysics. Robert P. A Blunder Undone Fundamentals of Supernova Cosmology Robert P. Kirshner Harvard-Smithsonian Center for Astrophysics Robert P. Kirshner Harvard-Smithsonian Center for Astrophysics Axel Mellinger The Milky

More information

The Hunt for Dark Energy

The Hunt for Dark Energy The Hunt for Dark Energy Peter Garnavich University of Notre Dame as imagination bodies forth astronomer s The forms of things unknown, the poet's pen Turns them to shapes and gives to airy nothing A local

More information

Cosmology Dark Energy Models ASTR 2120 Sarazin

Cosmology Dark Energy Models ASTR 2120 Sarazin Cosmology Dark Energy Models ASTR 2120 Sarazin Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing) Final Exam Thursday, May 2,

More information

What do we really know about Dark Energy?

What do we really know about Dark Energy? What do we really know about Dark Energy? Ruth Durrer Département de Physique Théorique & Center of Astroparticle Physics (CAP) ESTEC, February 3, 2012 Ruth Durrer (Université de Genève ) Dark Energy ESTEC

More information

Dark Energy and the Accelerating Universe

Dark Energy and the Accelerating Universe Dark Energy and the Accelerating Universe Dragan Huterer Department of Physics University of Michigan The universe today presents us with a grand puzzle: What is 95% of it made of? Shockingly, we still

More information

Stages of a Big Project ***

Stages of a Big Project *** Stages of a Big Project *** The Five stages of SDSS: 1. Denial 2. Anger 3. Bargaining 4. Depression 5. Acceptance *** With apologies to Elizabeth Kubler Ross The Carnegie Supernovae Project Wendy Freedman

More information

Lecture 9. Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae. Gravitational lensing Sunyaev-Zeldovich effect

Lecture 9. Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae. Gravitational lensing Sunyaev-Zeldovich effect Lecture 9 H 0 from the Hubble diagram Basics Measuring distances Parallax Cepheid variables Type Ia Super Novae H 0 from other methods Gravitational lensing Sunyaev-Zeldovich effect H 0 from the Hubble

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Cosmology at a Crossroads: Tension With the Hubble Constant

Cosmology at a Crossroads: Tension With the Hubble Constant Cosmology at a Crossroads: Tension With the Hubble Constant Wendy L. Freedman We are at an interesting juncture in cosmology. With new methods and technology, the accuracy in measurement of the Hubble

More information

Dark Matter & Dark Energy. Astronomy 1101

Dark Matter & Dark Energy. Astronomy 1101 Dark Matter & Dark Energy Astronomy 1101 Key Ideas: Dark Matter Matter we cannot see directly with light Detected only by its gravity (possible future direct detection in the lab) Most of the matter in

More information

Astro Assignment 1 on course web page (due 15 Feb) Instructors: Jim Cordes & Shami Chatterjee

Astro Assignment 1 on course web page (due 15 Feb) Instructors: Jim Cordes & Shami Chatterjee Astro 2299 The Search for Life in the Universe Lecture 4 This time: Redshifts and the Hubble Law Hubble law and the expanding universe The cosmic microwave background (CMB) The elements and the periodic

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

Ta-Pei Cheng PCNY 9/16/2011

Ta-Pei Cheng PCNY 9/16/2011 PCNY 9/16/2011 Ta-Pei Cheng For a more quantitative discussion, see Relativity, Gravitation & Cosmology: A Basic Introduction (Oxford Univ Press) 2 nd ed. (2010) dark matter & dark energy Astronomical

More information

arxiv:astro-ph/ v1 16 Dec 1997

arxiv:astro-ph/ v1 16 Dec 1997 Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications arxiv:astro-ph/9712212v1 16 Dec 1997 S. Perlmutter 1,2, G. Aldering 1, M. Della Valle 3, S. Deustua

More information

THE ACCELERATING UNIVERSE. A.Rahman Mohtasebzadeh (9/21/2012)

THE ACCELERATING UNIVERSE. A.Rahman Mohtasebzadeh (9/21/2012) 1 THE ACCELERATING UNIVERSE A.Rahman Mohtasebzadeh (9/21/2012) 2 Content Cosmology through ages Necessary Concepts Nobel Prize in Physics (2011) Conclusion 3 Twinkle twinkle little star, how I wonder where

More information

The State of the Universe

The State of the Universe The State of the Universe Harry Ringermacher, PhD General Electric Research Center Adj. Prof. of Physics, U. of S. Mississippi State of the Universe Universe is still going strong! - At least 100,000,000,000

More information

MODERN COSMOLOGY LECTURE FYTN08

MODERN COSMOLOGY LECTURE FYTN08 1/43 MODERN COSMOLOGY LECTURE Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Lecture Updated 2015 2/43 3/43 1 2 Some problems with a simple expanding universe 3 4 5 6 7 8 9 Credit many

More information

Cosmology. Thornton and Rex, Ch. 16

Cosmology. Thornton and Rex, Ch. 16 Cosmology Thornton and Rex, Ch. 16 Expansion of the Universe 1923 - Edwin Hubble resolved Andromeda Nebula into separate stars. 1929 - Hubble compared radial velocity versus distance for 18 nearest galaxies.

More information

Supernovae Observations of the Accelerating Universe. K Twedt Department of Physics, University of Maryland, College Park, MD, 20740, USA

Supernovae Observations of the Accelerating Universe. K Twedt Department of Physics, University of Maryland, College Park, MD, 20740, USA Supernovae Observations of the Accelerating Universe K Twedt Department of Physics, University of Maryland, College Park, MD, 20740, USA Over the past three decades, supernovae observations have been the

More information

Supernovae Reveal An Accelerating Universe (A Science Adventure Story)

Supernovae Reveal An Accelerating Universe (A Science Adventure Story) Johns Hopkins University Space Telescope Science Institute High-Z, Higher-Z Supernova Teams Supernovae Reveal An Accelerating Universe (A Science Adventure Story) If the Lord Almighty had consulted me

More information

Friday, April 28, 2017

Friday, April 28, 2017 Friday, April 28, 2017 Fifth exam and sky watch, FRIDAY, May 5. Lectures end of 30 to 38. Review Sheet posted today Reading for Exam 5: Chapter 9 Sections 9.6.1, 9.6.2, 9.7; Chapter 10 - Sections 10.1-10.4,

More information

Electronic Class Evaluation now available. Please do this!

Electronic Class Evaluation now available. Please do this! Friday, April 29, 2016 Fifth exam and sky watch, FRIDAY, May 6. Review Th 4:30 May have Review Sheet today Reading for Exam 5: Chapter 9 Sections 9.6.1, 9.6.2, 9.7, 9.8; Chapter 10 - Sections 10.1-10.4,

More information

A. KIM, M. KIM, J. LEE, R. PAIN 2, C. PENNYPACKER, S. PERLMUTTER AND B. BOYLE, P. BUNCLARK, D. CARTER, K. GLAZEBROOK 3 AND

A. KIM, M. KIM, J. LEE, R. PAIN 2, C. PENNYPACKER, S. PERLMUTTER AND B. BOYLE, P. BUNCLARK, D. CARTER, K. GLAZEBROOK 3 AND OBSERVATION OF COSMOLOGICAL TIME DILATION USING TYPE IA SUPERNOVAE AS CLOCKS The Supernova Cosmology Project : III G.GOLDHABER 1, S. DEUSTUA, S. GABI, D. GROOM, I. HOOK, A. KIM, M. KIM, J. LEE, R. PAIN

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

Structure in the CMB

Structure in the CMB Cosmic Microwave Background Anisotropies = structure in the CMB Structure in the CMB Boomerang balloon flight. Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

More information

Part 3: The Dark Energy

Part 3: The Dark Energy Part 3: The Dark Energy What is the fate of the Universe? What is the fate of the Universe? Copyright 2004 Pearson Education, published as Addison Weasley. 1 Fate of the Universe can be determined from

More information

To Lambda or not to Lambda?

To Lambda or not to Lambda? To Lambda or not to Lambda? Supratik Pal Indian Statistical Institute Kolkata October 17, 2015 Conclusion We don t know :) Partly based on my works with Dhiraj Hazra, Subha Majumdar, Sudhakar Panda, Anjan

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Set 5: Expansion of the Universe

Set 5: Expansion of the Universe Set 5: Expansion of the Universe Cosmology Study of the origin, contents and evolution of the universe as a whole Expansion rate and history Space-time geometry Energy density composition Origin of structure

More information

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh The Tools of Cosmology Andrew Zentner The University of Pittsburgh 1 Part Two: The Contemporary Universe 2 Contents Review of Part One The Pillars of Modern Cosmology Primordial Synthesis of Light Nuclei

More information

Set 1: Expansion of the Universe

Set 1: Expansion of the Universe Set 1: Expansion of the Universe Syllabus Course text book: Ryden, Introduction to Cosmology, 2nd edition Olber s paradox, expansion of the universe: Ch 2 Cosmic geometry, expansion rate, acceleration:

More information

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL. Laser Interferometer Space Antenna LISA

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL.  Laser Interferometer Space Antenna LISA : Probing the Universe with Gravitational Waves Tom Caltech/JPL Laser Interferometer Space Antenna http://lisa.nasa.gov Gravitational Wave Astronomy is Being Born LIGO, VIRGO, GEO, TAMA 4000m, 3000m, 2000m,

More information

Fundamental Physics through Astrophysics

Fundamental Physics through Astrophysics Fundamental Physics through Astrophysics Christopher Stubbs Department of Physics Department of Astronomy Harvard University cstubbs@fas.harvard.edu 1 Astrophysical Evidence for New Physics!Matter-antimatter

More information

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes. Distances to galaxies Cepheids used by Hubble, 1924 to show that spiral nebulae like M31 were further from the Sun than any part of the Milky Way, therefore galaxies in their own right. Review of Cepheids

More information

Analyses of Type Ia Supernova Data in Cosmological Models with a Local Void

Analyses of Type Ia Supernova Data in Cosmological Models with a Local Void 929 Progress of Theoretical Physics, Vol. 16, No. 5, November 21 Analyses of Type Ia Supernova Data in Cosmological Models with a Local Void Kenji Tomita ) Yukawa Institute for Theoretical Physics, Kyoto

More information

arxiv:astro-ph/ v1 26 Oct 1998

arxiv:astro-ph/ v1 26 Oct 1998 Cosmological Insights from Supernovae Pilar Ruiz Lapuente 1 arxiv:astro-ph/9810423v1 26 Oct 1998 1. Introduction Department of Astronomy, University of Barcelona, Martí i Franqués 1, E 08028 Barcelona,

More information

6. Star Colors and the Hertzsprung-Russell Diagram

6. Star Colors and the Hertzsprung-Russell Diagram What we can learn about stars from their light: II Color In addition to its brightness, light in general is characterized by its color (actually its wavelength) 6. Star Colors and the Hertzsprung-Russell

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology Mysteries of D.V. Fursaev JINR, Dubna the Universe Problems of the Modern Cosmology plan of the lecture facts about our Universe mathematical model, Friedman universe consequences, the Big Bang recent

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Chapter 1 Introduction. Particle Astrophysics & Cosmology SS

Chapter 1 Introduction. Particle Astrophysics & Cosmology SS Chapter 1 Introduction Particle Astrophysics & Cosmology SS 2008 1 Ptolemäus (85 165 b.c.) Kopernicus (1473 1543) Kepler (1571 1630) Newton (1643 1727) Kant (1724 1630) Herschel (1738 1822) Einstein (1917)

More information

Dark Universe II. Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University

Dark Universe II. Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University Dark Universe II Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University Dark Universe Part II Is the universe "open" or "closed? How does dark energy change our view of the history

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 4 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it.

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it. The Next 2-3 Weeks [27.1] The Extragalactic Distance Scale. [27.2] The Expansion of the Universe. [29.1] Newtonian Cosmology [29.2] The Cosmic Microwave Background [17] General Relativity & Black Holes

More information

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence

CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence CH 14 MODERN COSMOLOGY The Study of Nature, origin and evolution of the universe Does the Universe have a center and an edge? What is the evidence that the Universe began with a Big Bang? How has the Universe

More information

Fire and Ice. The Fate of the Universe. Jon Thaler

Fire and Ice. The Fate of the Universe. Jon Thaler Fire and Ice The Fate of the Universe Jon Thaler Saturday Physics Honors Program Oct. 13, 2007 Some say the world will end in fire, Some say in ice. From what I've tasted of desire I hold with those who

More information

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies Big Galaxies Are Rare! Potato Chip Rule: More small things than large things Big, bright spirals are easy to see, but least common Dwarf ellipticals & irregulars are most common Faint, hard to see Mostly

More information

Myung Gyoon Lee with In Sung Jang

Myung Gyoon Lee with In Sung Jang Myung Gyoon Lee with In Sung Jang Department of Physics & Astronomy Seoul National University, Korea Cosmological Quests for the Next Decade, Apr 16-18, 2014, KASI, Korea 1 Past: Two number cosmology A

More information

Cosmic Distance Determinations

Cosmic Distance Determinations Cosmic Distance Determinations Radar (works for inner solar system) Parallax D(pc) = 1 p(arcsec) GAIA satellite (2013) 20 micro-arcsec resolution! Thus D < 10 kpc Beyond Parallax: Standard Candles Use

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

Lecture #25: Plan. Cosmology. The early Universe (cont d) The fate of our Universe The Great Unanswered Questions

Lecture #25: Plan. Cosmology. The early Universe (cont d) The fate of our Universe The Great Unanswered Questions Lecture #25: Plan Cosmology The early Universe (cont d) The fate of our Universe The Great Unanswered Questions Announcements Course evaluations: CourseEvalUM.umd.edu Review sheet #3 was emailed to you

More information

Lecture 22: The expanding Universe. Astronomy 111 Wednesday November 15, 2017

Lecture 22: The expanding Universe. Astronomy 111 Wednesday November 15, 2017 Lecture 22: The expanding Universe Astronomy 111 Wednesday November 15, 2017 Reminders Online homework #10 due Monday at 3pm Then one week off from homeworks Homework #11 is the last one The nature of

More information

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2 Physics 661 Particle Physics Phenomenology October 2, 2003 Evidence for theory: Hot Big Bang Model Present expansion of the Universe Existence of cosmic microwave background radiation Relative abundance

More information

BASICS OF COSMOLOGY Astro 2299

BASICS OF COSMOLOGY Astro 2299 BASICS OF COSMOLOGY Astro 2299 We live in a ΛCDM universe that began as a hot big bang (BB) and has flat geometry. It will expand forever. Its properties (laws of physics, fundamental constants) allow

More information

6. Star Colors and the Hertzsprung-Russell Diagram

6. Star Colors and the Hertzsprung-Russell Diagram 6. Star Colors and the Hertzsprung-Russell Diagram http://apod.nasa.gov/apod/ Supernovae Type Ia in M82 January 22, 2014 Still rising may go to m = 8 (or 10?) What we can learn about stars from their light:

More information

6. Star Colors and the Hertzsprung-Russell Diagram.

6. Star Colors and the Hertzsprung-Russell Diagram. 6. Star Colors and the Hertzsprung-Russell Diagram http://apod.nasa.gov/apod/ Supernovae Type Ia in M82 January 22, 2014 Still rising may go to m = 8 (or 10?) What we can learn about stars from their light:

More information

Dark Universe II. The shape of the Universe. The fate of the Universe. Old view: Density of the Universe determines its destiny

Dark Universe II. The shape of the Universe. The fate of the Universe. Old view: Density of the Universe determines its destiny Dark Universe II Prof. Lynn Cominsky Dept. of Physics and Astronomy Sonoma State University Modifications by H. Geller November 2007 11/27/2007 Prof. Lynn Cominsky 2 Dark Energy and the Shape of the Universe

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Ned Wright's Cosmology Tutorial

Ned Wright's Cosmology Tutorial Sunday, September 5, 1999 Ned Wright's Cosmology Tutorial - Part 1 Page: 1 Ned Wright's Cosmology Tutorial Part 1: Observations of Global Properties Part 2: Homogeneity and Isotropy; Many Distances; Scale

More information

Astroparticle physics the History of the Universe

Astroparticle physics the History of the Universe Astroparticle physics the History of the Universe Manfred Jeitler and Wolfgang Waltenberger Institute of High Energy Physics, Vienna TU Vienna, CERN, Geneva Wintersemester 2016 / 2017 1 The History of

More information

Zero-energy space cancels the need for dark energy Tuomo Suntola

Zero-energy space cancels the need for dark energy Tuomo Suntola Short notes on Zero-energy space cancels the need for dark energy Tuomo Suntola, Faculty of Science of Eötvös University, Budapest 7 9.9.2007 Zero-energy space cancels the need for dark energy Tuomo Suntola,

More information

arxiv:astro-ph/ v2 25 Jan 1997

arxiv:astro-ph/ v2 25 Jan 1997 Measurements of the Cosmological Parameters Ω and Λ from the First 7 Supernovae at z 0.35 arxiv:astro-ph/9608192v2 25 Jan 1997 S. Perlmutter, 1,2 S. Gabi, 1,3 G. Goldhaber, 1,2 A. Goobar, 1,2,4 D. E. Groom,

More information

Bahram Mobasher. University of California,

Bahram Mobasher. University of California, Acceleration of the Universe Bahram Mobasher University of California, Riverside Beginning of the Universe (Big Bang) Expansion of the Universe Present state of the Universe Future of fth the Universe

More information

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology

Ay1 Lecture 17. The Expanding Universe Introduction to Cosmology Ay1 Lecture 17 The Expanding Universe Introduction to Cosmology 17.1 The Expanding Universe General Relativity (1915) A fundamental change in viewing the physical space and time, and matter/energy Postulates

More information

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions

Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight. Guiding Questions Cosmology: The Origin and Evolution of the Universe Chapter Twenty-Eight Guiding Questions 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands,

More information

Vasiliki A. Mitsou. IFIC Valencia TAUP International Conference on Topics in Astroparticle and Underground Physics

Vasiliki A. Mitsou. IFIC Valencia TAUP International Conference on Topics in Astroparticle and Underground Physics Vasiliki A. Mitsou IFIC Valencia TAUP 2009 International Conference on Topics in Astroparticle and Underground Physics Rome, Italy, 1-5 July 2009 Dark energy models CDM Super-horizon CDM (SHCDM) [Kolb,

More information

Type II Supernovae as Standardized Candles

Type II Supernovae as Standardized Candles Type II Supernovae as Standardized Candles Mario Hamuy 1 2 Steward Observatory, The University of Arizona, Tucson, AZ 85721 Philip A. Pinto Steward Observatory, The University of Arizona, Tucson, AZ 85721

More information

A taste of cosmology. Licia Verde. Lecture 3. Cosmic Acceleration and outlook for the Future

A taste of cosmology. Licia Verde. Lecture 3. Cosmic Acceleration and outlook for the Future A taste of cosmology Licia Verde Lecture 3 Cosmic Acceleration and outlook for the Future Successes of the Big Bang model GR+cosmological principle Hubble s law CMB Abundance of light elements .. And problems

More information

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies)

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies) ASTR 1040 Accel Astro: Stars & Galaxies Today s s `Cosmological Events Look at models for our universe,, and what prompted ideas about big-bang bang beginnings Cosmic Microwave Background Simulation: Large-scale

More information

Understanding the Properties of Dark Energy in the Universe p.1/37

Understanding the Properties of Dark Energy in the Universe p.1/37 Understanding the Properties of Dark Energy in the Universe Dragan Huterer Case Western Reserve University Understanding the Properties of Dark Energy in the Universe p.1/37 The Cosmic Food Pyramid?? Radiation

More information

Cosmology with Peculiar Velocity Surveys

Cosmology with Peculiar Velocity Surveys Cosmology with Peculiar Velocity Surveys Simulations Fest, Sydney 2011 Morag I Scrimgeour Supervisors: Lister Staveley-Smith, Tamara Davis, Peter Quinn Collaborators: Chris Blake, Brian Schmidt What are

More information

Modeling the Universe A Summary

Modeling the Universe A Summary Modeling the Universe A Summary Questions to Consider 1. What does the darkness of the night sky tell us about the nature of the universe? 2. As the universe expands, what, if anything, is it expanding

More information

Exploring dark energy in the universe through baryon acoustic oscillation

Exploring dark energy in the universe through baryon acoustic oscillation Exploring dark energy in the universe through baryon acoustic oscillation WMAP CMB power spectrum SDSS galaxy correlation Yasushi Suto Department of Physics, University of Tokyo KEK Annual Theory Meeting

More information

SALT: a Spectral Adaptive Light curve Template for Type Ia Supernovae

SALT: a Spectral Adaptive Light curve Template for Type Ia Supernovae 22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 3, 2004 SALT: a Spectral Adaptive Light curve Template for Type Ia Supernovae J. Guy, P. Astier, S. Nobili, N. Regnault, and

More information