Transmission measurements at the KATRIN main spectrometer

Size: px
Start display at page:

Download "Transmission measurements at the KATRIN main spectrometer"

Transcription

1 Transmission measurements at the KATRIN main spectrometer Stefan Groh GK-Workshop Bad Liebenzell, October 2013 Institute for Experimental nuclear Physics (IEKP) KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

2 Outline How does KATRIN work Commissioning of spectrometer and detector Alignment of egun and Detector Transmission function measurement Radial potential scan Transmission function at high rate 2

3 Outline How does KATRIN work Commissioning of spectrometer and detector Alignment of egun and Detector Transmission function measurement Radial potential scan Transmission function at high rate Model independent measurement of the neutrino mass with a sensitivity of 200 mev ( 90% C.L.) 3

4 Tritium beta decay Neutrino mass takes away energy that changes shape of electron spectrum Precise spectroscopy of beta decay electrons necessary 4

5 potential in kv Experimental Setup source transport spectrometers + detector How to measure the energy of the electrons?

6 Why the big spectrometer? Source: isotropic e - emission Cyclotron motion along field line Fixed polar angle between p and B Electric field only filters long. comp. E E kin = E + E Problem: How to filter the electrons according to their kinetic energy? µ is conserved in an adiabatic motion µ = E B Solution: Decrease the polar angle of the electrons at the analyzing point reduce magnetic field at the analyzing point E E 6

7 The MAC-E-Filter principle 7

8 trans. prob. The energy resolution e e ϴ = 0 e ϴ = 60 1 ret. potential: V electron energy: ev E start q U 0 8

9 trans. prob. The energy resolution e e ϴ = 0 e ϴ = 60 1 ret. potential: V electron energy: ev E start q U 0 9

10 trans. prob. The energy resolution e e ϴ = 0 e ϴ = 60 1 ret. potential: V electron energy: ev E start q U 0 10

11 The transmission function 11

12 Integral spectrum E 0 N qu dn E de 0, mv 2 T E, qu de 0 Integral spectrum is convolution of differential spectrum with transmission function 12

13 Integral spectrum Precise knowledge and detailed understanding of the transmission function is essential for a successful neutrino mass measurement 13

14 Outline How does KATRIN work Commissioning of spectrometer and detector Alignment of egun and Detector Transmission function measurement Radial potential scan Transmission function at high rate Measurement phase finished last week 14

15 Commissioning of Spectrometer and Detector Main Spectrometer angular selective E-Gun Detector Section Main goals: Test of Hardware and Slowcontrol components Measurement and Understanding of background Understanding of transmission properties Verification of simulations software and models 15

16 Focal plane detector system Si-PIN Diode with 148 Pixel See talk by J. Schwarz, later today 16

17 Electron Gun Electron Gun: Quasi monoenergetic Pulsed for ToF measurements Movable to cover full detector flux 17

18 Outline How does KATRIN work Commissioning of spectrometer and detector Alignment of egun and Detector Transmission function measurement Radial potential scan Transmission function at high rate 18

19 Flux tube - egun 19

20 Flux tube main spectrometer egun detector 20

21 Flux tube - detector Detailed understanding of field lines is very important 21

22 egun-detector alignment Misalignment of egun and detector needs to be taken into account in the analysis 22

23 Different magnetic coil setup 23

24 Different magnetic coil setup 24

25 Comparison with simulation Measurement Simulation 25

26 Comparison with simulation Field lines for different settings can be very good reproduced by simulations plots by N. Stallkamp 26

27 Outline How does KATRIN work Commissioning of spectrometer and detector Alignment of egun and Detector Transmission function measurement Radial potential scan Transmission function at high rate 27

28 Transmission function Spectrometer works as MAC-E-Filter commissioning successful 28

29 Outline How does KATRIN work Commissioning of spectrometer and detector Alignment of egun and Detector Transmission function measurement Radial potential scan Transmission function at high rate 29

30 Measure TF at different radii 30

31 Radial transmission scan 31

32 Radial transmission scan 32

33 Radial transmission scan 33

34 Radial transmission scan 34

35 Radial potential measurement Preliminary 35

36 Outline How does KATRIN work Commissioning of spectrometer and detector Alignment of egun and Detector Transmission function measurement Radial potential scan Transmission function at high rate 36

37 Detector efficiency at high rates Efficiency of detector depends on rate and time profile 37

38 Transit flight times at different transmission points monte carlo Δt 40 µs 38

39 Transit flight times at different transmission points monte carlo Δt 20 µs 39

40 Transit flight times at different transmission points monte carlo Δt 5 µs 40

41 Influence on transmission function monte carlo Transmission functions can only be measured at low rate (<5 kcps) 41

42 TF Measurement at high rate Predicted high rate effect could also be measured Upgrade of the detector electronics is already planned 42

43 Conclusion KATRIN uses the MAC-E-Filter technique to measure an integrated electron spectrum Detailed knowledge of transmission function is important for neutrino mass analysis Successful commissioning of the spectrometer and detector section Electron gun can be used for transmission function measurements and potential mapping Predicted high rate -effects of the transmission function could be confirmed by measurements 43

44 Open questions? zzzzzz What tool does he use to track particles in that low energy regime? What's for lunch today? 44

45 BACKUP SLIDES 45

46 Kassiopeia KATRINs main particle tracking framework Modern C++ design Field solvers for electric and magnetic fields Particle generators Multiple tracking routines Multiple Interaction routines Visualization Easy configurable via xml files Interface to measurement parameters Full modular Also used by other experiments 46

47 KEMField Standard Field Solver for Kassiopeia (E and B) Very detailed model of the main spectrometer > 4 Million Elements Employs MPI and OpenCL T.J. Corona 47

48 Main spectrometer 48

49 Detector 49

50 Detector 50

51 MORE BACKUP SLIDES 51

52 Lunch? Chicken with pepper and rice and red fruit jelly for desert 52

The KATRIN experiment

The KATRIN experiment The KATRIN experiment Status and SDS comissioning Philipp Chung-On Ranitzsch for the KATRIN collaboration Insitute for Nuclear Physics, Westfälische Wilhelms-Universität, Münster The KATRIN experiment

More information

Commissioning the KATRIN Experiment with Krypton-83m

Commissioning the KATRIN Experiment with Krypton-83m Commissioning the KATRIN Experiment with Krypton- Hendrik Seitz-Moskaliuk, KIT-ETP International School of Nuclear Physics, 39th course, Erice, 16.09.-24.09.2017 KIT The Research University in the Helmholtz

More information

Direct Neutrino Mass Measurement with KATRIN. Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration

Direct Neutrino Mass Measurement with KATRIN. Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration Direct Neutrino Mass Measurement with KATRIN Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration DBD16, Osaka, Japan, 8 Nov 2016 Neutrino Mass Measurement with Single Beta Decay 2

More information

The Windowless Gaseous Tritium Source of KATRIN

The Windowless Gaseous Tritium Source of KATRIN The Windowless Gaseous Tritium Source of KATRIN W. Käfer, for the KATRIN Collaboration Karlsruhe Institute of Technology International School for Nuclear Physics: Neutrinos in Astro- Particle- and Nuclear

More information

An angular defined pulsed UV LED photoelectron source for KATRIN

An angular defined pulsed UV LED photoelectron source for KATRIN An angular defined pulsed UV LED photoelectron source for KATRIN Karen Hugenberg1, Stephan Bauer1, H. Baumeister1, Marcus Beck1, Jochen Bonn2, Hendrik Hein1, Hans Werner Ortjohann1, Stephan Rosendahl1,

More information

KATRIN, an experiment for determination of the -mass: status and outlook DSU2012

KATRIN, an experiment for determination of the -mass: status and outlook DSU2012 KATRIN, an experiment for determination of the -mass: status and outlook DSU2012 Michael Sturm for the KATRIN collaboration Karlsruhe Institute of Technology Motivation of m measurement KATRIN experiment

More information

Simulation of rarefied gasflow in the KATRIN tritium source

Simulation of rarefied gasflow in the KATRIN tritium source Simulation of rarefied gasflow in the KATRIN tritium source Laura Kuckert COMSOL Conference Rotterdam 24.10.2013 Karlsruhe Institute of Technology (), Institute for Nuklear Physics (IK) University of the

More information

Lecture 18. Neutrinos. Part IV Neutrino mass and Sterile Neutrinos

Lecture 18. Neutrinos. Part IV Neutrino mass and Sterile Neutrinos Neutrinos Part IV Neutrino mass and Sterile Neutrinos Measuring the Neutrino Mass Recall the beta spectrum You solved for massless neutrinos (in exam I) But neutrino mass carries away some energy Reduces

More information

Status and Perspectives of the KATRIN Experiment

Status and Perspectives of the KATRIN Experiment Status and Perspectives of the KATRIN Experiment for the KATRIN collaboration KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Outline Why are

More information

measurement and reduc,on of low- level radon background in the KATRIN experiment Florian M. Fränkle for the KATRIN Collabora9on

measurement and reduc,on of low- level radon background in the KATRIN experiment Florian M. Fränkle for the KATRIN Collabora9on measurement and reduc,on of low- level radon background in the KATRIN experiment Florian M. Fränkle for the KATRIN Collabora9on outline the KATRIN experiment pre-spectrometer background measurement radon

More information

KATRIN: Directly Measuring the Neutrino Mass

KATRIN: Directly Measuring the Neutrino Mass : Directly Measuring the Neutrino Mass Massachusetts Institute of Technology E-mail: nsoblath@mit.edu The Karlsruhe Tritium Neutrino (KATRIN) experiment aims to measure the neutrino mass using tritium

More information

The KATRIN experiment: calibration & monitoring

The KATRIN experiment: calibration & monitoring The KATRIN experiment: calibration & monitoring NPI Rez near Prague content KATRIN overview < Am/Co measurements at Mainz < first Rb/Kr measurements at Mainz < multiple background events < the KATRIN experiment

More information

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment

Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment Plasma spectroscopy when there is magnetic reconnection associated with Rayleigh-Taylor instability in the Caltech spheromak jet experiment KB Chai Korea Atomic Energy Research Institute/Caltech Paul M.

More information

Reines and Cowan Experiement

Reines and Cowan Experiement Reines and Cowan Experiement Reines and Cowan experiment Dis5nc5ve signature for the neutrino reac5on - the gamma pair in coincidence plus another gamma within 5 μs. "Detec5on of the Free Neutrino: A Confirma5on",

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

(Total for Question = 5 marks) PhysicsAndMathsTutor.com

(Total for Question = 5 marks) PhysicsAndMathsTutor.com 1 Rutherford designed an experiment to see what happened when alpha particles were directed at a piece of gold foil. Summarise the observations and state the conclusions Rutherford reached about the structure

More information

Cosmic Muons and the Cosmic Challenge. data taken with B 3.5Tesla, red lines are reconstructed chamber segments

Cosmic Muons and the Cosmic Challenge. data taken with B 3.5Tesla, red lines are reconstructed chamber segments Cosmic Muons and the Cosmic Challenge data taken with B 3.5Tesla, red lines are reconstructed chamber segments 0 Preamble Warning: Data analyzed in this talk are just a few days old, so all interpretations

More information

The Antineutrino Electron Angular Correlation Coefficient a in the Decay of the Free Neutron

The Antineutrino Electron Angular Correlation Coefficient a in the Decay of the Free Neutron The Antineutrino Electron Angular Correlation Coefficient a in the Decay of the Free Neutron Gertrud Konrad University of Mainz / Germany The aspect collaboration: Institut für Physik, Universität Mainz,

More information

arxiv: v1 [physics.ins-det] 13 Feb 2009

arxiv: v1 [physics.ins-det] 13 Feb 2009 arxiv:0902.2305v1 [physics.ins-det] 13 Feb 2009 A UV LED-based fast-pulsed photoelectron source for time-of-flight studies K. Valerius 1,, M. Beck 1, H. Arlinghaus 1, J. Bonn 2, V. M. Hannen 1, H. Hein

More information

n_tof EAR-1 Simulations Neutron fluence Spatial profile Time-to-energy

n_tof EAR-1 Simulations Neutron fluence Spatial profile Time-to-energy n_tof EAR-1 Simulations Neutron fluence Spatial profile Time-to-energy A. Tsinganis (CERN/NTUA), V. Vlachoudis (CERN), C. Guerrero (CERN) and others n_tof Annual Collaboration Meeting Lisbon, December

More information

First experiments with the polarized internal gas target at ANKE/COSY

First experiments with the polarized internal gas target at ANKE/COSY Mitglied der Helmholtz-Gemeinschaft First experiments with the polarized internal gas target at ANKE/COSY September 9, 2009 Maxim Mikirtychyants for the ANKE collaboration FZ Jülich / JCHP and PNPI (Gatchina)

More information

MDI and detector modeling

MDI and detector modeling MDI and detector modeling Nikolai Terentiev (Carnegie Mellon U./Fermilab) On behalf of N. Mokhov, S. Striganov (Fermilab), C. Gatto, A. Mazzacane, V. Di Benedetto (INFN/Fermilab/INFN Lecce and Università

More information

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer

Progress with the. MPIK / UW - PTMS in Heidelberg. Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer Progress with the MPIK / UW - PTMS in Heidelberg Max Planck Institute for Nuclear Physics / University of Washington Penning Trap Mass Spectrometer TCP 010, Saariselkä, April 1, 010 David Pinegar, MPI-K

More information

Requirements for the Final Phase of Project 8

Requirements for the Final Phase of Project 8 Requirements for the Final Phase of Project 8 DNP, Waikoloa, HI Kareem Kazkaz, for the Project 8 Collaboration 25 October 2018 Lawrence Livermore National Laboratory, LLNL-PRES-763158 The Talk! Phase IV

More information

IPE Institute for Data Processing and Electronics at KIT

IPE Institute for Data Processing and Electronics at KIT IPE Institute for Data Processing and Electronics at KIT Marc Weber Who are we? What do we do? What could we do for you? KIT University of the State of Baden-Wuerttemberg and National Laboratory of the

More information

Direct Neutrino Mass Measurements

Direct Neutrino Mass Measurements Direct Neutrino Mass Measurements KITP, 11/3/2014 Neutrino mass Upper bound from direct measurements Lower bound from oscillation experiments 2 Neutrino mass Cosmology model-dependent potential: Σm i =

More information

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden A. Klix1, A. Domula2, U. Fischer1, D. Gehre2 1 Karlsruhe

More information

arxiv: v1 [nucl-ex] 6 May 2011

arxiv: v1 [nucl-ex] 6 May 2011 Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment J. A. Formaggio and J. Barrett Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 039 (Dated:

More information

arxiv: v2 [physics.ins-det] 13 Jul 2012

arxiv: v2 [physics.ins-det] 13 Jul 2012 Stochastic Heating by ECR as a Novel Means of Background Reduction in the KATRIN Spectrometers arxiv:1205.3729v2 [physics.ins-det] 13 Jul 2012 1. Introduction S. Mertens 1, A. Beglarian 1, L. Bornschein

More information

5 th ASRC International Workshop, 14 th -16 th March 2012

5 th ASRC International Workshop, 14 th -16 th March 2012 Fission Fragment Fragment Spectroscopy with Large Arrays and STEFF A.G. Smith, J. Dare, A. Pollitt, E. Murray The University of Manchester W. Urban, T. Soldner ILL Grenoble I. Tsekhanovich, J. Marrantz

More information

Direct Measurements of the Neutrino Mass. Klaus Eitel Forschungszentrum Karlsruhe Institute for Nuclear Physics

Direct Measurements of the Neutrino Mass. Klaus Eitel Forschungszentrum Karlsruhe Institute for Nuclear Physics Direct Measurements of the Neutrino Mass Klaus Eitel Forschungszentrum Karlsruhe Institute for Nuclear Physics klaus.eitel@ik.fzk.de Direct Measurements of the Neutrino Mass neutrino masses in particle

More information

Detector Sensitivity

Detector Sensitivity Monte-Carlo Simulations on the Detector Sensitivity to Cosmic-Ray nduced Neutron Showers U. Schmidt AG Dubbers Physikalisches Institut Ruprecht-Karls-Universität Heidelberg COSMOS Workshop, 7th of May

More information

The Vacuum Case for KATRIN

The Vacuum Case for KATRIN The Vacuum Case for KATRIN Institute of Nuclear Physics, Forschungszentrum Karlsruhe,Germany, for the KATRIN Collaboration Lutz.Bornschein@ik.fzk.de The vacuum requirements of the KATRIN experiment have

More information

Past searches for kev neutrinos in beta-ray spectra

Past searches for kev neutrinos in beta-ray spectra Past searches for kev neutrinos in beta-ray spectra Otokar Dragoun Nuclear Physics Institute of the ASCR Rez near Prague dragoun@ujf.cas.cz supported by GAČR, P203/12/1896 The ν-dark 2015 Workshop TUM

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de EMMI Physics Days 2011, GSI Darmstadt Precision Penning Trap Experiments with Exotic Ions Klaus Blaum November 08, 2011 Outline Introduction and motivation Principle of Penning

More information

Spec Content Before Revision After 1st Revision After 2nd Revision

Spec Content Before Revision After 1st Revision After 2nd Revision Use the expression p = mv. Investigate and apply the principle of conservation of linear momentum to problems in one dimension. Investigate and relate net force to rate of change of momentum in situations

More information

Status of direct neutrino mass measurements and the KATRIN project

Status of direct neutrino mass measurements and the KATRIN project Status of direct neutrino mass measurements and the KATRIN project Kathrin Valerius for the KATRIN collaboration Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Germany E-mail: valerius@uni-muenster.de

More information

Activities of the Karlsruhe Center Elementary Particle and Astroparticle Physics (KCETA)

Activities of the Karlsruhe Center Elementary Particle and Astroparticle Physics (KCETA) Activities of the Karlsruhe Center Elementary Particle and Astroparticle Physics (KCETA) Marc Weber KIT The Research University in the Helmholtz Association www.kit.edu fields particles collisions 2 Tradition

More information

Investigation of ion capture in an Electron Beam Ion Trap charge-breeder for rare isotopes

Investigation of ion capture in an Electron Beam Ion Trap charge-breeder for rare isotopes Investigation of ion capture in an Electron Beam Ion Trap charge-breeder for rare isotopes Kritsada Kittimanapun ATD seminar August 26, 2014 Outline Electron beam ion source/trap principle EBIT charge

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 6-6 NUCLEAR PHYSICS IB Assessment Statements Topic 13.2, Nuclear Physics 13.2.1. Explain how the radii of nuclei may be estimated from

More information

Nab: a precise measurement of the a and b parameters in neutron decay

Nab: a precise measurement of the a and b parameters in neutron decay Nab: a precise measurement of the a and b parameters in neutron decay Dinko Počanić (for the Nab Collaboration) University of Virginia 7th Workshop on Ultracold and Cold Neutron Physics and Sources Skt.

More information

1.4 The Tools of the Trade!

1.4 The Tools of the Trade! 1.4 The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

Neutrino Properties. Markus Steidl (KIT), Gabriel Martinez (GSI), (Walter Winter, DESY)

Neutrino Properties. Markus Steidl (KIT), Gabriel Martinez (GSI), (Walter Winter, DESY) Neutrino Properties Markus Steidl (KIT), Gabriel Martinez (GSI), (Walter Winter, DESY) Testing neutrino masses at GeV scale: Theory vs. Experiments (Rasmus Rasmussen, DESY) properties with IceCube (Andrii

More information

arxiv: v1 [physics.comp-ph] 1 Dec 2016

arxiv: v1 [physics.comp-ph] 1 Dec 2016 arxiv:1612.00262v1 [physics.comp-ph] 1 Dec 2016 Kassiopeia: A Modern, Extensible C++ Particle Tracking Package Daniel Furse 1, Stefan Groh 2, Nikolaus Trost 3, Martin Babutzka 2, John P. Barrett 1, Jan

More information

Detecting Neutrinos Hamish Robertson, INT Summer School, Seattle 2009

Detecting Neutrinos Hamish Robertson, INT Summer School, Seattle 2009 Detecting Neutrinos Hamish Robertson, INT Summer School, Seattle 2009 A Brief History of Neutrinos 1930 Pauli s desperate remedy. 1938 Bethe & Critchfield explain the sun s power. 1956 Parity violation

More information

METHODOLOGY AND APPLICATION OF HIGH PERFORMANCE ELECTROSTATIC FIELD SIMULATION IN THE KATRIN EXPERIMENT. Thomas Corona

METHODOLOGY AND APPLICATION OF HIGH PERFORMANCE ELECTROSTATIC FIELD SIMULATION IN THE KATRIN EXPERIMENT. Thomas Corona METHODOLOGY AND APPLICATION OF HIGH PERFORMANCE ELECTROSTATIC FIELD SIMULATION IN THE KATRIN EXPERIMENT Thomas Corona A dissertation submitted to the faculty at the University of North Carolina at Chapel

More information

Progress of the interaction between e - and molecule in Fudan University

Progress of the interaction between e - and molecule in Fudan University Progress of the interaction between e - and molecule in Fudan University B. Wei, Z. Chen, X. Wang, R. Hutton, Y. Zou Fudan University, Shanghai The 2nd Research Coordination Meeting (RCM) of the CRP, 23-25

More information

Measuring Neutrino Mass

Measuring Neutrino Mass Measuring Neutrino Mass m n

More information

Tracking at the LAND/R B setup on 17

Tracking at the LAND/R B setup on 17 3 Tracking at the LAND/R B setup on 17 the example of Ne(γ,2p)15O R. Plag*, J. Marganiec 21. Januar 2011 Dedicated to the students of LAND/R3B Outline rp process and motivation coulomb dissociation as

More information

Modeling of Li-Ion-Batteries to Optimize the Results Gained by Neutron Imaging

Modeling of Li-Ion-Batteries to Optimize the Results Gained by Neutron Imaging Modeling of Li-Ion-Batteries to Optimize the Results Gained by Neutron Imaging M.J. Mühlbauer Dr. A. Senyshyn, Dr. O. Dolotko, Prof. H. Ehrenberg SFB 595 Electrical Fatigue in Functional Materials Contact:

More information

The E166 Experiment: Undulator-Based Production of Polarized Positrons

The E166 Experiment: Undulator-Based Production of Polarized Positrons The E166 Experiment: Undulator-Based Production of Polarized Positrons Hermann Kolanoski (Humboldt-Universität Berlin) for the E166 Collaboration ILC: - physics with polarised e + e - - undulator source

More information

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials*

Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* SLAC-PUB-70 Calculations of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials* J. C. Liu, K. R. Kase, X. S. Mao, W. R. Nelson, J. H. Kleck, and S. Johnson ) Stanford Linear

More information

arxiv: v1 [physics.ins-det] 31 Mar 2011

arxiv: v1 [physics.ins-det] 31 Mar 2011 Radon induced background processes in the KATRIN pre-spectrometer arxiv:1103.6238v1 [physics.ins-det] 31 Mar 2011 F. M. Fränkle 1 2 3, L. Bornschein 1, G. Drexlin 1, F. Glück 1 4, S. Görhardt 1, W. Käfer

More information

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs Timing and cross-talk properties of BURLE multi-channel MCP-PMTs, Peter Križan, Rok Pestotnik University of Maribor, University of Ljubljana and Jožef Stefan Institute Outline of the talk: Motivation:

More information

1.5. The Tools of the Trade!

1.5. The Tools of the Trade! 1.5. The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF Ion Energy Distributions in Pulsed Plasmas with Synchronous DC Bias: Effect of Noble Gas W. Zhu, H. Shin, V. M. Donnelly and D. J. Economou Plasma Processing Laboratory University of Houston Acknowledgements:

More information

Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR

Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR K. Suzuki 1, D. Steinschaden 1, S. Zimmermann 1 2, N. Kratochwil 1, L. Gruber 3, C. Schwarz 4, H. Orth 4, L. Schmitt 5, K. Gtzen 4,

More information

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 Armenian Journal of Physics, 2016, vol. 9, issue 4, pp. 315-323 Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 R. Avagyan, R. Avetisyan, V. Ivanyan*, I. Kerobyan A.I. Alikhanyan National

More information

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M.

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M. Spectrum Investigation of Scintillation and the Detection of Supernovae Relic Neutrinos January 18, 2006 Outline Spectrum 1 2 3 Spectrum 4 The Spectrum Spectrum about 50 kt of liquid scintillator, so:

More information

The Nature and Magnitude of Neutrino Mass

The Nature and Magnitude of Neutrino Mass The Nature and Magnitude of Neutrino Mass Kaushik Roy Stony Brook University September 14 2015 Outline What we know Our current knowledge regarding neutrino masses. What we do not know Open questions related

More information

Integrated measuring system for MEMS

Integrated measuring system for MEMS Integrated measuring system for MEMS Thermal characterization of gas flows under slip-flow regime Alice Vittoriosi May 16, 2011 I NSTITUTE FOR M ICRO P ROCESS E NGINEERING - T HERMAL P ROCESS E NGINEERING

More information

Horn R&D. S. Gilardoni. Speaker A. Fabich CERN AB

Horn R&D. S. Gilardoni. Speaker A. Fabich CERN AB Horn R&D S. Gilardoni Speaker A. Fabich CERN AB For the CERN Horn working group S. Gilardoni*, G. Grawer, G. Maire, J.-M. Maugain, S. Rangod, R. Wilfinger, F. Voelker * Dottore Program for 2004 New simulation

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

EXO experiment. Jesse Wodin EXO group Sept 13, DOE Site Visit: Sept 13-14,

EXO experiment. Jesse Wodin EXO group Sept 13, DOE Site Visit: Sept 13-14, EXO experiment Jesse Wodin EXO group Sept 13, 2010 DOE Site Visit: Sept 13-14, 2010 1 EXO program A phased program aimed at building an enriched xenon double beta decay experiment with a one or more tonne

More information

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar

EQUIPMENT Beta spectrometer, vacuum pump, Cs-137 source, Geiger-Muller (G-M) tube, scalar Modern Physics Laboratory Beta Spectroscopy Experiment In this experiment, electrons emitted as a result of the radioactive beta decay of Cs-137 are measured as a function of their momentum by deflecting

More information

SPIRAL-2 FOR NEUTRON PRODUCTION

SPIRAL-2 FOR NEUTRON PRODUCTION SPIRAL-2 FOR NEUTRON PRODUCTION X. Ledoux and the NFS collaboration Outline The SPIRAL-2 facility The Neutrons For Science Facility OUTLINE SPIRAL-2 The Neutrons For Science facility The SPIRAL-2 project

More information

Precision Penning Trap Experiments with Exotic Ions

Precision Penning Trap Experiments with Exotic Ions Klaus.blaum@mpi-hd.mpg.de Hirschegg 2012 Precision Penning Trap Experiments with Exotic Ions Klaus Blaum January 16, 2012 Outline Introduction and motivation Principle of Penning traps Setup and measurement

More information

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors Kate Scholberg, Duke University Chicago, April 2011 OUTLINE - Overview/physics motivation - Event reconstruction

More information

Hall A Compton Calorimeter G. B. Franklin Carnegie Mellon University

Hall A Compton Calorimeter G. B. Franklin Carnegie Mellon University Hall A Compton Calorimeter G. B. Franklin Carnegie Mellon University 1. Compton Scattering Polarimetry General Considerations Complications and Systematic Errors 2. CMU Integrating DAQ Content of Data

More information

Ultratrace analysis of radionuclides by AMS

Ultratrace analysis of radionuclides by AMS Ultratrace analysis of radionuclides by AMS Francesca Quinto Contact information: francesca.quinto@kit.edu Karlsruhe Institute of Technology, Please insert a figure in the master transparency. KIT University

More information

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum ECT* Trento The Lead Radius Precision measurements of nuclear ground state properties for nuclear structure studies Klaus Blaum 04.08.2009 Outline Introduction, history and methods Principle of laser spectroscopy

More information

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy W. Udo Schröder Departments of Chemistry & of Physics and Astronomy ANSEL Faculty Instructors ACS NuSci Acad Infrastructure 2 Prof. Frank Wolfs Prof. Udo Schrőder Research: Large Underground Xenon (LUX)

More information

arxiv: v1 [hep-ph] 22 Feb 2009

arxiv: v1 [hep-ph] 22 Feb 2009 Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor V.V. Sinev Institute for Nuclear Research RAS, Moscow (Dated: November 9, 2018) arxiv:0902.3781v1 [hep-ph]

More information

Development of an angular selective electron gun for the KATRIN main spectrometer

Development of an angular selective electron gun for the KATRIN main spectrometer Development of an angular selective electron gun for the KATRIN main spectrometer Daniel Winzen Diploma Thesis Institut für Kernphysik Mathematisch-Naturwissenschaftliche Fakultät Westfälische Wilhelms-Universität

More information

The First Results of K2K long-baseline Neutrino Oscillation Experiment

The First Results of K2K long-baseline Neutrino Oscillation Experiment The First Results of K2K long-baseline Neutrino Oscillation Experiment Taku Ishida, representing K2K collaboration arxiv:hep-ex/0008047v1 23 Aug 2000 Institute for Particle and Nuclear Studies(IPNS) High

More information

The CNGS neutrino beam

The CNGS neutrino beam 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06) 1-5 October 2006 Siena, Italy ν The CNGS neutrino beam G. Sirri INFN Bologna CNGS (CERN Neutrinos to Gran Sasso) The project

More information

First neutrino beam and cosmic tracks. GDR neutrino

First neutrino beam and cosmic tracks. GDR neutrino Magali Besnier T2K status tt of the experiment First neutrino beam and cosmic tracks GDR neutrino 28 04 09 T2K Tokai 2 Kamiokande Main goals : 1) Measurement of 13 mixing angle studying the e oscillation

More information

Figure 1. Decay Scheme for 60Co

Figure 1. Decay Scheme for 60Co Department of Physics The University of Hong Kong PHYS3851 Atomic and Nuclear Physics PHYS3851- Laboratory Manual A. AIMS 1. To learn the coincidence technique to study the gamma decay of 60 Co by using

More information

THE SUPER SEPARATOR SPECTROMETER S 3

THE SUPER SEPARATOR SPECTROMETER S 3 THE SUPER SEPARATOR SPECTROMETER S 3 Hervé Savajols (GANIL) LINAC stable beams Very high intensity stable beams over a wide mass range Very high intensity stable beams over a wide mass range 6.10 14 pps

More information

Trap assisted decay spectroscopy setup at ISOLTRAP

Trap assisted decay spectroscopy setup at ISOLTRAP Trap assisted decay spectroscopy setup at ISOLTRAP Motivation Penning traps: masses and isobaric selectivity ISOLTRAP mass spectrometer at ISOLDE/CERN Decay spectroscopy at ISOLTRAP: setup and 1 st run

More information

Search for sterile neutrinos at the DANSS experiment

Search for sterile neutrinos at the DANSS experiment Solvay Workshop ULB Bruxelles December 1 st 2017 Search for sterile neutrinos at the DANSS experiment Mikhail Danilov, LPI (Moscow) for the DANSS Collaboration There are several ~3σ indications of 4 th

More information

Alice TPC particle identification

Alice TPC particle identification Alice TPC particle identification on the way to Anti-Nuclei and exotic states INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 34th Course Probing the Extremes of Matter with Heavy Ions Erice-Sicily: 16-24 September

More information

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine

Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine Neutrino Mass Hierarchy and Mixing Parameters: Long-baseline Measurements with IceCube Laura Bodine Mass Hierarchy Observables Matter Effects Feasibility University of Washington Neutrino Mass: Current

More information

Simulations for H.E.S.S.

Simulations for H.E.S.S. Simulations for H.E.S.S. by K. Bernlöhr MPIK Heidelberg & HU Berlin Air shower measurement methods Imaging atmospheric Cherenkov telescopes In the imaging atmospheric Cherenkov telescope (IACT) technique,

More information

arxiv: v1 [physics.ins-det] 24 Jan 2018

arxiv: v1 [physics.ins-det] 24 Jan 2018 Detector Development for a Sterile Neutrino Search with the KATRIN Experiment arxiv:1801.08182v1 [physics.ins-det] 24 Jan 2018 Tim Brunst, Konrad Altenmüller, Tobias Bode, Luca Bombelli, Vasiliy Chernov,

More information

Angular Correlation Experiments

Angular Correlation Experiments Angular Correlation Experiments John M. LoSecco April 2, 2007 Angular Correlation Experiments J. LoSecco Notre Dame du Lac Nuclear Spin In atoms one can use the Zeeman Effect to determine the spin state.

More information

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes Rihua Mao, Liyuan Zhang, Ren-yuan Zhu California Institute of Technology Introduction Because of its immunity to magnetic

More information

Lifting degenerate neutrino masses, threshold corrections and maximal mixing

Lifting degenerate neutrino masses, threshold corrections and maximal mixing Lifting degenerate neutrino masses, threshold corrections and maximal mixing Young Scientists Workshop Waldhotel Zollernblick, Freudenstadt (Black Forest) Wolfgang Gregor Hollik Oct 31, 2014 INSTITUT FOR

More information

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center Michal Mocko G. Muhrer, F. Tovesson, J. Ullmann International Topical Meeting on Nuclear Research Applications and Utilization

More information

The Mu3e PSI

The Mu3e PSI The Mu3e Experiment @ PSI searching for the neutrinoless muon decay m + e + e - e + Tau 2016 Beijing, Sept. 23, 2016 Alessandro Bravar for the Mu3e Collaboration LFV in Standard Model Flavor Conservation

More information

Mukesh Saini. Florida State University, Tallahassee, FL. February 26, FSU Nuclear Physics Seminar. February 26

Mukesh Saini. Florida State University, Tallahassee, FL. February 26, FSU Nuclear Physics Seminar. February 26 C o l u m n 3 Mukesh Saini Florida State University, Tallahassee, FL, 2010 1 OUTLINE Introduction Meson Spectroscopy Strangeonia Experiment CEBAF & CLAS HyCLAS & g12 Calibrations Analysis Summary 2 QCD

More information

Slow-Positron-Beam Techniques

Slow-Positron-Beam Techniques Slow-Positron-Beam Techniques 1 Slow-Positron-Beam Techniques The main advantage of the conventional sample source sandwich arrangement is that the emitted positrons immediately penetrate the sample. A

More information

Kassiopeia: a modern, extensible C++ particle tracking package

Kassiopeia: a modern, extensible C++ particle tracking package PAPER OPEN ACCESS Kassiopeia: a modern, extensible C++ particle tracking package To cite this article: Daniel Furse et al 0 New J. Phys. 0 Manuscript version: Accepted Manuscript Accepted Manuscript is

More information

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap 1 Last Time Mass Analyzers; CAD and TOF mass analyzers: 2 Fourier Transforms A transform is when you change your analytical space without

More information

Alignment of the ATLAS Inner Detector. Oscar Estrada Pastor (IFIC-CSIC)

Alignment of the ATLAS Inner Detector. Oscar Estrada Pastor (IFIC-CSIC) Alignment of the ATLAS Inner Detector Oscar Estrada Pastor (IFIC-CSIC) 1 Summary table Introduction. ATLAS: the detector. Alignment of the Inner Detector. Weak modes. Weak modes using J/Psi resonance.

More information

The NArCos project (Neutron ARray for Correlation Studies)

The NArCos project (Neutron ARray for Correlation Studies) The NArCos project (Neutron ARray for Correlation Studies) E.V. Pagano 1 for NEWCHIM Collaboration 1 INFN- Laboratori Nazionali del Sud Project s motivations The advent of the new facility for RIBs (in

More information

Characterization and Monte Carlo simulations for a CLYC detector

Characterization and Monte Carlo simulations for a CLYC detector Characterization and Monte Carlo simulations for a CLYC detector A. Borella 1, E. Boogers 1, R.Rossa 1, P. Schillebeeckx 1 aborella@sckcen.be 1 SCK CEN, Belgian Nuclear Research Centre JRC-Geel, Joint

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511-524) (Harris, Chapt.

More information