Triplespec: Motivations and Design. John Wilson

Size: px
Start display at page:

Download "Triplespec: Motivations and Design. John Wilson"

Transcription

1 Triplespec: Motivations and Design John Wilson

2 Slit Viewer Prisms Slit Collimator Reimager OAP #2 Window Spec Camera Tele Focus Reimager OAP #2 Grating

3 Outline Scientific Rationale Heritage of Triplespec project Partner Institutions (Cornell, JPL, Caltech) Near Duplicates Spectrographs (Palomar, Keck, APO) Design Considerations & Steps

4 Scientific Rationale Triage instrument for efficient NIR spectral follow-up of survey objects (e.g. Spitzer) General Purpose Facility Spectrograph

5 What science can it address? Any project that requires moderate resolution NIR spectroscopy, but it will excel at Identifying objects discovered in surveys (e.g. Spitzer, CHANDRA, 2MASS) Especially Red objects with no visual counterpart such as Spitzer (NASA) Brown Dwarfs NIRSPEC (R~2000) at Keck, 6 grating settings McLean et al. 2003

6 What science can it address? Any project that requires moderate resolution NIR spectroscopy, but it will excel at Identifying objects discovered in surveys (e.g. Spitzer, CHANDRA, 2MASS) Especially Red objects with no visual counterpart such as Spitzer (NASA) High z objects ESI at Keck Balcells, 2003, RevMexAA Conf Series Becker, Fan, White et al. 2001

7 What science can it address? Any project that requires moderate resolution NIR spectroscopy, but it will excel at Identifying objects discovered in surveys (e.g. Spitzer, CHANDRA, 2MASS) Especially Red objects with no visual counterpart such as Spitzer (NASA) Active Galaxies Palomar long-slit infrared spectrograph, R~1000, 3 grating settings Murphy et al 2001 NOAO/E.J. Schreier(STSci)/NASA

8 Scientific Rationale What enables efficiency? Sufficient resolution to avoid airglow effects µm all-at-once Sufficient slit length for nodding point sources Separate NIR slit viewing channel Minimal Moving Parts (only slit mechanism to choose between two slits)

9 Scientific Rationale Resolution to avoid airglow effects, but not too much so avoid being Read Noise limited Martini & DePoy, SPIE, 2000 Martini & DePoy, SPIE, 2000

10 Scientific Rationale

11 Heritage CorMASS (R=300) Triplespec (R=3600) 2048 pix 256 pix 1024 pix 256 pix Wolf-Rayet in Spectrograph 35 dia FOV 4 Jupiter and Satellite in Slit Viewer Palomar 60-inch (13 at APO) slit 4

12 Slit Length Considerations 15 arcsec Solar (sunrise) 0.65 μm Science Object 6 arcsec z J Airglow Thermal (sky) 2.5 μm 2 arcsec K H CorMASS

13 Multiple-Partners Copy 1: Palomar 200-inch Facility Instrument Cornell + JPL Copy 2: Keck 10-meter Facility Instrument Caltech Caltech Copy 3: APO 3.5 meter Facility Instrument UVA Keck Image 2000 WELDON OWEN INC.

14 Multiple-Partners Instruments are cheaper by the dozen, but usually we just build one Share knowledge / expertise Efficient use of collaboration labor Maximize chance of success Share lessons learned during commissioning Copy Commissioning Palomar Summer 06 Keck Summer 06 APO Winter APO copy benefits from lessons learned of first two

15 Same instruments used at such different telescopes? Tailor re-imager to transfer telescope f/# to common f/10.67 Dewar tolerant of various telescope mountings Aperture (m) Mount Re-imager Spec Plate Scale (arcsec/pix) Slit Width (arcsec) Ks Median Seeing (arcsec) Palomar 5 Cass f/16 -> f/ (2.7 pix sampling) 1.2 Keck 10 Bent- Cass f/16 -> f/ (2.7 pix sampling) APO 3.5 Nasmyth f/10.4 -> f/ (2.1 pix sampling, Resolution ~3600) 1.43 (2.7 pix sampling, Resolution ~2700)

16 Optical Design Considerations Meet Science Requirements Design in sections (Reimager, Collimator, Disperser, Camera) Minimize Optical Elements (throughput) Maximize use of reflective optics (chromatism, warm-cold placement) Package Efficiently: Opto-Mechanical Accommodate Back Focal Distances of Telescope(s) Provide cold Lyot Stop (spectral range includes K-band) Minimize $$ for optics Minimize Stray Light (placement of optics) Provide FOV for Slit Viewer

17 Optical Design: Step 1 Strawman Dispersive Section Wavelength Coverage: micron Cannot use grating as cross-disperser since > factor of 2 wavelength span prism Chose grating to give wavelength coverage while minimizing number of orders (preserve slit length) Knew from CorMASS work the type of crossdispersing prisms I would need to give balanced cross-dispersion across wavelength

18 Optical Design: Step 2 Strawman Reimager & Collimator Two options for reimager: Pair of Off-axis paraboloids Offner Relay Collimator fairly simple: Need one Off-axis paraboloid with long enough focal length to produce spot size necessary on grating

19 Optical Design: Step 3 Start talking with optics vendors about choices to firm up design, quote requests Start working with mechanical engineer to package optics inside cryogenic dewar

20 Work in Progress Phase Older Design (Offner & Double-Pass Prism)

21 Work in Progress Phase Older Design (Two OAP s & Prisms in Series)

22 Work in Progress Phase Close to Final Design (as seen from telescope)

23 Work in Progress Phase Final Design (as seen from telescope)

24 Early order Layout Work in Progress Phase

25 Final Optical Design 2048 pix 1024 pix

26 Re-imaging Section Dewar Window Telescope Focus Off Axis Paraboloid 1 Off Axis Paraboloid 2 Reflective Slit Lyot Stop

27 Re-imaging Design for APO 40 mm APO Tele Focus Working to keep Slit for both designs in same place APO Slit Palomar Tele Focus Palomar Slit

28 Collimation & Folds Dewar Window Telescope Focus Reflective Slit Fold Mirror 1 Fold Mirror 2 Collimator (Off Axis Paraboloid)

29 Re-imaging Section Dewar Window Off Axis Paraboloid 1 Off Axis Paraboloid 2 Fold Mirror 1 Fold Mirror 2 Collimator (Off Axis Paraboloid)

30 Cross-Dispersing Prisms (2) ZnSe + (1) Infrasil Spectrograph Fold Mirror 2 Reflection Grating (110.5 l/mm, 22 deg blaze) 7-element Refractive Camera Detector (2 quadrant HAWAII-II)

31 Slit Viewer Reflective Slit Detector (HAWAII-I) Fold Mirror Lens 1 (ZnS, aspheric) Lyot Stop + Ks Filter Lens 2 (ZnS, aspheric)

32 Mechanical Design Considerations Mechanical Design Efficient Packaging: Reduce Weight, Reduce Croyogen Usage, Increase Holdtime (desire > 24 hrs min) Multiple Telescope Use: Spillage Back Focal Distance Minimize Flexure of Instrument Minimize Stray Light

33 Dewar: LN2 Tank Design Novel Crescent shaped design Minimize Overall Dewar Size Accommodate variety of telescope mounting positions (Cass, Bent Cass, Nasmyth) 2-day hold time for half-fill (60 l)

34 Cold Volume: Bulkhead System Bulkheads 1 & 5: Connect Vacuum Shell to Cold Volume Bulkheads 2 4: Optical Bench Allow Alignment / Assembly external to dewar System of spreaders will couple bulkheads

35 Cold Volume: Bulkhead System

36 Thermal Design Sensitivity of CaF 2 to thermal shock High thermal expansion coefficient and low conduction coefficient. Set a maximum allowable stress of 7,000 Mpa at lens cell interface (ael 36.5 Gpa) Max rate of heat extraction at lens cell interface of 4,000 W/m 2. Max cool down rate of 0.30 K /min. Assistance from NOAO NEWFIRM documentation and discussions w/ Ron Probst (NOAO) 4,000 W/m 2 max

37 Lens Retention Axial Lens Retention -Canted coil springs retain optics ~2.2 lb/in at circumference Delrin spacers distribute loads Radial Lens Retention - 3 Point Fit to 6061-T6 housing MMC (min clearance).001 decenter LMC (max clearance) point radial contact to athermalized delrin pins (Adjusted to Fit ) Ref. Relief Zone

38 Crack Tests at Axsys Cornell & Caltech cameras complete, successfully tested OFHC Shorts (typ of 3) Test Dewar G-10 CR Pre-load w/ 30 Belleville Washers (typ of 3)

39 0 Rate of Temp Change adjacent to CaF Thermal Design Measured peak temp change of 0.5 K / min v. design goal of 0.3 K / min Temp Change (K/min) Cool Down #2 temp change prediction Temp (K) Time (sec) midcam coldplate coldring shield prediction 40 hrs to cool lenses met model prediction Time (hrs)

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia Optical/NIR Spectroscopy A3130 John Wilson Univ of Virginia Topics: Photometry is low resolution spectroscopy Uses of spectroscopy in astronomy Data cubes and dimensionality challenge Spectrograph design

More information

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011 Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011 Taft Armandroff, Director W. M. Keck Observatory With science results from: Drew Newman and Richard Ellis, Caltech A. Romanowsky, J. Strader,

More information

SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009

SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009 SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009 Functional Performance Requirements, Expected Performance and Science/Engineering Trades ANDREW SHEINIS UNIVERSITY OF WISCONSIN FPRD OCCD defines the scientific

More information

Hanle Echelle Spectrograph (HESP)

Hanle Echelle Spectrograph (HESP) Hanle Echelle Spectrograph (HESP) Bench mounted High resolution echelle spectrograph fed by Optical Fiber Second generation instrument for HCT The project is a technical collaboration between Indian Institute

More information

PAIRITEL's Telescopes and Cameras: A History...

PAIRITEL's Telescopes and Cameras: A History... PAIRITEL's Telescopes and Cameras: A History... Design, development, and operation of 2MASS The 2MASS Clearance Sale: Trash or Treasure? The Future The Telescope that Almost Wasn't: Part I 2MASS had to

More information

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017

Real Telescopes & Cameras. Stephen Eikenberry 05 October 2017 Lecture 7: Real Telescopes & Cameras Stephen Eikenberry 05 October 2017 Real Telescopes Research observatories no longer build Newtonian or Parabolic telescopes for optical/ir astronomy Aberrations from

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-PS-G0065 The Gemini Instrumentation Program F. C. Gillett, D. A. Simons March 25, 1996 GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona 85719 Phone: (520) 318-8545

More information

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan

Southern African Large Telescope. Prime Focus Imaging Spectrograph. Instrument Acceptance Testing Plan Southern African Large Telescope Prime Focus Imaging Spectrograph Instrument Acceptance Testing Plan Eric B. Burgh University of Wisconsin Document Number: SALT-3160AP0003 Revision 1.0 18 February 2003

More information

Spectroscopy at 8-10 m telescopes: the GTC perspective. Romano Corradi GRANTECAN

Spectroscopy at 8-10 m telescopes: the GTC perspective. Romano Corradi GRANTECAN Spectroscopy at 8-10 m telescopes: the GTC perspective Romano Corradi GRANTECAN Spectroscopy from large ground-based telescope At the vanguard of observational astronomy is a growing family of >8m telescopes:

More information

A very versatile, large A-omega, fibre-fed spectrograph design. Ian Parry IoA, Cambridge

A very versatile, large A-omega, fibre-fed spectrograph design. Ian Parry IoA, Cambridge A very versatile, large A-omega, fibre-fed spectrograph design Ian Parry IoA, Cambridge 1 But first a quick diversion to support Alvio s case NIR multi-object spectroscopy with fibres works! CIRPASS was

More information

Astro 500 A500/L-6 1

Astro 500 A500/L-6 1 Astro 500 1 Find values for WIYN & SALT instr.: Detector gain, read-noise, system efficiency WIYN Ø WHIRC Ø Bench Spectrograph Ø MiniMo Ø OPTIC What did you find? Ø ODI SALT Assignment: Ø SALTCAM v Work

More information

CASE/ARIEL & FINESSE Briefing

CASE/ARIEL & FINESSE Briefing CASE/ARIEL & FINESSE Briefing Presentation to NRC Committee for Exoplanet Science Strategy including material from the ARIEL consortium Mark Swain - JPL 19 April 2019 2018 California Institute of Technology.

More information

CanariCam-Polarimetry: A Dual-Beam 10 µm Polarimeter for the GTC

CanariCam-Polarimetry: A Dual-Beam 10 µm Polarimeter for the GTC Astronomical Polarimetry: Current Status and Future Directions ASP Conference Series, Vol. 343, 2005 Adamson, Aspin, Davis, and Fujiyoshi CanariCam-Polarimetry: A Dual-Beam 10 µm Polarimeter for the GTC

More information

SOFIA Stratospheric Observatory For Infrared Astronomy

SOFIA Stratospheric Observatory For Infrared Astronomy 1 SOFIA Stratospheric Observatory For Infrared Astronomy E.E. Becklin SOFIA Chief Scientist ISSTT 2008 April 28, 2008 2 Outline of Material Overview of SOFIA Progress to Date Science Schedule and Future

More information

Subaru GLAO: Comparisons with Space Missions. I. Iwata (Subaru Telescope) 2011/08/ /05/28 small revisions 2013/06/04 include JWST/NIRISS

Subaru GLAO: Comparisons with Space Missions. I. Iwata (Subaru Telescope) 2011/08/ /05/28 small revisions 2013/06/04 include JWST/NIRISS Subaru GLAO: Comparisons with Space Missions I. Iwata (Subaru Telescope) 2011/08/25 2013/05/28 small revisions 2013/06/04 include JWST/NIRISS Space Missions in Near-Future JWST 6.5m Deployable Mirror,

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

Progress on 1.5m Aperture Telescope and Instruments: Solar UV, Visible and near IR Telescope (SUVIT)

Progress on 1.5m Aperture Telescope and Instruments: Solar UV, Visible and near IR Telescope (SUVIT) Progress on 1.5m Aperture Telescope and Instruments: Solar UV, Visible and near IR Telescope (SUVIT) Y. Suematsu, Y. Katsukawa (NAOJ), K. Ichimoto (Kyoto), T. Shimizu (ISAS) and Solar C/Chromospheresub

More information

The World's Largest (operating) Telescopes.

The World's Largest (operating) Telescopes. The World's Largest (operating) Telescopes http://astro.nineplanets.org/bigeyes.html Subaru (8.2 meter) Subaru (8.2 meter) IRCS (Infrared Camera and Spectrograph 1024x1024 Alladin-2 0.9-5.6um imager 20

More information

NASA GSFC s CHARMS Facility

NASA GSFC s CHARMS Facility NASA GSFC s CHARMS Facility Doug Leviton / NASA GSFC / Optics Branch with Manuel Quijada and Ross Henry what is CHARMS? limits on accuracy in minimum deviation refractometry design approach / measurement

More information

ARIES: Arizona infrared imager and echelle spectrograph

ARIES: Arizona infrared imager and echelle spectrograph ARIES: Arizona infrared imager and echelle spectrograph D. W. McCarthy, J. Burge, R. Angel, J. Ge, R. Sarlot, B. Fitz-Patrick, and J. Hinz Steward Observatory, The University of Arizona, 933 N. Cherry

More information

Astro 500 A500/L-15 1

Astro 500 A500/L-15 1 Astro 500 A500/L-15 1 Lecture Outline Spectroscopy from a 3D Perspective ü Basics of spectroscopy and spectrographs ü Fundamental challenges of sampling the data cube Approaches and example of available

More information

Telescopes, Observatories, Data Collection

Telescopes, Observatories, Data Collection Telescopes, Observatories, Data Collection Telescopes 1 Astronomy : observational science only input is the light received different telescopes, different wavelengths of light lab experiments with spectroscopy,

More information

SALT s Venture into Near Infrared Astronomy with RSS NIR

SALT s Venture into Near Infrared Astronomy with RSS NIR SALT s Venture into Near Infrared Astronomy with RSS NIR Marsha Wolf University of Wisconsin Madison IUCAA RSS VIS future RSS NIR 5 June 2015 SALT Science Conference 2015 2 Robert Stobie Spectrograph 5

More information

FMOS. A Wide-field Multi-Object Infra-red Spectrograph for the Subaru Telescope. David Bonfield, Gavin Dalton

FMOS. A Wide-field Multi-Object Infra-red Spectrograph for the Subaru Telescope. David Bonfield, Gavin Dalton FMOS A Wide-field Multi-Object Infra-red Spectrograph for the Subaru Telescope David Bonfield, Gavin Dalton David Bonfield Oxford University Wide Field NIR Spectroscopy WFCAM, VISTA are about to deliver

More information

Apache Point Observatory

Apache Point Observatory Capabilities Relevant to Time-Domain Astronomy Nancy Chanover (NMSU), Director Ben Williams (UW), Deputy Director 1 From Friday Night! Boyajian s Star 5/20/17 10:34 UTC Brett Morris (UW grad student) triggered

More information

Laboratory Emulation of Observations from Space

Laboratory Emulation of Observations from Space Science with a Wide-field Infrared Telescopes in Space, Pasadena, Feb 13, 2012 of Observations from Space Roger Smith -- Caltech Jason Rhodes, Suresh Seshadri -- JPL Previous culture, friendly collaboration

More information

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi Ground- and Space-Based Telescopes Dr. Vithal Tilvi Telescopes and Instruments Astronomers use telescopes to gather light from distant objects and instruments to record the data Telescopes gather light

More information

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes? Chapter 6 Telescopes: Portals of Discovery What are the most important properties of a telescope? 1. Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light

More information

Report to the GSMT Committee

Report to the GSMT Committee Report to the GSMT Committee P. McCarthy GMT Science Working Group and GMT Board GMT Consortium Status Conceptual Design Review AO Systems GMT Instrument Candidates Instrument properties Potential scientific

More information

Optics and Telescope. Chapter Six

Optics and Telescope. Chapter Six Optics and Telescope Chapter Six ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap.

More information

SPITZER SPACE TELESCOPE

SPITZER SPACE TELESCOPE SPITZER SPACE TELESCOPE The Rationale for Infrared Astronomy reveal cool states of matter explore the hidden Universe provide access to many spectral features probe the early life of the cosmos WANT TO

More information

Astronomical Techniques

Astronomical Techniques Astronomical Techniques Spectrographs & Spectroscopy Spectroscopy What is spectroscopy? A little history. What can we learn from spectroscopy? Play with simple spectrographs. Basic optics of a spectrograph.

More information

GMACS: a Wide Field, Multi-Object, Moderate-Resolution, Optical Spectrograph for the Giant Magellan Telescope

GMACS: a Wide Field, Multi-Object, Moderate-Resolution, Optical Spectrograph for the Giant Magellan Telescope GMACS: a Wide Field, Multi-Object, Moderate-Resolution, Optical Spectrograph for the Giant Magellan Telescope D. L. DePoy a, R. Allen a, R. Barkhouser b, E. Boster a, D. Carona a, A. Harding b, R. Hammond

More information

Instrumentation: Enabling Science in the Ground- Based O/IR System

Instrumentation: Enabling Science in the Ground- Based O/IR System Instrumentation: Enabling Science in the Ground- Based O/IR System For: The 2 nd Community Workshop on the Ground-Based O/IR System Taft Armandroff (NOAO Gemini Science Center) Elements of the Observing

More information

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization François Hénault Institut de Planétologie et d Astrophysique de Grenoble Université Joseph Fourier Centre National

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO David Buckley, SAAO 27 Feb 2012 1 Some other Telescope Parameters 1. Plate Scale This defines the scale of an image at the telescopes focal surface For a focal plane, with no distortion, this is just related

More information

JAMES WEBB SPACE TELESCOPE (JWST) - FINE GUIDENCE SENSOR AND TUNABLE FILTER IMAGER OPTICAL DESIGN OVERVIEW AND STATUS

JAMES WEBB SPACE TELESCOPE (JWST) - FINE GUIDENCE SENSOR AND TUNABLE FILTER IMAGER OPTICAL DESIGN OVERVIEW AND STATUS JAMES WEBB SPACE TELESCOPE (JWST) - FINE GUIDENCE SENSOR AND TUNABLE FILTER IMAGER OPTICAL DESIGN OVERVIEW AND STATUS M.Maszkiewicz Canadian Space Agency, 6767 route de L Aéroport, Saint Hubert, Canada,

More information

GIANO: pre-slit optics & telescope interface

GIANO: pre-slit optics & telescope interface GIANO: pre-slit optics & telescope interface 10 Ago 2010 Page 1 of 15 GIANO: pre-slit optics & telescope interface Version 3.0, 31 August 2010 Authors: Name Affiliation Signature Livia Origlia INAF - Bologna

More information

Overview: Astronomical Spectroscopy

Overview: Astronomical Spectroscopy Overview: Astronomical Spectroscopy or How to Start Thinking Creatively about Measuring the Universe Basic Spectrograph Optics Objective Prism Spectrometers - AESoP Slit Spectrometers Spectrometers for

More information

Optical Spectroscopy with a Near Single-mode Fiber Feed and. Adaptive Optics. Steward Observatory, The University of Arizona, Tucson, AZ USA

Optical Spectroscopy with a Near Single-mode Fiber Feed and. Adaptive Optics. Steward Observatory, The University of Arizona, Tucson, AZ USA Optical Spectroscopy with a Near Single-mode Fiber Feed and Adaptive Optics Jian Ge a, Roger Angel a, Chris Shelton b a Steward Observatory, The University of Arizona, Tucson, AZ 85721 USA b Keck Observatory,

More information

Casey P. Deen, Luke Keller, Kimberly A. Ennico, Daniel T. Jaffe, Jasmina P. Marsh, Joseph D. Adams, Nirbhik Chitrakar, Thomas P. Greene, Douglas J. Mar and Terry Herter, A silicon and KRS-5 grism suite

More information

W. M. Keck Observatory Subaru Users Meeting

W. M. Keck Observatory Subaru Users Meeting W. M. Keck Observatory Subaru Users Meeting Taft Armandroff, Director January 16, 2013 Table of Contents Keck / Subaru Exchange Program Recent Keck Observatory Instrumentation and Adaptive Optics Development

More information

Spectral Interferometry for Broadband UV / Optical Astronomy

Spectral Interferometry for Broadband UV / Optical Astronomy Spectral Interferometry for Broadband UV / Optical Astronomy Jerry Edelstein, Space Sciences Lab, U. California, Berkeley jerrye@ssl.berkeley David Erskine Lawrence Livermore National Laboratory erskine1@llnl.gov

More information

Spitzer Space Telescope

Spitzer Space Telescope Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different

More information

Angle-of-Incidence Effects in the Spectral Performance of the Infrared Array Camera of the Spitzer Space Telescope

Angle-of-Incidence Effects in the Spectral Performance of the Infrared Array Camera of the Spitzer Space Telescope Angle-of-Incidence Effects in the Spectral Performance of the Infrared Array Camera of the Spitzer Space Telescope Manuel A. Quijada a, Catherine Trout Marx b, Richard G. Arendt c and S. Harvey Moseley

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-I-G0057 Principles Behind the Gemini Instrumentation Program M. Mountain, F. Gillett, D. Robertson, D. Simons GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona

More information

Scientific Capability of the James Webb Space Telescope and the Mid-InfraRed Instrument

Scientific Capability of the James Webb Space Telescope and the Mid-InfraRed Instrument Scientific Capability of the James Webb Space Telescope and the Mid-InfraRed Instrument Oliver Krause (Max Planck Institute for Astronomy, Heidelberg) on behalf of Gillian Wright (Royal Observatory Edinburgh)

More information

The MMT Observatory and Time Domain Astronomy. G. Grant Williams Director, MMT Observatory

The MMT Observatory and Time Domain Astronomy. G. Grant Williams Director, MMT Observatory The MMT Observatory and Time Domain Astronomy G. Grant Williams Director, MMT Observatory Introduction Data Handling Current Queue Scheduling Future Public Access Introduction Data Handling Current Queue

More information

The GIANO spectrometer: towards its first light at the TNG

The GIANO spectrometer: towards its first light at the TNG The GIANO spectrometer: towards its first light at the TNG E. Oliva a, L. Origlia b, R. Maiolino c, C. Baffa a, V. Biliotti a, P. Bruno e, G. Falcini a, V. Gavriousev a, F. Ghinassi d, E. Giani a, M. Gonzalez

More information

Grand Canyon 8-m Telescope 1929

Grand Canyon 8-m Telescope 1929 1 2 Grand Canyon 8-m Telescope 1929 3 A World-wide Sample of Instruments 4 Instrumentation Details Instrument name Observing Modes Start of operations Wavelength Coverage Field of View Instrument cost

More information

Why Use a Telescope?

Why Use a Telescope? 1 Why Use a Telescope? All astronomical objects are distant so a telescope is needed to Gather light -- telescopes sometimes referred to as light buckets Resolve detail Magnify an image (least important

More information

ASTR-1010: Astronomy I Course Notes Section VI

ASTR-1010: Astronomy I Course Notes Section VI ASTR-1010: Astronomy I Course Notes Section VI Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Development Status of the DOTIFS Project: a new multi-ifu optical spectrograph for the 3.6m Devasthal Optical Telescope

Development Status of the DOTIFS Project: a new multi-ifu optical spectrograph for the 3.6m Devasthal Optical Telescope ARIES Development Status of the DOTIFS Project: a new multi-ifu optical spectrograph for the 3.6m Devasthal Optical Telescope 2015 Survey Science Group Meeting January, 27, High 1 Speaker: Haeun Chung

More information

Coronagraph Imager with Adaptive Optics (CIAO) for the Subaru 8-m Telescope

Coronagraph Imager with Adaptive Optics (CIAO) for the Subaru 8-m Telescope Coronagraph Imager with Adaptive Optics (CIAO) for the Subaru 8-m Telescope M. Tamura a, H. Suto a, H. Takami a, Y. Itoh c, N. Ebizuka a, K. Murakawa b, N. Kaifu a, N. Takato a, N. Takeyama d, M. Iye a,

More information

ASTR 2310: Chapter 6

ASTR 2310: Chapter 6 ASTR 231: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting

More information

Astronomical Spectroscopy. Michael Cushing

Astronomical Spectroscopy. Michael Cushing Astronomical Spectroscopy Michael Cushing REU Presentation June, 08, 2009 What Is a Spectrum? A stars have Teff ~10 4 K. Continuum H Line Absorption Jacoby et al. (1984, ApJS, 56, 257) What is a Spectrum?

More information

Hubble Science Briefing

Hubble Science Briefing Hubble Science Briefing Delivering JWST Science, from Exoplanets to First Light: The Near-InfraRed Imager and Slitless Spectrograph (NIRISS) March 6, 2014 Alex Fullerton (STScI) 1 Agenda for Today The

More information

Common questions when planning observations with DKIST Jan 30, 2018

Common questions when planning observations with DKIST Jan 30, 2018 Common questions when planning observations with DKIST Jan 30, 2018 1. Can the DKIST instruments work together? All instruments except Cryo-NIRSP can work together and with Adaptive Optics (AO). All can

More information

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 1 CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 8/15/201 7 Overview of the CIRiS instrument and mission The CIRiS instrument is a radiometric thermal

More information

Design and status of a near-infrared multi-object spectrograph for the TAO 6.5-m Telescope

Design and status of a near-infrared multi-object spectrograph for the TAO 6.5-m Telescope Design and status of a near-infrared multi-object spectrograph for the TAO 6.5-m Telescope Masahiro Konishi a, Kentaro Motohara a, Mamoru Doi a, Shigeyuki Sako a,kojitoshikawa a, Natsuko Mitani a,tsutomuaoki

More information

PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS

PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS MATHEMATICAL TRIPOS Part III Monday, 12 June, 2017 1:30 pm to 3:30 pm PAPER 338 OPTICAL AND INFRARED ASTRONOMICAL TELESCOPES AND INSTRUMENTS Attempt no more than TWO questions. There are THREE questions

More information

Luke Keller, Casey P. Deen, Daniel T. Jaffe, Kimberly A. Ennico, Thomas P. Greene, Joseph D. Adams, Terry Herter and Gregory C. Sloan, Progress report on FORCAST grism spectroscopy as a future general

More information

Benefits of Infrared. The Spitzer Space Telescope. Instruments/Components of Spitzer. Cryostat. Infrared Telescope

Benefits of Infrared. The Spitzer Space Telescope. Instruments/Components of Spitzer. Cryostat. Infrared Telescope The Spitzer Space Telescope Benefits of Infrared IR can reveal objects that don't emit visible light IR provides different information than visible light IR is better than visible for viewing cold objects

More information

The GMT Consortium Large Earth Finder. Sagi Ben-Ami Smithsonian Astrophysical Observatory

The GMT Consortium Large Earth Finder. Sagi Ben-Ami Smithsonian Astrophysical Observatory The GMT Consortium Large Earth Finder Sagi Ben-Ami Smithsonian Astrophysical Observatory The Giant Magellan Telescope The GMT is one of the three next generation optical telescope. Segmented Gregorian

More information

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes. Optical Telescope Design. Reflecting Telescope Telescopes The science of astronomy was revolutionized after the invention of the telescope in the early 17th century Telescopes and detectors have been constantly improved over time in order to look at

More information

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS Astronomical Optics Second Edition DANIEL J. SCHROEDER Professor of Physics and Astronomy, Emeritus Department of Physics and Astronomy Beloit College, Beloit, Wisconsin ACADEMIC PRESS A Harcourt Science

More information

NIRMOS: a wide-field near-infrared spectrograph for the Giant Magellan Telescope

NIRMOS: a wide-field near-infrared spectrograph for the Giant Magellan Telescope NIRMOS: a wide-field near-infrared spectrograph for the Giant Magellan Telescope Daniel Fabricant*, Robert Fata, Warren R. Brown, Brian McLeod, Mark Mueller, Thomas Gauron, John Roll, Henry Bergner, John

More information

Engineering Overview and the Key Design Space for MSE

Engineering Overview and the Key Design Space for MSE Engineering Overview and the Key Design Space for MSE 29 to 31 July, 2015 - First Annual MSE Science Team Meeting Kei Szeto, MSE Project Engineer - On behalf of the international design team H. Bai, S.

More information

NEWFIRM Quick Guide for Proposal Preparation

NEWFIRM Quick Guide for Proposal Preparation NEWFIRM Quick Guide for Proposal Preparation Ron Probst NEWFIRM Instrument Scientist September 2008 NEWFIRM is a 1-2.4 micron IR camera for the NOAO 4-m telescopes. It has a flexible complement of broad

More information

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Astronomical Tools Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes Laws of Refraction and Reflection Law of Refraction n 1 sin θ 1

More information

Atmospheric dispersion correction for the Subaru AO system

Atmospheric dispersion correction for the Subaru AO system Atmospheric dispersion correction for the Subaru AO system Sebastian Egner a, Yuji Ikeda b, Makoto Watanabe c,y.hayano a,t.golota a, M. Hattori a,m.ito a,y.minowa a,s.oya a,y.saito a,h.takami a,m.iye d

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

Overview of Instrumentation Programs for Infrared Spectroscopy at the U.Toronto

Overview of Instrumentation Programs for Infrared Spectroscopy at the U.Toronto Overview of Instrumentation Programs for Infrared Spectroscopy at the U.Toronto Dae-Sik Moon (Univ. of Toronto) (S. Sivanandam, E. Meyer, M. Millar-Blanchaer, J. Jilcote, J. Miranda, ) Three Key Elements

More information

FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics

FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics Stephen Eikenberry, Richard Elston, Rafael Guzman, Jeff Julian, S. Nicholas Raines, Nicolas Gruel Department of Astronomy, University

More information

ABSTRACT 1. INSTRUMENT DESCRIPTION

ABSTRACT 1. INSTRUMENT DESCRIPTION EMIR: the GTC NIR multi-object imager-spectrograph F. Garzón *a,b, D. Abreu a, S. Barrera a, S. Correa a, J. J. Díaz a, A.B. Fragoso a, F.J. Fuentes a, F. Gago a, C. González a, P. López a, A. Manescau

More information

The Kunlun Infrared Sky Survey (KISS) with AST3-NIR Camera. Jessica Zheng

The Kunlun Infrared Sky Survey (KISS) with AST3-NIR Camera. Jessica Zheng The Kunlun Infrared Sky Survey (KISS) with AST3-NIR Camera Jessica Zheng 1 KISS First comprehensive exploration of time varying Universe in the Infrared 2MASS, time sensitive SkyMapper, infrared Science

More information

Physics Experimental Astronomy Graduate Course Autumn (Apr- May 2014) Assoc. Prof. Andrew I. Sheinis, Australian Astronomical Observatory

Physics Experimental Astronomy Graduate Course Autumn (Apr- May 2014) Assoc. Prof. Andrew I. Sheinis, Australian Astronomical Observatory Physics 1901 Experimental Astronomy Graduate Course Autumn (Apr- May 2014) Assoc. Prof. Andrew I. Sheinis, Australian Astronomical Observatory Prof. Joss Bland- Hawthorn Sydney Ins@tute for Astronomy Some

More information

Telescopes (Chapter 6)

Telescopes (Chapter 6) Telescopes (Chapter 6) Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on Our planetary system and Jovian planet systems Chapter 5 on Light will be useful for understanding

More information

The WFIRST Coronagraphic Instrument (CGI)

The WFIRST Coronagraphic Instrument (CGI) The WFIRST Coronagraphic Instrument (CGI) N. Jeremy Kasdin Princeton University CGI Adjutant Scientist WFIRST Pasadena Conference February 29, 2016 The Coronagraph Instrument Optical Bench Triangular Support

More information

Astronomy is remote sensing

Astronomy is remote sensing Astronomy is remote sensing We cannot repeat (or change) the Universe in a controlled environment. We cannot make planets, stars, or galaxies. We cannot make the vacuum of space, nor the shape of spacetime

More information

Thermal Design and Analysis

Thermal Design and Analysis Thermal Design and Analysis Sang Park Thermal Engineer July 6 th, 2004 sp 1 Agenda Camera Section Requirements Thermal Design Operational Profile (hold time, observation) Optical Bench Optical Assembly

More information

Wolter Imaging On Z. Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF Diagnostics Workshop, October 5 th 2015

Wolter Imaging On Z. Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF Diagnostics Workshop, October 5 th 2015 Photos placed in horizontal position with even amount of white space between photos and header Wolter Imaging On Z Chris Bourdon, Manager Z Imaging and Spectroscopy Julia Vogel, LLNL; Ming Wu, SNL ICF

More information

INSTRUMENT ACCESS, MAINTENANCE, AND SERVICING REQUIREMENTS DOCUMENT

INSTRUMENT ACCESS, MAINTENANCE, AND SERVICING REQUIREMENTS DOCUMENT NASA IRTF / UNIVERSITY OF HAWAII Document #: RQD-1.3.7.1-01-X.doc Created on : Feb 10/12 Last Modified on : Mar 6/12 INSTRUMENT ACCESS, MAINTENANCE, AND SERVICING REQUIREMENTS DOCUMENT Original Author:

More information

FORCAST: Science Capabili2es and Data Products. William D. Vacca

FORCAST: Science Capabili2es and Data Products. William D. Vacca FORCAST: Science Capabili2es and Data Products William D. Vacca Faint Object infrared Camera for the SOFIA Telescope (FORCAST) SWC (blue) Light from telescope LWC (red) Facility Instrument PI: Terry Herter

More information

Performance predictions for the Robert Stobie Spectrograph near infrared arm on SALT

Performance predictions for the Robert Stobie Spectrograph near infrared arm on SALT Performance predictions for the Robert Stobie Spectrograph near infrared arm on SALT Marsha J. Wolf a*, Andrew I. Sheinis a, Theodore B. Williams b, Kenneth H. Nordsieck a, Matthew A. Bershady a a University

More information

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla

High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla High-resolution échelle at Skalnaté Pleso: future plans and development T. Pribulla Astronomical Institute of the Slovak Academy of Sciences, Tatranská Lomnica, Slovakia PLATOSpec workshop, Ondřejov observatory,

More information

FLAMINGOS-2: The Facility Near-Infrared Wide-field Imager & Multi-Object Spectrograph for Gemini

FLAMINGOS-2: The Facility Near-Infrared Wide-field Imager & Multi-Object Spectrograph for Gemini FLAMINGOS-2: The Facility Near-Infrared Wide-field Imager & Multi-Object Spectrograph for Gemini Stephen Eikenberry, Richard Elston, S. Nicholas Raines, Jeff Julian, Kevin Hanna, David Hon, Roger Julian,

More information

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes Foundations of Astronomy 13e Seeds Chapter 6 Light and Telescopes Guidepost In this chapter, you will consider the techniques astronomers use to study the Universe What is light? How do telescopes work?

More information

The Science Calibration System for the TMT NFIRAOS and Client Instruments: Requirements and Design Studies

The Science Calibration System for the TMT NFIRAOS and Client Instruments: Requirements and Design Studies The Science Calibration System for the TMT NFIRAOS and Client Instruments: Requirements and Design Studies Dae-Sik Moon* a, Luc Simard b, Dafna Sussman a, David Crampton b, Max Millar-Blanchaer a, Raymond

More information

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies ! ASTR 1120 General Astronomy: Stars & Galaxies On to Telescopes!AST CLASS Learning from light: temperature (from continuum spectrum) chemical composition (from spectral lines) velocity (from Doppler shift)

More information

VIRUS: A giant spectrograph

VIRUS: A giant spectrograph VIRUS: A giant spectrograph Nanjing August 17th 2007 A massively replicated spectrograph for the Hobby-Eberly-Telescope Slide 1 VIRUS: Outline A few facts about HET VIRUS-HETDEX, the experiment VIRUS spectrograph

More information

Focusing Optics. From x-ray telescopes to Compact Neutron Sources. Focus. Boris Khaykovich David Moncton Nuclear Reactor Laboratory, MIT

Focusing Optics. From x-ray telescopes to Compact Neutron Sources. Focus. Boris Khaykovich David Moncton Nuclear Reactor Laboratory, MIT Focusing Optics for Neutrons: From x-ray telescopes to Compact Neutron Sources Focus Boris Khaykovich David Moncton Nuclear Reactor Laboratory, MIT Mikhail Gubarev Marshall Space Flight Center, NASA Jeffrey

More information

S. Rukdee 1, L. Vanzi 1, C. Schwab 2, M. Jones 1, M. Flores 1, A. Zapata 1, K. Motohara 3, Y. Yoshii 3, M. Tala 4

S. Rukdee 1, L. Vanzi 1, C. Schwab 2, M. Jones 1, M. Flores 1, A. Zapata 1, K. Motohara 3, Y. Yoshii 3, M. Tala 4 S. Rukdee 1, L. Vanzi 1, C. Schwab 2, M. Jones 1, M. Flores 1, A. Zapata 1, K. Motohara 3, Y. Yoshii 3, M. Tala 4 1. Center of Astro Engineering UC AIUC, Av. Vicuña Mackenna 4860, Macul - Santiago, Chile

More information

Solar Optical Telescope onboard HINODE for Diagnosing the Solar Magnetic Fields

Solar Optical Telescope onboard HINODE for Diagnosing the Solar Magnetic Fields Solar Optical Telescope onboard HINODE for Diagnosing the Solar Magnetic Fields Kiyoshi Ichimoto 1) and HINODE/SOT-team 1) Solar-B Project Office National Astronomical Observatory /NINS 16 th International

More information

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel High contrast imaging at 3-5 microns Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel University of Arizona ABSTRACT The 6.5 m MMT with its integrated deformable

More information

Robert Stobie Prime Focus Imaging Spectrograph Status. On-Sky Grating Spectroscopy Performance: Method

Robert Stobie Prime Focus Imaging Spectrograph Status. On-Sky Grating Spectroscopy Performance: Method Board Papers: * * Robert Stobie Prime Focus Imaging Spectrograph Status On-Sky Performance/ Acceptance Data Package Throughput/ grating performance Still to complete: Fabry Perot, PSF, Polarimetry Fixes

More information

Astr 2310 Thurs. March 3, 2016 Today s Topics

Astr 2310 Thurs. March 3, 2016 Today s Topics Astr 2310 Thurs. March 3, 2016 Today s Topics Chapter 6: Telescopes and Detectors Optical Telescopes Simple Optics and Image Formation Resolution and Magnification Invisible Astronomy Ground-based Radio

More information

Chapter 6 Light and Telescopes

Chapter 6 Light and Telescopes Chapter 6 Light and Telescopes Guidepost In the early chapters of this book, you looked at the sky the way ancient astronomers did, with the unaided eye. In chapter 4, you got a glimpse through Galileo

More information

These notes may contain copyrighted material! They are for your own use only during this course.

These notes may contain copyrighted material! They are for your own use only during this course. Licensed for Personal Use Only DO NOT DISTRIBUTE These notes may contain copyrighted material! They are for your own use only during this course. Distributing them in anyway will be considered a breach

More information