Space Probe and Relative Motion of Orbiting Bodies

Size: px
Start display at page:

Download "Space Probe and Relative Motion of Orbiting Bodies"

Transcription

1 Space robe and Relatie Motion of Orbiting Bodies Eugene I. Butiko Saint etersburg State Uniersity, Saint etersburg, Russia bstract. Seeral possibilities to launch a space probe from the orbital station are discussed and illustrated by computer simulations. The probe is to approach the surface of the planet to explore it from a low altitude, or inestigate far off regions of interplanetary space. fter the mission is fulfilled, the probe is to return to the orbital station and softly dock to it. Material is appropriate to physics teachers and undergraduate students studying classical mechanics and orbital motion. Key words: Keplerian orbits, conseration laws, Kepler s laws, period of reolution, characteristic elocity, soft docking. 1. Introduction: Keplerian Orbits Suitable for Space robes space probe is an automatic or manned module with scientific instruments that is launched from a station circularly orbiting the Earth or some other planet. The module is to approach the surface of the planet in order to explore it from a low altitude. Then the module, with the scientific information it has collected, is to return to the orbital station and gently dock to it. Or, as another assignment, the space probe is to fly by or orbit other planetary bodies, or inestigate far off regions of interplanetary space. In either case, its orbit must be chosen so that its rendezous with the station is possible after it has completed its mission. re such orbits possible? If so, how can they be realized? In such problems of space dynamics, the relatie motion of the orbiting bodies is important. We assume that the orbital station stays in a circular orbit around the planet. fter the space probe is undocked from the station and got almost instantly an additional elocity with the help of the rocket engine, its further passie motion around the planet occurs solely under the central force of graity along a new elliptical orbit. What requirements must this new orbit satisfy? If the probe is to inestigate the surface of the planet, its orbit must approach the planet as closely as possible. Consequently, the orbit must hae a low perigee (pericenter, for inestigating some other planet rather than the Earth), but must not intersect the surface (more precisely, the atmosphere) of the planet. Moreoer, the period of reolution along such an elliptical orbit must be related to the period of reolution of the orbital station along its circular orbit in such a way that the probe and station periodically meet one another. Such a

2 Space robe and Relatie Motion of Orbiting Bodies 2 rendezous can occur only at a common point of their orbits in case their periods of reolution are in the ratio of integers, preferably small. For example, if the period of reolution of the probe is 2/3 the period of the station, the station completes two reolutions while the probe completes three. Thus the two meet at the common point of their orbits eery two reolutions of the station after the departure of the probe. 2. eriod of Reolution along an Elliptical Orbit fter the probe is undocked from the station, it moes along almost the same circular orbit and with the same elocity as does the station. In order to launch the probe into a required elliptical orbit, we should impart to it some additional elocity by means of an on-board rocket engine. From the point of iew of rocket fuel expenditures, the most economical method of transition to a suitable orbit consists of imparting to the space probe an additional elocity tangent to its initial circular orbit. The new orbit lies in the same plane with the circular orbit of the station. If the additional elocity is directed opposite to the orbital elocity of the station, we get an inner elliptical orbit that grazes the circular orbit of the station only at the orbital position at which the rocket engine thrusts the probe backward. This point is the apogee of the orbit. Otherwise, if the additional elocity is directed along the orbital elocity of the station, the probe moes to an outer elliptical orbit. The initial point is the perigee of the new orbit (figure 1). For choosing a suitable orbit for the space probe, the crucial issue is the period of reolution. Next we calculate the additional (characteristic) elocity that must be imparted to the space probe after its undocking from the station in order to transfer the probe to the elliptical orbit with the required period of reolution. We can express this period for the elliptical orbit of the space probe through the length of its major axis with the help of Kepler s third law. Therefore first of all we should find the major axis for a gien alue of the additional elocity imparted to the probe by the rocket engine. = 0 circ r r circ Figure 1. Circular orbit of the station and elliptical orbit of the space probe.

3 Space robe and Relatie Motion of Orbiting Bodies 3 We assume for definiteness that the additional elocity is directed along the orbital elocity of the station, so that the initial elocity 0 of the probe at point is greater in magnitude than the circular elocity circ for the orbit of radius r 0 (orbit of the station): 0 > circ. In this case the initial point is the perigee of the new orbit (figure 1). In order to find the distance r between the center of force and the apogee, we can use the law of energy conseration and Kepler s second law or, equialently, the law of conseration of the angular momentum alid for an arbitrary motion in any central field (see, for example, [1] or [2]). t both the initial point and apogee (figure 1), the elocity ector is perpendicular to the radius ector r, and the magnitude of the ector product of the elocity and radius ectors at these points equals the product of magnitudes of and r (since the sine of the angle between and r equals 1): 0 r 0 = r, (1) where r 0 = r is the distance of the initial point from the center of the planet (see figure 1), and is the elocity at the apogee. The second equation that is necessary for determination of two unknown quantities and r is obtained by equating the alues of the total energy (per unit mass) at the initial point and at the apogee: GM = 2 r 0 2 GM. (2) r Here G is the graitational constant, M is the mass of the planet. Using equation (1), we then express the elocity at apogee in terms of the initial elocity 0 and the distances r 0 and r, and substitute it in the equation of the conseration of energy. Gathering the terms with 0 on the left-hand side of the equation, and moing the remaining terms to the right, we obtain: ( ) r2 0 = GM ( 1 r ) 0. (3) r 2 r 0 r We can find the unknown distance from the center of the planet to the apogee, r, by soling this quadratic equation. There is no need in reducing it to canonical form and using the standard formulas for the roots. Expressing the difference of squares in the left-hand side of the equation as the product of the corresponding sum and difference, we see at once that one of the roots is r = r 0. This root corresponds essentially to the initial point (to perigee). This irreleant root appears because the condition that we used for obtaining the equation, namely that the elocity ector be orthogonal to the radius ector, is satisfied also for the initial point (as well as for the apogee). In order to find the second root, the root that corresponds to the apogee, we diide both sides of the equation (3) by (1 r 0 /r ). Then for the distance r to the apogee of the orbit we obtain: r = r 0 2( circ / 0 ) 2 1. (4) Here we hae used the expression circ = GM/r 0 = gr 2 /r 0 for the circular elocity circ at the initial distance r 0 (here g = GM/R 2 is the acceleration of free fall near the surface of the Earth, R is the Earth s radius). The obtained expression is conenient for determination

4 Space robe and Relatie Motion of Orbiting Bodies 4 of parameters of the elliptical orbit in terms of the initial distance r 0 and the initial transerse elocity 0. For the semimajor axis a of the elliptical orbit (see figure 1) equation (4) yields the following expression: a = 1 2 (r 0 + r ) = r 0 1 (5) 2 1 0/(2 2 circ 2 ). This expression for the semimajor axis a is alid both for the case of an initial elocity greater than the circular elocity, 0 > circ, and the case 0 < circ. The latter case corresponds to the additional elocity imparted to the space probe in the direction against the orbital elocity of the station. In this case the entire elliptical orbit of the probe lies inside the circular orbit of the station. The starting point at which the probe is undocked from the station is the apogee of such an inner-grazing elliptical orbit. If the initial elocity equals the circular elocity, that is, if 0 = circ, equation (5) gies a = r 0, since the ellipse becomes a circle, and the semimajor axis coincides with the radius of the orbit. If 0 2 circ, that is, if the initial elocity approaches the escape elocity, equation (5) gies a : the ellipse is elongated without limit. If 0 0, equation (5) gies a r 0 /2: as the horizontal initial elocity becomes smaller and smaller, the elliptical orbit shrinks and degenerates into a straight segment connecting the initial point and the center of force. The foci of this degenerate, flattened ellipse are at the opposite ends of the segment. The eccentricity e of the elliptical orbit in terms of the transerse initial elocity 0, with the help of equation (4), is expressed as follows: e = r r 0 r + r 0 = circ 1. (6) Thus, if the additional elocity is directed tangentially to the circular orbit of the station, the semimajor axis a of the elliptical orbit of the probe is determined by equation (5). With the help of this equation, we can express the square of the planetocentric initial elocity 0 of the probe at the common point of the two orbits in terms of the semimajor axis a: ( 0 2 = circ 2 2 r ) 0. (7) a Next we can express in equation (7) the ratio r 0 /a in terms of the desired ratio of the period T 0 of the station to the period T of the space probe in its elliptical orbit with the semimajor axis a. We do this with the help of Kepler s third law: r 0 a = ( T0 T ) 2/3. (8) Hence, after the undocking, the space probe must hae the following planetocentric elocity: 0 = circ 2 (T 0 /T ) 2/3. (9) This expression allows us to calculate the additional tangential elocity required for the space probe with the desired period of reolution T.

5 Space robe and Relatie Motion of Orbiting Bodies 5 3. Space robes in Inner Orbits Let us consider seeral possible inner orbits suitable for the space probe. fter performing its mission, the space probe encounters the orbital station each time the station completes a reolution in case the period T of the probe s reolution equals T 0 /n, where T 0 is the period of the station, and n is an integer. Howeer, there is actually only one such possibility, namely, n = 2. Elliptical orbits with periods that equal T 0 /3, T 0 /4, T 0 /5,... do not exist. The reason is that the shortest possible period of reolution corresponds to the degenerate elliptical orbit with the minor axis of zero length (a straight-line ellipse with foci at the center of the planet and at the initial point, and with a major axis equal to the radius of the circular orbit of the station). ccording to Kepler s third law, this minimal period equals (1/2) 3/2 T T 0, a alue greater than T 0 /3. For the elliptical orbit with the period T = T 0 /2, the perigee distance r equals 0.26 r, where r is the apogee distance that equals the radius r 0 of the circular orbit of the station. Hence, the orbit can be realized only if the radius of the circular orbit is at least four times the radius of the planet. The characteristic elocity needed to transfer the space probe to this orbit from the initial circular orbit equals 0.36 circ, that is, 36% of the circular elocity circ. The formulas necessary for such calculations can be easily obtained on the basis of Kepler s laws and the law of energy conseration. The deriation of the formulas is gien in the preceding Section. Table 1 lists the alues of the initial elocity 0 of the space probe and the corresponding alues of the additional (characteristic) elocity = 0 circ for seeral inner elliptical orbits of the probe. (These elocities are expressed in units of the circular elocity 0 of the orbital station for conenience of usage in the simulations [3].) The alues in Table 1 are calculated with the help of expression (9). The perigee distance r = 2a r 0 for each of the orbits (in units of the radius r 0 of the station s circular orbit) is also listed. n orbit is possible if this distance is greater than the radius R of the planet. The difference r R is the minimal distance from the surface of the planet reached by the space probe. Table 1. Inner orbits of the space probe T 0 /T 0 / circ / circ r /r 0 2/ / / /

6 Space robe and Relatie Motion of Orbiting Bodies circ 1 2 Figure 2. Elliptical orbit of the space probe with the period 1/2 T 0 (left) and the trajectory of the space probe in the reference frame associated with the orbital station (right). The inner elliptical orbit of the space probe whose period T equals 1/2 of the station period T 0 is shown on the left panel of figure 2. In this case a backward characteristic elocity 1 of approximately circ is required (see Table 1). t point the space probe is undocked from the station, and the additional elocity 1 is imparted to it by an on-board rocket engine. s a result, elocity of the probe is reduced from the circular elocity circ to the alue 0 = circ required for the apogee of the desired elliptical trajectory with the period T 0 /2. During one reolution of the station the probe coers the elliptical orbit twice. The right panel of figure 2 shows the trajectory of this space probe in the rotating reference frame associated with the orbital station (more exactly, in the reference frame associated with the straight line joining the station and the center of the planet). The trajectories of the probe shown in figure 2 in the two frames of reference are generated with the help of one of the simulation programs of the software package lanets and Satellites [3]. The simulation program [3] allows one to watch on the computer screen the motion both of the orbital station and the space probe with respect to the planet, and to watch simultaneously the motion of the probe relatie to the station. The motion is displayed in some time scale, which we can ary for conenient obseration. Relatie to the orbital station, the probe after undocking first moes backward, in the direction of the additional elocity 1 (see the right panel of figure 2), but soon the probe descends toward the planet and oertakes the station. When the probe passes through perigee of its orbit for the first time, it occurs at point of the trajectory that it traces relatie to the station (see the right panel of figure 2) at minimal distance from the surface of the planet. t the perigee the distance r from the center of the planet equals approximately 0.26 r, where r is the apogee distance (that equals the radius r 0 of the circular orbit of the station). This means that such an orbit can be realized only if the radius of the circular orbit is at least four times the radius of the planet. fter passing through, the distance to the planet increases and reaches its maximal alue at the moment at which the probe passes again through the apogee of its orbit. On

7 Space robe and Relatie Motion of Orbiting Bodies 7 the trajectory of the relatie motion, this position of the probe is (see the right panel of figure 2). The station at this moment passes through the opposite point of its circular orbit. The probe occurs at the same minimal distance (point ) for the second time during the second reolution along its elliptical orbit, and then meets the station at point. To equalize its elocity with that of the station for the soft docking, another additional impulse 2 is required. Its magnitude is the same as that of 1, but its direction is opposite to 1, because we must increase the elocity of the probe and make it equal to the elocity circ of the station. 0 circ Figure 3. Elliptical orbit of the space probe with the period 2/3 T 0 (left) and the trajectory of the space probe in the reference frame associated with the orbital station (right). The elliptical orbit of the space probe whose period equals 2/3 of the station period is shown on the left panel of figure 3. In this case a backward characteristic elocity of approximately 0.17 circ is required (see Table 1). t point the space probe is undocked from the station and the additional elocity is imparted to it by an on-board rocket engine. t the perigee of the elliptical orbit the distance r from the center of the planet equals approximately 0.53 r 0 (see Table 1). Hence, the orbit is ideal for a space probe if the circular orbit of the station has a radius approximately twice the radius of the planet. The right panel of figure 3 shows the trajectory of this space probe in the rotating reference frame associated with the orbital station. For a while after the launch, the probe retrogrades in this frame in the direction of the additional elocity. Howeer, soon its trajectory turns first toward the planet and then forward the probe oertakes the station in its orbital motion. s a whole, the trajectory of the probe bends around the planet in the same sense as the orbit of the station, in spite of the opposite direction of the initial elocity. Near the apexes of the loops of the trajectory the motion becomes retrograde. (These apexes correspond to the instants at which the space probe passes through the apogee of its geocentric orbit.) Moing along this closed trajectory, the probe approaches the surface of the planet three times. (t these instants the probe passes through the perigee of its geocentric orbit.) To dock the space probe softly to the station after the oyage, we should quench the remaining relatie elocity (to equalize the geocentric elocities of the probe and the orbital station). This can be done by the same on-board rocket engine. The required additional

8 Space robe and Relatie Motion of Orbiting Bodies 8 impulse (the characteristic elocity of the maneuer) is just of the same magnitude as at the launch of the probe, but in the opposite direction: if at the launch the impulse is directed against the orbital elocity of the station, now at docking it is directed forward. 0 circ Figure 4. Elliptical orbit of the space probe with the period 3/4 T 0 (left) and the trajectory of the space probe in the reference frame associated with the orbital station (right). Figure 4 illustrates the motion of a space probe with the period of reolution T = 3/4 T 0. In this case the probe meets the station at the initial point after four reolutions around the planet. The station completes three reolutions during this time. The trajectory of motion of the probe relatie to the orbital station has four loops that correspond to the instants at which the probe passes through the apogee of its orbit. 4. Space robes in Outer Orbits If the additional elocity imparted to the probe after its undocking from the station is directed forward, tangentially to the orbit of the station, the resulting elliptical orbit encloses (circumscribes) the circular orbit of the station. The initial point at which the orbits graze one another is the perigee of the elliptical orbit. Such outer orbits of space probes with suitable periods of reolution may be used to inestigate the interplanetary space. Table 2 lists the alues of the initial elocity 0 of the space probe and the corresponding alues of the additional elocity = 0 circ for seeral outer elliptical orbits of the probe. The apogee distance r = 2a r 0 for each of the orbits (the greatest distance of the probe from the center of the planet) is also listed. Figure 5 shows such outer elliptical orbits with the periods 3/2 T 0 and 2T 0 (orbits 1 and 2, respectiely). The right side of the figure shows the relatie trajectories of the probe for these cases. t first the probe moes relatie to the station in the direction of the initial elocity, but ery soon its trajectory turns upward and then backward, and the motion becomes retrograde the probe lags behind the station. In this frame, the trajectory of the space probe bends around the planet in the sense opposite to the orbital motion of the station.

9 Space robe and Relatie Motion of Orbiting Bodies 9 Table 2. Outer orbits of the space probe T 0 /T 0 / circ / circ r /r 0 4/ / / / circ Figure 5. Elliptical orbits of the space probes with the periods 3/2 T 0 and 2T 0 (trajectories 1 and 2 respectiely, left panel), and the corresponding trajectories in the reference frame associated with the orbital station (right panel). For the orbit with the period T = 3/2 T 0, the additional elocity is approximately 0.11 circ, and the distance to apogee 1 (the maximal distance from the center of the planet) is 1.62 r 0 (r 0 is the radius of the circular orbit). The closed orbit of relatie motion (cure 1 in the right panel of figure 5) has two small loops, corresponding to the instants at which the probe passes through the perigee of its geocentric elliptical orbit. The whole closed path of the relatie motion corresponds to two reolutions of the probe along the geocentric elliptical orbit, coered during three periods of reolution of the station. The trajectory with the period T = 2T 0 requires the additional elocity = 0.17 circ, directed forward (see Table 2). The distance r to apogee 2 equals 2.17 r 0. The closed orbit of the relatie motion (cure 1 in figure 5) is coered during 2T 0, that is, during two periods of reolution of the station.

10 Space robe and Relatie Motion of Orbiting Bodies Space robe with a Radial dditional Velocity In order to inestigate both the surface of the planet and remote regions of the interplanetary space by the same space probe, we can use an elliptical orbit obtained by imparting to the probe a transerse additional impulse. If the additional elocity is imparted to the probe in the radial direction (ertically up or down), the period of reolution is always greater than the period of the orbital station. n example of such an orbit with the period of reolution T = 3/2 T 0 is shown in figure 6. t point B of the initial circular orbit, the probe is undocked from the station, and the on-board rocket engine imparts a downward additional elocity 1. The required magnitude of 1 (the characteristic elocity of the maneuer) can be calculated on the basis of Kepler s laws and the law of conseration of energy. 2 1 B 2 circ B 1 0 Figure 6. Elliptical orbit of a space probe with the period 3/2 T 0 (left) and the corresponding trajectory in the reference frame associated with the orbital station (right) in the case of a transerse additional impulse. pplying to this case the laws of the conseration of energy and angular momentum (Kepler s second law), and taking into account that a radial impulse of the rocket thrust does not change the angular momentum of the space probe, we can obtain the following expressions for the distances of the apogee and perigee of the elliptical orbit from the center of the planet: r = r 0 1 / circ ; r = r / circ. (10) Therefore, the semimajor axis of the elliptical orbit of the space probe depends on the magnitude of the transerse additional elocity as follows: a = 1 2 (r r 0 + r ) = 1 (/ c ). (11) 2 Suitable orbits for the space probe must hae certain periods of reolution. We can use Kepler s third law r 0 /a = (T 0 /T ) 2/3 to calculate the additional elocity that gies an orbit with the required period of reolution T. With the help of equation (11), we obtain ( ) ( ) 2/3 T0 = 1. (12) T circ

11 Space robe and Relatie Motion of Orbiting Bodies 11 For example, to obtain the orbit of the space probe with a period that is one-and-a-half periods of the orbital station (T 0 /T = 2/3), the required additional elocity calculated from equation (12) is circ. Such a probe returns to the station after eery two reolutions in its elliptical orbit. During this time the station makes three reolutions in its circular orbit, and they meet at the initial point B. Such an elliptical orbit is shown in figure 6.. To obtain the orbit with the period T = 3/2 T 0, a rather large characteristic elocity of circ is necessary. This alue is seeral times larger than the tangential additional elocity of 0.11 circ needed for the elliptical orbit of the same period and the same major axis. To dock softly the space probe to the station, another additional impulse from the rocket engine is required. To equalize the orbital elocities, an additional elocity of the same magnitude as at the launch must be imparted to the space probe ( 2 = 1, see figure 6), but now it should be directed radially upward. The relatie motion of the space probe in this case is shown in the right panel of figure 6. In the reference frame associated with the station, the space probe coers its conoluted closed path during three reolutions of the station around the planet. For T 0 /T = 4/5 equation (12) gies / circ = In this case the space probe and the station meet after eery four reolutions of the probe and fie reolutions of the orbital station. 6. To the Opposite Side of the Orbit Next we consider one more example of space maneuers. Imagine we need to launch a space ehicle from the orbital station into the same circular orbit as that of the station, but there is to be an angular distance of 180 between the ehicle and the station. In other words, they are to orbit in the same circle but at opposite ends of its diameter. How can this be done? The task cannot be soled by a single maneuer. The on-board rocket engine must be used at least twice. With two impulses we can transfer the space ehicle to the opposite point of the circular orbit using an intermediate elliptical orbit with the period of reolution, say, 3/2 T 0 or 3/4 T 0. In the first case, after undocking from the station, an additional elocity = 0.11 circ is imparted to the space ehicle in the direction of the orbital motion. During one reolution of the space ehicle along its elliptical orbit (see figure 7), the station coers exactly one and a half of its circular orbit. That is, the space ehicle reaches the common point of the two orbits (circular and elliptical) just at the moment when the station is at the diametrically opposite point of the circular orbit. In the relatie motion, shown in the right panel of figure 7, the space ehicle has coered one half of its closed path. t this moment, the excess of elocity of the space ehicle oer the alue circ is quenched by a second jet impulse, and the ehicle moes along the same circular orbit as the station but at the opposite side of the orbit. In the window of the simulation program [3] that displays the relatie motion, the space ehicle is stationary at the antipodal point. Clearly the second jet impulse must be of the same magnitude as the first one but opposite to the orbital elocity ( 2 = 1, see figure 7).

12 Space robe and Relatie Motion of Orbiting Bodies circ 0 1 B 2 Figure 7. Transition of the space probe to the opposite point of the circular orbit. n elliptical orbit with the period 3/2 T 0 is used (left panel). The trajectory in the reference frame associated with the orbital station is shown in the right panel. References [1] Kittel Ch, Knight W D, Ruderman M 1965 Mechanics Berkeley hysics Course,. 1 (New York: McGraw-Hill) [2] lenitsyn G, Butiko E I, Kondratye S 1997 Concise Handbook of Mathematics and hysics (New York: CRC ress) pp [3] Butiko E I 1999 lanets and Satellites hysics cademic Software (merican Institute of hysics). See in the web < (section Downloads)

Simulations of Space Probes and their Motions Relative to the Host Orbital Station

Simulations of Space Probes and their Motions Relative to the Host Orbital Station Simulations of Space robes and their Motions Relatie to the Host Orbital Station Eugene I. Butiko St. etersburg State Uniersity, St. etersburg, Russia Abstract Launching a space probe from an orbiting

More information

Orbital Maneuvers and Space Rendezvous

Orbital Maneuvers and Space Rendezvous Orbital Maneuvers and pace Rendezvous Eugene I. Butikov aint Petersburg tate University, aint Petersburg, Russia E-mail: e.butikov@phys.spbu.ru bstract. everal possibilities to launch a space vehicle from

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS

UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS SUBAREA I. COMPETENCY 1.0 UNDERSTAND MOTION IN ONE AND TWO DIMENSIONS MECHANICS Skill 1.1 Calculating displacement, aerage elocity, instantaneous elocity, and acceleration in a gien frame of reference

More information

Lecture D30 - Orbit Transfers

Lecture D30 - Orbit Transfers J. Peraire 16.07 Dynamics Fall 004 Version 1.1 Lecture D30 - Orbit Transfers In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we

More information

Chapter 1: Kinematics of Particles

Chapter 1: Kinematics of Particles Chapter 1: Kinematics of Particles 1.1 INTRODUCTION Mechanics the state of rest of motion of bodies subjected to the action of forces Static equilibrium of a body that is either at rest or moes with constant

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Keplerian Orbits. If two otherwise isolated particles interact through a force law their trajectories can be

Keplerian Orbits. If two otherwise isolated particles interact through a force law their trajectories can be Keplerian Orbits 1 If two otherwise isolated particles interact through a force law their trajectories can be r reduced to conic sections. This is called Kepler s problem after Johannes Kepler who studied

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

HSC Physics Core 9.2 Space! Part 2: Launching into orbit! Overview of Part 2:!

HSC Physics Core 9.2 Space! Part 2: Launching into orbit! Overview of Part 2:! Go to the ideo lesson for this slide deck: h2p://edrolo.com.au/subjects/physics/hsc- physics/space- part- 2/escape- elocity/lesson/ HSC Physics Core 9.2 Space Part 2: Launching into orbit Oeriew of Part

More information

Previous Lecture. Approximate solutions for the motion about an oblate planet: The Brouwer model. The Cid- Lahulla model 2 / 39

Previous Lecture. Approximate solutions for the motion about an oblate planet: The Brouwer model. The Cid- Lahulla model 2 / 39 2 / 39 Previous Lecture Approximate solutions for the motion about an oblate planet: The Brouwer model The Cid- Lahulla model 3 / 39 Definition of Orbital Maneuvering Orbital maneuver: the use of the propulsion

More information

Why does Saturn have many tiny rings?

Why does Saturn have many tiny rings? 2004 Thierry De Mees hy does Saturn hae many tiny rings? or Cassini-Huygens Mission: New eidence for the Graitational Theory with Dual Vector Field T. De Mees - thierrydemees @ pandora.be Abstract This

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Chapter 2: Orbits and Launching Methods

Chapter 2: Orbits and Launching Methods 9/20/ Chapter 2: Orbits and Launching Methods Prepared by Dr. Mohammed Taha El Astal EELE 6335 Telecom. System Part I: Satellite Communic ations Winter Content Kepler s First, Second, and Third Law Definitions

More information

Previous Lecture. Orbital maneuvers: general framework. Single-impulse maneuver: compatibility conditions

Previous Lecture. Orbital maneuvers: general framework. Single-impulse maneuver: compatibility conditions 2 / 48 Previous Lecture Orbital maneuvers: general framework Single-impulse maneuver: compatibility conditions closed form expression for the impulsive velocity vector magnitude interpretation coplanar

More information

Linear Momentum and Collisions Conservation of linear momentum

Linear Momentum and Collisions Conservation of linear momentum Unit 4 Linear omentum and Collisions 4.. Conseration of linear momentum 4. Collisions 4.3 Impulse 4.4 Coefficient of restitution (e) 4.. Conseration of linear momentum m m u u m = u = u m Before Collision

More information

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE ONLINE: MAHEMAICS EXENSION opic 6 MECHANICS 6.6 MOION IN A CICLE When a particle moes along a circular path (or cured path) its elocity must change een if its speed is constant, hence the particle must

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER

DYNAMICS. Kinematics of Particles Engineering Dynamics Lecture Note VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER 27 The McGraw-Hill Companies, Inc. All rights resered. Eighth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Kinematics of Particles Lecture Notes: J.

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-A Fall 014 Motion in Two and Three Dimensions Lectures 4,5 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

Physics 139 Relativity. Thomas Precession February 1998 G. F. SMOOT. Department ofphysics, University of California, Berkeley, USA 94720

Physics 139 Relativity. Thomas Precession February 1998 G. F. SMOOT. Department ofphysics, University of California, Berkeley, USA 94720 Physics 139 Relatiity Thomas Precession February 1998 G. F. SMOOT Department ofphysics, Uniersity of California, erkeley, USA 94720 1 Thomas Precession Thomas Precession is a kinematic eect discoered by

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

Unit 11: Vectors in the Plane

Unit 11: Vectors in the Plane 135 Unit 11: Vectors in the Plane Vectors in the Plane The term ector is used to indicate a quantity (such as force or elocity) that has both length and direction. For instance, suppose a particle moes

More information

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2.

(a) During the first part of the motion, the displacement is x 1 = 40 km and the time interval is t 1 (30 km / h) (80 km) 40 km/h. t. (2. Chapter 3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x and x, and the corresponding time interals be t and t, respectiely. Now, because

More information

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand:

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand: Conceptual Physics 11 th Edition Projectile motion is a combination of a horizontal component, and Chapter 10: PROJECTILE AND SATELLITE MOTION a vertical component. This lecture will help you understand:

More information

Astromechanics. 6. Changing Orbits

Astromechanics. 6. Changing Orbits Astromechanics 6. Changing Orbits Once an orbit is established in the two body problem, it will remain the same size (semi major axis) and shape (eccentricity) in the original orbit plane. In order to

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton.

DO PHYSICS ONLINE. WEB activity: Use the web to find out more about: Aristotle, Copernicus, Kepler, Galileo and Newton. DO PHYSICS ONLINE DISPLACEMENT VELOCITY ACCELERATION The objects that make up space are in motion, we moe, soccer balls moe, the Earth moes, electrons moe, - - -. Motion implies change. The study of the

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 10: PROJECTILE AND SATELLITE MOTION This lecture will help you understand: Projectile Motion Fast-Moving Projectiles Satellites Circular Satellite Orbits Elliptical

More information

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola.

January 21, 2018 Math 9. Geometry. The method of coordinates (continued). Ellipse. Hyperbola. Parabola. January 21, 2018 Math 9 Ellipse Geometry The method of coordinates (continued) Ellipse Hyperbola Parabola Definition An ellipse is a locus of points, such that the sum of the distances from point on the

More information

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE

A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE DOING PHYSICS WITH MATLAB A SIMULATION OF THE MOTION OF AN EARTH BOUND SATELLITE Download Directory: Matlab mscripts mec_satellite_gui.m The [2D] motion of a satellite around the Earth is computed from

More information

PY1008 / PY1009 Physics Rotational motion

PY1008 / PY1009 Physics Rotational motion PY1008 / PY1009 Physics Rotational motion M.P. Vaughan Learning Objecties Circular motion Rotational displacement Velocity Angular frequency, frequency, time period Acceleration Rotational dynamics Centripetal

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Physics 1: Mechanics

Physics 1: Mechanics Physics 1: Mechanics Đào Ngọc Hạnh Tâm Office: A1.53, Email: dnhtam@hcmiu.edu.n HCMIU, Vietnam National Uniersity Acknowledgment: Most of these slides are supported by Prof. Phan Bao Ngoc credits (3 teaching

More information

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth.

14.1 Earth Satellites. The path of an Earth satellite follows the curvature of the Earth. The path of an Earth satellite follows the curvature of the Earth. A stone thrown fast enough to go a horizontal distance of 8 kilometers during the time (1 second) it takes to fall 5 meters, will orbit

More information

θ Vman V ship α φ V β

θ Vman V ship α φ V β Answer, Key { Homework 3 { Rubin H Landau 1 This print-out should hae 9 uestions. Check that it is complete before leaing the printer. Also, multiple-choice uestions may continue on the next column or

More information

The Heliocentric Model of Copernicus

The Heliocentric Model of Copernicus Celestial Mechanics The Heliocentric Model of Copernicus Sun at the center and planets (including Earth) orbiting along circles. inferior planets - planets closer to Sun than Earth - Mercury, Venus superior

More information

MAGNETIC EFFECTS OF CURRENT-3

MAGNETIC EFFECTS OF CURRENT-3 MAGNETIC EFFECTS OF CURRENT-3 [Motion of a charged particle in Magnetic field] Force On a Charged Particle in Magnetic Field If a particle carrying a positie charge q and moing with elocity enters a magnetic

More information

DYNAMICS. Kinematics of Particles VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER

DYNAMICS. Kinematics of Particles VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER Tenth E CHAPTER 11 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California Polytechnic State Uniersity Kinematics

More information

Chapter 10. Projectile and Satellite Motion

Chapter 10. Projectile and Satellite Motion Chapter 10 Projectile and Satellite Motion Which of these expresses a vector quantity? a. 10 kg b. 10 kg to the north c. 10 m/s d. 10 m/s to the north Which of these expresses a vector quantity? a. 10

More information

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k

A possible mechanism to explain wave-particle duality L D HOWE No current affiliation PACS Numbers: r, w, k A possible mechanism to explain wae-particle duality L D HOWE No current affiliation PACS Numbers: 0.50.-r, 03.65.-w, 05.60.-k Abstract The relationship between light speed energy and the kinetic energy

More information

Circular Motion and Gravitation Practice Test Provincial Questions

Circular Motion and Gravitation Practice Test Provincial Questions Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this

More information

Fu Yuhua 1. Beijing, China

Fu Yuhua 1. Beijing, China 85 An Example of Guiding Scientific Research with hilosophical rinciples Based on Uniqueness of Truth and Neutrosophy eriing Newton's Second Law and the like Fu Yuhua 1 1 CNOOC Research Institute Beijing,

More information

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem

FOCUS ON CONCEPTS Section 7.1 The Impulse Momentum Theorem WEEK-6 Recitation PHYS 3 FOCUS ON CONCEPTS Section 7. The Impulse Momentum Theorem Mar, 08. Two identical cars are traeling at the same speed. One is heading due east and the other due north, as the drawing

More information

Kinematics on oblique axes

Kinematics on oblique axes Bolina 1 Kinematics on oblique axes arxi:physics/01111951 [physics.ed-ph] 27 No 2001 Oscar Bolina Departamento de Física-Matemática Uniersidade de São Paulo Caixa Postal 66318 São Paulo 05315-970 Brasil

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/Furic PHYSICS DEPARTENT PHY 2053 Exam 1 October 5, 2011 Name (print, last first): Signature: On my honor, I hae neither gien nor receied unauthorized aid on this examination. YOUR

More information

Physics Teach Yourself Series Topic 2: Circular motion

Physics Teach Yourself Series Topic 2: Circular motion Physics Teach Yourself Series Topic : Circular motion A: Leel 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 013 Page 1 of 7 Contents What you need to

More information

Gravitation. chapter 9

Gravitation. chapter 9 chapter 9 Gravitation Circular orbits (Section 9.3) 1, 2, and 3 are simple exercises to supplement the quantitative calculations of Examples 4, 5, and 6 in Section 9.3. 1. Satellite near Earth s surface

More information

PHYS 101 Previous Exam Problems. Gravitation

PHYS 101 Previous Exam Problems. Gravitation PHYS 101 Previous Exam Problems CHAPTER 13 Gravitation Newton s law of gravitation Shell theorem Variation of g Potential energy & work Escape speed Conservation of energy Kepler s laws - planets Orbits

More information

III. Relative Velocity

III. Relative Velocity Adanced Kinematics I. Vector addition/subtraction II. Components III. Relatie Velocity IV. Projectile Motion V. Use of Calculus (nonuniform acceleration) VI. Parametric Equations The student will be able

More information

VISUAL PHYSICS ONLINE

VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE EXCEL SIMULATION MOTION OF SATELLITES DOWNLOAD the MS EXCEL program PA50satellite.xlsx and view the worksheet Display as shown in the figure below. One of the most important questions

More information

MOTION OF FALLING OBJECTS WITH RESISTANCE

MOTION OF FALLING OBJECTS WITH RESISTANCE DOING PHYSICS WIH MALAB MECHANICS MOION OF FALLING OBJECS WIH RESISANCE Ian Cooper School of Physics, Uniersity of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECORY FOR MALAB SCRIPS mec_fr_mg_b.m Computation

More information

An intuitive approach to inertial forces and the centrifugal force paradox in general relativity

An intuitive approach to inertial forces and the centrifugal force paradox in general relativity An intuitie approach to inertial forces and the centrifugal force paradox in general relatiity Rickard M. Jonsson Department of Theoretical Physics, Physics and Engineering Physics, Chalmers Uniersity

More information

The Kinetic Theory of Gases

The Kinetic Theory of Gases 978-1-107-1788-3 Classical and Quantum Thermal Physics The Kinetic Theory of Gases CHAPTER 1 1.0 Kinetic Theory, Classical and Quantum Thermodynamics Two important components of the unierse are: the matter

More information

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72. ADVANCED GCE UNIT 76/ MATHEMATICS (MEI Mechanics MONDAY MAY 7 Additional materials: Answer booklet (8 pages Graph paper MEI Examination Formulae and Tables (MF Morning Time: hour minutes INSTRUCTIONS TO

More information

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION

VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION VISUAL PHYSICS ONLINE RECTLINEAR MOTION: UNIFORM ACCELERATION Predict Obsere Explain Exercise 1 Take an A4 sheet of paper and a heay object (cricket ball, basketball, brick, book, etc). Predict what will

More information

Doppler shifts in astronomy

Doppler shifts in astronomy 7.4 Doppler shift 253 Diide the transformation (3.4) by as follows: = g 1 bck. (Lorentz transformation) (7.43) Eliminate in the right-hand term with (41) and then inoke (42) to yield = g (1 b cos u). (7.44)

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

23.1 Chapter 8 Two-Body Central Force Problem (con)

23.1 Chapter 8 Two-Body Central Force Problem (con) 23 Lecture 11-20 23.1 Chapter 8 Two-Body Central Force Problem (con) 23.1.1 Changes of Orbit Before we leave our discussion of orbits we shall discuss how to change from one orbit to another. Consider

More information

DYNAMICS. Kinetics of Particles: Energy and Momentum Methods VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER

DYNAMICS. Kinetics of Particles: Energy and Momentum Methods VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER Tenth E CHPTER 3 VECTOR MECHNICS FOR ENGINEERS: DYNMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California Polytechnic State Uniersity Kinetics of Particles:

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

Magnetism has been observed since roughly 800 B.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another.

Magnetism has been observed since roughly 800 B.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another. 1.1 Magnetic ields Magnetism has been obsered since roughly 800.C. Certain rocks on the Greek peninsula of Magnesia were noticed to attract and repel one another. Hence the word: Magnetism. o just like

More information

Chapter 9. Gravitation

Chapter 9. Gravitation Chapter 9 Gravitation 9.1 The Gravitational Force For two particles that have masses m 1 and m 2 and are separated by a distance r, the force has a magnitude given by the same magnitude of force acts on

More information

To Feel a Force Chapter 13

To Feel a Force Chapter 13 o Feel a Force Chapter 13 Chapter 13:. A. Consequences of Newton's 2nd Law for a human being he forces acting on a human being are balanced in most situations, resulting in a net external force of zero.

More information

Celestial Mechanics Lecture 10

Celestial Mechanics Lecture 10 Celestial Mechanics Lecture 10 ˆ This is the first of two topics which I have added to the curriculum for this term. ˆ We have a surprizing amount of firepower at our disposal to analyze some basic problems

More information

Velocity, Acceleration and Equations of Motion in the Elliptical Coordinate System

Velocity, Acceleration and Equations of Motion in the Elliptical Coordinate System Aailable online at www.scholarsresearchlibrary.com Archies of Physics Research, 018, 9 (): 10-16 (http://scholarsresearchlibrary.com/archie.html) ISSN 0976-0970 CODEN (USA): APRRC7 Velocity, Acceleration

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

Lecture 15 - Orbit Problems

Lecture 15 - Orbit Problems Lecture 15 - Orbit Problems A Puzzle... The ellipse shown below has one focus at the origin and its major axis lies along the x-axis. The ellipse has a semimajor axis of length a and a semi-minor axis

More information

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points)

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) PROBLEM 1 A) Summarize the content of the three Kepler s Laws. B) Derive any two of the Kepler

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics 0 Saskatchewan High School Physics Scholarship Competition May 8, 0 Time: 90 minutes This competition is based on the Saskatchewan

More information

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0

0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 Chapter Flow kinematics Vector and tensor formulae This introductory section presents a brief account of different definitions of ector and tensor analysis that will be used in the following chapters.

More information

Satellite meteorology

Satellite meteorology GPHS 422 Satellite meteorology GPHS 422 Satellite meteorology Lecture 1 6 July 2012 Course outline 2012 2 Course outline 2012 - continued 10:00 to 12:00 3 Course outline 2012 - continued 4 Some reading

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Chapter 14 Satellite Motion

Chapter 14 Satellite Motion 1 Academic Physics Mechanics Chapter 14 Satellite Motion The Mechanical Universe Kepler's Three Laws (Episode 21) The Kepler Problem (Episode 22) Energy and Eccentricity (Episode 23) Navigating in Space

More information

Today. Laws of Motion. Conservation Laws. Gravity. tides

Today. Laws of Motion. Conservation Laws. Gravity. tides Today Laws of Motion Conservation Laws Gravity tides Newton s Laws of Motion Our goals for learning: Newton s three laws of motion Universal Gravity How did Newton change our view of the universe? He realized

More information

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Lecture Outline. Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Lecture Outline Chapter 13 Gravity Slide 13-1 The plan Lab this week: exam problems will put problems on mastering for chapters without HW; will also go over exam 2 Final coverage: now posted; some sections/chapters

More information

Motion In Two Dimensions. Vectors in Physics

Motion In Two Dimensions. Vectors in Physics Motion In Two Dimensions RENE DESCARTES (1736-1806) GALILEO GALILEI (1564-1642) Vectors in Physics All physical quantities are either scalars or ectors Scalars A scalar quantity has only magnitude. In

More information

Lecture 12! Center of mass! Uniform circular motion!

Lecture 12! Center of mass! Uniform circular motion! Lecture 1 Center of mass Uniform circular motion Today s Topics: Center of mass Uniform circular motion Centripetal acceleration and force Banked cures Define the center of mass The center of mass is a

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

Status: Unit 2, Chapter 3

Status: Unit 2, Chapter 3 1 Status: Unit, Chapter 3 Vectors and Scalars Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication by a Scalar Adding Vectors by Components Unit Vectors Vector Kinematics Projectile

More information

a) (4 pts) What is the magnitude and direction of the acceleration of the electron?

a) (4 pts) What is the magnitude and direction of the acceleration of the electron? PHYSCS 22 Fall 2010 - MDTERM #3 SHOW ALL WORK & REASONNG FOR FULL PONTS Question 1. (5 pts): Accurately show or state the direction of the force that is felt by the following charges or currents. +q -q

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Transmission lines using a distributed equivalent circuit

Transmission lines using a distributed equivalent circuit Cambridge Uniersity Press 978-1-107-02600-1 - Transmission Lines Equialent Circuits, Electromagnetic Theory, and Photons Part 1 Transmission lines using a distributed equialent circuit in this web serice

More information

Displacement, Time, Velocity

Displacement, Time, Velocity Lecture. Chapter : Motion along a Straight Line Displacement, Time, Velocity 3/6/05 One-Dimensional Motion The area of physics that we focus on is called mechanics: the study of the relationships between

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics AE-104, lecture hours 1-4: Interplanetary flight Ron Noomen October 5, 01 AE104 Flight and Orbital Mechanics

More information

WORKBOOK COMPUTER SIMULATIONS OF PHYSICAL PROCESSES IN MECHANICS

WORKBOOK COMPUTER SIMULATIONS OF PHYSICAL PROCESSES IN MECHANICS WORKBOOK COMPUTER SIMULATIONS OF PHYSICAL PROCESSES IN MECHANICS LUBLIN 14 Author: Jarosław Borc, Wiesław Polak Desktop publishing: Paweł Droździel Technical editor: Paweł Droździel Figures: Jarosław Borc,

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details that

More information

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h

a by a factor of = 294 requires 1/T, so to increase 1.4 h 294 = h IDENTIFY: If the centripetal acceleration matches g, no contact force is required to support an object on the spinning earth s surface. Calculate the centripetal (radial) acceleration /R using = πr/t to

More information

Math 144 Activity #9 Introduction to Vectors

Math 144 Activity #9 Introduction to Vectors 144 p 1 Math 144 ctiity #9 Introduction to Vectors Often times you hear people use the words speed and elocity. Is there a difference between the two? If so, what is the difference? Discuss this with your

More information

9.2 Worksheet #3 - Circular and Satellite Motion

9.2 Worksheet #3 - Circular and Satellite Motion 9.2 Worksheet #3 - Circular and Satellite Motion 1. A car just becomes airborne as it comes off the crest of a bridge that has circular cross section of radius 78.0 m. What is the speed of the car? 2.

More information

Frames of Reference, Energy and Momentum, with

Frames of Reference, Energy and Momentum, with Frames of Reference, Energy and Momentum, with Interactie Physics Purpose: In this lab we will use the Interactie Physics program to simulate elastic collisions in one and two dimensions, and with a ballistic

More information

Astronomy 241: Review Questions #2 Distributed: November 7, 2013

Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Astronomy 241: Review Questions #2 Distributed: November 7, 2013 Review the questions below, and be prepared to discuss them in class. For each question, list (a) the general topic, and (b) the key laws

More information

N12/4/PHYSI/SPM/ENG/TZ0/XX. Physics Standard level Paper 1. Tuesday 13 November 2012 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

N12/4/PHYSI/SPM/ENG/TZ0/XX. Physics Standard level Paper 1. Tuesday 13 November 2012 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES N1/4/PHYSI/SPM/ENG/TZ0/XX 8816504 Physics Standard leel Paper 1 Tuesday 13 Noember 01 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

AP Physics QUIZ Gravitation

AP Physics QUIZ Gravitation AP Physics QUIZ Gravitation Name: 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1

Chapter 13 Gravity Pearson Education, Inc. Slide 13-1 Chapter 13 Gravity Slide 13-1 The plan Lab this week: there will be time for exam problems Final exam: sections posted today; some left out Final format: all multiple choice, almost all short problems,

More information

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group

Physics Kinematics: Projectile Motion. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Kinematics: Projectile Motion Science and Mathematics Education Research Group Supported by UBC Teaching

More information

CH 8. Universal Gravitation Planetary and Satellite Motion

CH 8. Universal Gravitation Planetary and Satellite Motion CH 8 Universal Gravitation Planetary and Satellite Motion Sir Isaac Newton UNIVERSAL GRAVITATION Newton: Universal Gravitation Newton concluded that earthly objects and heavenly objects obey the same physical

More information