COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Number 6xxx

Size: px
Start display at page:

Download "COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Number 6xxx"

Transcription

1 COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Number 6xxx Konkoly Observatory Budapest 2 December 2016 HU ISSN CORRELATION OF Hα EMISSION FLUX WITH B & V MAGNITUDES IN THE ECLIPSING BINARY VV Cep POLLMANN, E. 1 ; VOLLMANN, W. 2 ; BENNETT, P.D. 3 1 Emil-Nolde Straße 12, Leverkusen, Germany 2 Dammäckergasse 28/D1/20, A-1210 Wien, Austria 3 Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada Abstract VV Cephei (= HR 8383 = HD ) is the brightest eclipsing M supergiant binary (M2 Iab + B0-2? V) in the sky, and is a massive binary with one of the longest known orbital periods (7430 days = years) of any eclipsing system. As such, this binary provides a unique opportunity to study the chromosphere, outer atmosphere and stellar wind of a red supergiant star that is spectroscopically similar to the well-studied, bright star Betelgeuse (α Ori). Near eclipse, VV Cep offers a rare chance to observe lines of sight to the hot companion near eclipse that probe deep into the extended outer atmosphere of the M supergiant star. With the next eclipse beginning in August 2017, and lasting nearly two years ( 650 days) from 1st to 4th contact, an extensive observational campaign is planned. In this paper, we report the discovery of a correlation between the visual brightness and the Hα emission flux in VV Cep out of eclipse. Introduction The VV Cep binary is a red supergiant of mass M, with a hot, presumably main-sequence, early B-type companion of comparable mass. The two stars are sufficiently well separated that Roche lobe mass transfer does not occur at present, and given the high orbital eccentricity (e = 0.346, Wright 1977), probably has not occurred over the evolutionary history of the system. (Orbits of binaries undergoing Roche lobe mass transfer circularize on short timescales). In the ultraviolet (UV), the hot companion appears embedded in a region of circumstellar gas, as inferred from the persistent veiling that obscures the UV photospheric spectrum of the B-star companion. The gas around the companion is probably a result of wind accretion from the massive wind of the M supergiant. In VV Cep, Hα emission is especially prominent, with peak fluxes of times that of the (M star) continuum. This Hα emission exhibits radial velocity behaviour opposite to that of the M supergiant, implying a source near the hot companion (Wright 1977). Even though this emission declines sharply for higher Balmer lines, at times Balmer emission remains visible from levels up to n 16. Balmer continuum emission is often observed at wavelengths shortward of 3700 Å, and sometimes dominates this part of the UV spectrum (Bennett & Bauer 2015). In the UV, lines of Fe II also appear strongly in emission, and are probably pumped by Lyman-α and Lyman-β emission (Bennett & Bauer 2015). The great width of these Fe II emission lines (with wings out to 300 km s 1 ) suggests the lineforming region is in Keplerian rotation around the B star companion, as these velocities are far larger than any other observed in the circumstellar environment of VV Cep. Although the source of the companion s emission spectrum is usually attributed to accretion of circumstellar gas from the M star onto the hot star, it is likely that the emission luminosity comes not from the release of gravitational energy, but from recombination of circumstellar hydrogen photoionized by the B star s Lyman continuum. The Hα emission is variable on both short timescales of 150 days and longer timescales of several years. The slow variability in Hα flux appears to correlate with the orbital separation of the two stars, being larger when the companion is near periastron (Bennett, private communication). However, the cause of the fast, short-term variability was unknown until now.

2 Observations and Results VV Cep is a 5th magnitude system of variable visual brightness, with V magnitudes ranging from Due to its high declination (+64 ), VV Cep is circumpolar and well-suited for year-round observations at northern mid-latitude sites. In preparation for the VV Cep international campaign, contemporaneous observations of B and V band DSLR photometry and Hα emission equivalent width (EW) have been obtained over the past three years. A time series of V photometry from W. Vollmann is shown in Figure 1, and Hα EWs from the ARAS spectroscopy group ( are presented in Figure 2. Figure 1. DSLR V magnitude of VV Cep, observed by W. Vollmann Figure 2. Hα EW of VV Cep, observed by the ARAS Spectroscopy group 2

3 Figure 3 shows the correlation between the Hα emission EW and contemporaneous V photometry of VV Cep for the period January 2014 to October 2016 (JD { ) obtained by W. Vollmann (DSLR, AAVSO & BAV-Germany), B. Hassforther (DSLR, BAV-Germany) and G. Samolyk (CCD, AAVSO data base). We nd the Hα EW is correlated with V magnitude, with a correlation coefficient of R = 0.84 over this period. Although this relationship is reminiscent of the well-known relationship between stellar brightness and Be star emission fluxes (e.g., Harmanec 1983), the cause must be different for VV Cep because most of the visible continuum flux comes from the M supergiant (V 5.0), and not the 7th magnitude B-type companion responsible for the Hα emission. Note that the V band data also includes contributions from the bright Hα emission fluxes, which somewhat complicates interpretation of the results. One way of confrming the correlation of the Figure 3 result is to obtain simultaneous photometry in other bands, e.g., B band. B photometry has the additional advantage that contamination from the weaker Hγ and Hβ Balmer emission lines is much less than from Hα, which contributes significantly to the integrated V-band light of VV Cep. Figure 4 shows a preliminary period analysis of the V photometry of Figure 1, demonstrating that the period of the brightness change lies close to the 150-day period first proposed by Hayasaka et al. (1971). However, many other periods have been reported in the literature over the years: e.g., periods of 60, 110, 114, 116, and 280 days (Graczyk et al. 1999; Saito et al. 1980; McCook et al. 1978; Baldinelli et al. 1979; Pfeiffer et al. 1989). This behaviour suggests the short-term variability is somewhat irregular in nature, and probably has a substantial stochastic component. Indeed, the plot of the V variability, phased to a period days (Figure 4), shows a substantial fraction of this variability remains unexplained by this periodic oscillation. Figure 3. Correlation of VV Cep Hα EW with V magnitude 3

4 Figure 4. Period analysis of the data in Fig. 1; Period = ± 1.2 days W. Vollmann and G. Samolyk also derived B photometry, concurrent with the DSLR V observations (Figure 5). However because of the lower DSLR pixel sensitivity of Vollmann's B photometry, these data are not as precise, nor as accurate, as the V photometry. Vollmann used the Johnson B brightness of the reference stars, but did not transform to the Johnson B system, and therefore there is an offset in the derived B magnitudes compared to Samolyk's more accurate Johnson B magnitudes. Nevertheless, a similar inverse correlation is also seen between the B magnitudes and Hα EW. The addition of this B photometry confirms the inverse nature of the correlation between the Hα emission fluxes and M star brightness shown in Figure 3, derived from a large number of independent DSLR, CCD, and spectroscopic observations by a large number of individual observers over a period of several years. Figure 5. Hα EW vs. DSLR blue (B)-Band Photometry of VV Cep 4

5 Conclusions The observations presented here span the period from JD to JD , corresponding to orbital phases , measured from zero phase at mid-eclipse. The amplitude of the photometric variability is ΔV mag, whereas the amplitude of the total eclipse of the B star is only is ΔV 0.15 mag. The M supergiant is about 2 magnitudes brighter at V than the hot companion. Therefore, changes in disk size and brightness of the B-type companion similar to those observed in Be stars could only result in very limited photometric variability, and so cannot be the cause of the observed V-band photometric variability in VV Cep. Instead, the observed photometric variability must be intrinsic to the M supergiant. The period and photometric amplitude of the variability is quite similar to that resulting from irregular pulsation in other, single late-type supergiants. All of this strongly suggests that the photometric variability observed for VV Cep is intrinsic, and due to irregular pulsation of the M star. In that case, the variable Hα emission flux must be a consequence of the M supergiant's pulsation. One possibility is that the local wind density near the hot companion varies with the change in M star radius over the pulsational cycle, resulting in a higher ambient gas density near the hot star when the M star is at maximum radial extent. This higher circumstellar density results in a more efficient conversion of B-star Lyman continuum photons into Balmer line emission. At maximum radius, the effective temperature of the M star is near minimum, with redder B and V colours, and fainter B and V magnitudes, consistent with the observed Hα-V relation. The cause of the variable emission from the B star companion of VV Cep, and especially the very prominent Hα emission, has remained a mystery for many years. In this paper, we present the first quantitative connection between the variability of the companion's emission flux and the photometric variability of the M supergiant. Furthermore, since the only obvious physical link between these physically separated sources (the VV Cep B and M stars) is the M star wind, we propose that it is the indirect effect of M supergiant pulsation on the wind properties that is responsible for the variability of the Hα (and other Balmer line) emission flux. Therefore, if confirmed by further observation, the prominent Hα emission in VV Cep (and similar stars such as KQ Pup) may provide a useful diagnostic tool for monitoring the behaviour of the supergiant winds in these binaries. Acknowledgements We are grateful to Sara and Carl Sawicki (Alpine, Texas, USA) for their helpful improvements and suggestions in language. We are grateful to the other observers of the ARAS spectroscopy group: J. N. Terry, B. Koch, O. Thizy, E. Betrand, O. Garde, F. Teyssier, T. Lester, J. Foster, Ch. Buil, M. Schwarz, J. Montier, J. J. Boussat, Dong Li, J. Guarro, & D. Hyde, for their contribution of spectra of VV Cep used to determine for the H EW. We wish to thank Bela Hassforther (Deutsche Arbeitsgemeinschaft Veränderliche Sterne, BAV-Germany) for supplying additional V photometry. Finally, we acknowledge, with thanks, the use of variable star observations contributed to the AAVSO International Database by Gerard Samolyk. 5

6 References: Baldinelli, L., Ghedini, S., Marmi, S. 1979, IBVS, 1675 Bennett, P.D., Bauer, W.H. 2015, in Giants of Eclipse: The Zeta Aurigae Stars and Other Binary Systems, Astrophysics and Space Science Library, Vol. 408, ed. T.B. Ake, & E. Griffin, (Heidelberg: Springer), 85 Graczyk, D., Mikolajewski, M., Janowski, J. L. 1999, IBVS, 4679 Harmanec, P., 1983, Hvar Obs. Bull., 7, 55 Hayasaka, T., Saijo, K., Sato, H., Saito, M., Kitamura, M. 1977, Tokyo Astr. Bull. Second Series, 247, 2865 Hutchings, J. B., Wright, K. O. 1971, MNRAS, 155, 203 McCook, G., P., Guinan, E., F. 1978, IBVS, 1385 Pfeiffer, R. J., Maffei, J. C. 1989, BAAS, 21, 792 Saito, M., Sato, H., Saijo, K., Hayasaka, T. 1980, PASJ 32, Wright, K. O. 1977, JRASC, 71, 152 6

VV Cephei Eclipse Campaign 2017/19

VV Cephei Eclipse Campaign 2017/19 VV Cephei Eclipse Campaign 2017/19 Jeffrey L. Hopkins (187283) Hopkins Phoenix Observatory 7812 West Clayton Drive, Phoenix, Arizona USA phxjeff@hposoft.com Philip D. Bennett Department of Astronomy &

More information

The Binary System VV Cephei Eclipse Campaign 2017/2019 OHP-Meeting July 2017

The Binary System VV Cephei Eclipse Campaign 2017/2019 OHP-Meeting July 2017 The Binary System VV Cephei Eclipse Campaign 2017/2019 OHP-Meeting July 2017 Ernst Pollmann International Working Group Active Spectroscopy in Astronomy http://astrospectroscopy.de 3 One of the best known

More information

SAS The Symposium on Telescope Science. Proceedings for the 34th Annual Conference of the Society for Astronomical Sciences

SAS The Symposium on Telescope Science. Proceedings for the 34th Annual Conference of the Society for Astronomical Sciences Proceedings for the 34th Annual Conference of the Society for Astronomical Sciences SAS-2015 The Symposium on Telescope Science Editors: Robert K. Buchheim Jerry L. Foote Dale Mais June 11-13, 2015 Ontario,

More information

Intermediate Report December 2012 Campaign: Photometry and Spectroscopy of P Cyg

Intermediate Report December 2012 Campaign: Photometry and Spectroscopy of P Cyg Intermediate Report December 2012 Campaign: Photometry and Spectroscopy of P Cyg Ernst Pollmann Emil-Nolde-Str. 12, 51375 Leverkusen, Germany; ernst-pollmann@t-online.de Wolfgang Vollmann Dammäckergasse

More information

Photometric and spectroscopic observations of the 2014 eclipse of the complex binary EE Cephei

Photometric and spectroscopic observations of the 2014 eclipse of the complex binary EE Cephei Photometric and spectroscopic observations of the 2014 eclipse of the complex binary EE Cephei David Boyd Variable Star Section, British Astronomical Association, [davidboyd@orion.me.uk] Abstract We report

More information

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Number 6109

COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Number 6109 COMMISSIONS 27 AND 42 OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Number 6109 Konkoly Observatory Budapest 5 June 2014 HU ISSN 0374 0676 LONG-TERM MONITORING OF Hα EMISSION STRENGTH AND PHOTOMETRIC

More information

Mass transfer in Binary-System VV Cep

Mass transfer in Binary-System VV Cep Mass transfer in Binary-System VV Cep Fig: 1 Two of the best known and largest stars in space, which can be found hidden and close together within a dark interstellar cloud of dust in the constellation

More information

Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016

Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016 Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016 David Boyd Variable Star Section, British Astronomical Association, [davidboyd@orion.me.uk]

More information

Determining the magnitudes and spectral types of the components of the binary Mira X Ophiuchi

Determining the magnitudes and spectral types of the components of the binary Mira X Ophiuchi Determining the magnitudes and spectral types of the components of the binary Mira X Ophiuchi David Boyd Variable Star Section, British Astronomical Association, [davidboyd@orion.me.uk] Abstract Several

More information

arxiv:astro-ph/ v1 23 Oct 2002

arxiv:astro-ph/ v1 23 Oct 2002 Evolution of the symbiotic nova RX Puppis J. Mikołajewska, E. Brandi, L. Garcia, O. Ferrer, C. Quiroga and G.C. Anupama arxiv:astro-ph/0210505v1 23 Oct 2002 N. Copernicus Astronomical Center, Bartycka

More information

Observingwith a LISA spectrograph. David Boyd BAAVSS, AAVSO, CBA

Observingwith a LISA spectrograph. David Boyd BAAVSS, AAVSO, CBA Observingwith a LISA spectrograph David Boyd BAAVSS, AAVSO, CBA For me, the appeal of spectroscopy is in its scientific potential Photometry reveals changes in a star s brightness R Scutum Spectroscopy

More information

arxiv:astro-ph/ v1 22 Nov 2000

arxiv:astro-ph/ v1 22 Nov 2000 **TITLE** ASP Conference Series, Vol. **VOLUME**, **PUBLICATION YEAR** **EDITORS** OAO1657 415 : A Missing Link in High Mass X-ray Binaries? arxiv:astro-ph/0011401v1 22 Nov 2000 D.H. Maxwell, A.J. Norton

More information

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. AG Draconis A high density plasma laboratory Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B. Ake p.r.young@rl.ac.uk Overview CHIANTI database Symbiotic Stars AG Draconis FUSE FUSE observations of AG

More information

SPECTROGRAPHIC OBSERVATIONS OF VV CEPHEI DURING INGRESS AND TOTALITY, *

SPECTROGRAPHIC OBSERVATIONS OF VV CEPHEI DURING INGRESS AND TOTALITY, * SPECTROGRAPHIC OBSERVATIONS OF VV CEPHEI DURING INGRESS AND TOTALITY, 1956-57* A. McKellar, K. O. Wright, and J. D. Francis Dominion Astrophysical Observatory Victoria, B.C. In a previous paper, 1 a description

More information

The Periastron Passages of 28 Tau (published at IBVS No. 6199)

The Periastron Passages of 28 Tau (published at IBVS No. 6199) The Periastron Passages of 28 Tau 2012-2015 (published at IBVS No. 6199) Within the time span January 2012 to February 2015 a group of 24 observers of the ARAS community (http://www.astrosurf.com/aras/)

More information

Astr 5465 Feb. 6, 2018 Today s Topics

Astr 5465 Feb. 6, 2018 Today s Topics Astr 5465 Feb. 6, 2018 Today s Topics Stars: Binary Stars Determination of Stellar Properties via Binary Stars Classification of Binary Stars Visual Binaries Both stars visible Only one star visible Spectroscopic

More information

Astronomy 110 Homework #07 Assigned: 03/06/2007 Due: 03/13/2007. Name: (Answer Key)

Astronomy 110 Homework #07 Assigned: 03/06/2007 Due: 03/13/2007. Name: (Answer Key) Astronomy 110 Homework #07 Assigned: 03/06/2007 Due: 03/13/2007 Name: (Answer Key) Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures thus

More information

Astronomy 421. Lecture 8: Binary stars

Astronomy 421. Lecture 8: Binary stars Astronomy 421 Lecture 8: Binary stars 1 Key concepts: Binary types How to use binaries to determine stellar parameters The mass-luminosity relation 2 Binary stars So far, we ve looked at the basic physics

More information

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Family of Stars Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Balmer Thermometer Balmer line strength is sensitive to temperature: Most hydrogen

More information

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D. Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars 8-2 Parallax For nearby stars - measure distances with parallax July 1 AU d p A A A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

More information

Astr 2320 Tues. March 7, 2017 Today s Topics

Astr 2320 Tues. March 7, 2017 Today s Topics Astr 2320 Tues. March 7, 2017 Today s Topics Chapter 13: Stars: Binary Stars Determination of Stellar Properties vi Binary Stars Classification of Binary Stars Visual Binaries Both stars visible Only one

More information

Dr. Reed L. Riddle. Close binaries, stellar interactions and novae. Guest lecture Astronomy 20 November 2, 2004

Dr. Reed L. Riddle. Close binaries, stellar interactions and novae. Guest lecture Astronomy 20 November 2, 2004 Dr. Reed L. Riddle Close binaries, stellar interactions and novae Guest lecture Astronomy 20 November 2, 2004 Gravitational Tides Look at the forces acting on one body orbiting another - more pull on closer

More information

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Chapter 8: The Family of Stars Motivation We already know how to determine a star s surface temperature chemical composition surface density In this chapter, we will learn how we can determine its distance

More information

Chapter 10 Measuring the Stars

Chapter 10 Measuring the Stars Chapter 10 Measuring the Stars Some of the topics included in this chapter Stellar parallax Distance to the stars Stellar motion Luminosity and apparent brightness of stars The magnitude scale Stellar

More information

Photometric Observation and Light Curve Analysis of Binary System ER-Orionis

Photometric Observation and Light Curve Analysis of Binary System ER-Orionis J. Astrophys. Astr. (2010) 31, 97 104 Photometric Observation and Light Curve Analysis of Binary System ER-Orionis M. M. Lame e 1,, B. Javanmardi 2, & N. Riazi 2, 1 Leiden Observatory, Leiden University,

More information

ECLIPSING AND SPECTROSCOPIC BINARY STARS

ECLIPSING AND SPECTROSCOPIC BINARY STARS FINAL YEAR SEMINAR, OLD PROGRAM ECLIPSING AND SPECTROSCOPIC BINARY STARS Author: Franci Gorjup Mentor: Prof. dr. Tomaž Zwitter Ljubljana, December 2013 Abstract: First, we will see, what kind of binary

More information

ASTR Look over Chapter 15. Good things to Know. Triangulation

ASTR Look over Chapter 15. Good things to Know. Triangulation ASTR 1020 Look over Chapter 15 Good things to Know Triangulation Parallax Parsecs Absolute Visual Magnitude Distance Modulus Luminosity Balmer Lines Spectral Classes Hertzsprung-Russell (HR) diagram Main

More information

Young stellar objects and their environment

Young stellar objects and their environment Recent Advances in Star Formation: Observations and Theory ASI Conference Series, 2012, Vol. 4, pp 107 111 Edited by Annapurni Subramaniam & Sumedh Anathpindika Young stellar objects and their environment

More information

The variable nature of the OB star HD13831 Dr. Amira Val Baker. Celebrating Ten Years of Science with STELLA Wednesday 9th November 2016

The variable nature of the OB star HD13831 Dr. Amira Val Baker. Celebrating Ten Years of Science with STELLA Wednesday 9th November 2016 The variable nature of the OB star HD13831 Dr. Amira Val Baker Celebrating Ten Years of Science with STELLA Wednesday 9th November 2016 STELLA robotic telescope Dr Ana Gonzales-Galan Celebrating Ten Years

More information

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION

OGLE-TR-56. Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha INTRODUCTION OGLE-TR-56 Guillermo Torres, Maciej Konacki, Dimitar D. Sasselov and Saurabh Jha Harvard-Smithsonian Center for Astrophysics Caltech, Department of Geological and Planetary Sciences University of California

More information

Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called

Measuring the Stars. The measurement of distances The family of distance-measurement techniques used by astronomers to chart the universe is called Measuring the Stars How to measure: Distance Stellar motion Luminosity Temperature Size Evolutionary stage (H-R diagram) Cosmic distances Mass The measurement of distances The family of distance-measurement

More information

Infrared Spectroscopy of the Black Hole Candidate GRO J

Infrared Spectroscopy of the Black Hole Candidate GRO J Infrared Spectroscopy of the Black Hole Candidate GRO J1655-40 1 Francis T. O Donovan March 19th, 2004 1 Based on a paper by F. T. O Donovan & P. J. Callanan (in preparation). Black Holes in the Sky At

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances Basics, types Evolution Novae Spectra (days after eruption) Nova shells (months to years after eruption) Abundances 1 Cataclysmic Variables (CVs) M.S. dwarf or subgiant overflows Roche lobe and transfers

More information

Binary Stars (continued) ASTR 2120 Sarazin. γ Caeli - Binary Star System

Binary Stars (continued) ASTR 2120 Sarazin. γ Caeli - Binary Star System Binary Stars (continued) ASTR 2120 Sarazin γ Caeli - Binary Star System Visual Binaries: Types of Binary Stars Spectroscopic Binaries: Eclipsing Binaries: Periodic changes in brightness, stars block one

More information

Tidal effects and periastron events in binary stars

Tidal effects and periastron events in binary stars Tidal effects and periastron events in binary stars Gloria Koenigsberger & Edmundo Moreno Universidad Nacional Autónoma de México gloria@fis.unam.mx; edmundo@astroscu.unam.mx December 8, 2008 ABSTRACT

More information

FUSE Observations of a Mira Variable Star

FUSE Observations of a Mira Variable Star Proceedings of 12th Cambridge Workshop on Cool Stars, Stellar Systems, & The Sun, 2003 University of Colorado. FUSE Observations of a Mira Variable Star Donald G. Luttermoser 1, Michael W. Castelaz 2 Abstract.

More information

HOMEWORK - Chapter 17 The Stars

HOMEWORK - Chapter 17 The Stars Astronomy 20 HOMEWORK - Chapter 7 The Stars Use a calculator whenever necessary. For full credit, always show your work and explain how you got your answer in full, complete sentences on a separate sheet

More information

Guiding Questions. Measuring Stars

Guiding Questions. Measuring Stars Measuring Stars Guiding Questions 1. How far away are the stars? 2. What is meant by a first-magnitude or second magnitude star? 3. Why are some stars red and others blue? 4. What are the stars made of?

More information

Universitetski prospect 13, Moscow, , Russia; 2 Faculty of Physics, M. V. Lomonosov Moscow State University,

Universitetski prospect 13, Moscow, , Russia; 2 Faculty of Physics, M. V. Lomonosov Moscow State University, Baltic Astronomy, vol. 25, 317 323, 2016 DETAILS OF THE CLASSIFICATION OF SYMBIOTIC STARS: THE CASE OF THE SYMBIOTIC NOVA AG PEG A. A. Tatarnikova 1, M. A. Burlak 1, D. V. Popolitova 2, T. N. Tarasova

More information

Spectropolarimetry of Beta Lyrae: Constraining the Location of the Hot Spot and Jets

Spectropolarimetry of Beta Lyrae: Constraining the Location of the Hot Spot and Jets Spectropolarimetry of Beta Lyrae: Constraining the Location of the Hot Spot and Jets Jamie R. Lomax 1 and Jennifer L. Hoffman 1 arxiv:1011.3548v1 [astro-ph.sr] 15 Nov 2010 1 University of Denver, Denver,

More information

arxiv: v1 [astro-ph.sr] 26 Mar 2013

arxiv: v1 [astro-ph.sr] 26 Mar 2013 arxiv:1303.6401v1 [astro-ph.sr] 26 Mar 2013 ISSN 1845 8319 A NEW LOOK INTO THE SPECTRAL AND LIGHT VARIATIONS OF ε AUR P. HARMANEC 1, H. BOŽIĆ 2, D. KORČÁKOVÁ 1, L. KOTKOVÁ 3, P. ŠKODA 3, M. ŠLECHTA 3,

More information

Based on papers presented at the 88th and 89th AAVSO Spring meetings; revised Spring 2001

Based on papers presented at the 88th and 89th AAVSO Spring meetings; revised Spring 2001 Schmude et al., JAAVSO Volume 30, 2001 53 PHOTOMETRIC STUDY OF RX CEPHEI Richard W. Schmude, Jr. Joy Jones Benjamin Jimenez Gordon College 419 College Dr. Barnesville, GA 30204 Based on papers presented

More information

The Ultraviolet Spectrum of VV Cephei Out of Eclipse

The Ultraviolet Spectrum of VV Cephei Out of Eclipse PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 112:31È49, 2000 January ( 2000. The Astronomical Society of the PaciÐc. All rights reserved. Printed in U.S.A. The Ultraviolet Spectrum of VV Cephei

More information

Physics Homework Set I Su2015

Physics Homework Set I Su2015 1) The particles which enter into chemical reactions are the atom's: 1) _ A) protons. B) positrons. C) mesons. D) electrons. E) neutrons. 2) Which of the following type of electromagnetic radiation has

More information

125-Day Spectral Record of the Bright Nova Delphini 2013 (V339 Del)

125-Day Spectral Record of the Bright Nova Delphini 2013 (V339 Del) Mooers and Wiethoff, JAAVSO Volume 42, 2014 161 125-Day Spectral Record of the Bright Nova Delphini 2013 (V339 Del) Howard D. Mooers Department of Geological Sciences, University of Minnesota Duluth, Duluth,

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

The 2003 eclipse of EE Cep is coming. A review of past eclipses

The 2003 eclipse of EE Cep is coming. A review of past eclipses A&A 403, 1089 1094 (2003) DOI: 10.1051/0004-6361:20030430 c ESO 2003 Astronomy & Astrophysics The 2003 eclipse of EE Cep is coming A review of past eclipses D. Graczyk 1, M. Mikołajewski 1,T.Tomov 1,D.Kolev

More information

Astronomy 421. Lecture 14: Stellar Atmospheres III

Astronomy 421. Lecture 14: Stellar Atmospheres III Astronomy 421 Lecture 14: Stellar Atmospheres III 1 Lecture 14 - Key concepts: Spectral line widths and shapes Curve of growth 2 There exists a stronger jump, the Lyman limit, occurring at the wavelength

More information

7. BINARY STARS (ZG: 12; CO: 7, 17)

7. BINARY STARS (ZG: 12; CO: 7, 17) 7. BINARY STARS (ZG: 12; CO: 7, 17) most stars are members of binary systems or multiple systems (triples, quadruples, quintuplets,...) orbital period distribution: P orb = 11 min to 10 6 yr the majority

More information

3.4 Transiting planets

3.4 Transiting planets 64 CHAPTER 3. TRANSITS OF PLANETS: MEAN DENSITIES 3.4 Transiting planets A transits of a planet in front of its parent star occurs if the line of sight is very close to the orbital plane. The transit probability

More information

The Wolf-Rayet + O binary WR 140 in Cygnus

The Wolf-Rayet + O binary WR 140 in Cygnus The Wolf-Rayet + O binary WR 140 in Cygnus http://spektroskopie.fg-vds.de Fachgruppe SPEKTROSKOPIE 1. The system The archetype of colliding-wind binary (CWB) systems is the 7.9-year period WR+O binary

More information

Examination paper for FY2450 Astrophysics

Examination paper for FY2450 Astrophysics 1 Department of Physics Examination paper for FY2450 Astrophysics Academic contact during examination: Robert Hibbins Phone: 94 82 08 34 Examination date: 04-06-2013 Examination time: 09:00 13:00 Permitted

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method Indirect Methods: gravitational perturbation of the stellar motion Exoplanets The reflex motion of the star is proportional to M p /M * This introduces an observational bias that favours the detection

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

Black Hole and Host Galaxy Mass Estimates

Black Hole and Host Galaxy Mass Estimates Black Holes Black Hole and Host Galaxy Mass Estimates 1. Constraining the mass of a BH in a spectroscopic binary. 2. Constraining the mass of a supermassive BH from reverberation mapping and emission line

More information

6. Detached eclipsing binaries

6. Detached eclipsing binaries Rolf Kudritzki SS 2015 6. Detached eclipsing binaries 50% of all stars live in binary systems and some of them are eclipsing 1 Rolf Kudritzki SS 2015 classification of binary systems by geometry of equipotential

More information

Evidence of coupling between the thermal and nonthermal emission in the gamma-ray binary LS I through optical observations

Evidence of coupling between the thermal and nonthermal emission in the gamma-ray binary LS I through optical observations Evidence of coupling between the thermal and nonthermal emission in the gamma-ray binary LS I +61 303 through optical observations X. Paredes-Fortuny, M. Ribo, V. Bosch-Ramon, J. Casares, O. Fors, J. Nu

More information

Formation and Evolution of Planetary Systems

Formation and Evolution of Planetary Systems Formation and Evolution of Planetary Systems Meyer, Hillenbrand et al., Formation and Evolution of Planetary Systems (FEPS): First Results from a Spitzer Legacy Science Program ApJ S 154: 422 427 (2004).

More information

BUILDING GALAXIES. Question 1: When and where did the stars form?

BUILDING GALAXIES. Question 1: When and where did the stars form? BUILDING GALAXIES The unprecedented accuracy of recent observations of the power spectrum of the cosmic microwave background leaves little doubt that the universe formed in a hot big bang, later cooling

More information

NAME: VARIABLE STARS. What will you learn in this Lab?

NAME: VARIABLE STARS. What will you learn in this Lab? NAME: VARIABLE STARS What will you learn in this Lab? This lab will cover three of the main types of variable stars that we observe in our night sky: RR Lyrae stars, Cepheid variable stars and Eclipsing

More information

Types of Stars 1/31/14 O B A F G K M. 8-6 Luminosity. 8-7 Stellar Temperatures

Types of Stars 1/31/14 O B A F G K M. 8-6 Luminosity. 8-7 Stellar Temperatures Astronomy 113 Dr. Joseph E. Pesce, Ph.D. The Nature of Stars For nearby stars - measure distances with parallax 1 AU d p 8-2 Parallax A January ³ d = 1/p (arcsec) [pc] ³ 1pc when p=1arcsec; 1pc=206,265AU=3

More information

ASTRONOMY AND ASTROPHYSICS. High resolution spectroscopy of symbiotic stars. V. Orbital and stellar parameters for FG Ser (AS 296)

ASTRONOMY AND ASTROPHYSICS. High resolution spectroscopy of symbiotic stars. V. Orbital and stellar parameters for FG Ser (AS 296) Astron. Astrophys. 353, 952 957 (2000) High resolution spectroscopy of symbiotic stars V. Orbital and stellar parameters for FG Ser (AS 296) ASTRONOMY AND ASTROPHYSICS U. Mürset 1, T. Dumm 1, S. Isenegger

More information

TrES Exoplanets and False Positives: Finding the Needle in the Haystack

TrES Exoplanets and False Positives: Finding the Needle in the Haystack Transiting Extrasolar Planets Workshop ASP Conference Series, Vol. 366, 2007 C. Afonso, D. Weldrake and Th. Henning TrES Exoplanets and False Positives: Finding the Needle in the Haystack F. T. O Donovan

More information

Stars - spectral types

Stars - spectral types Stars - spectral types 1901: Led by Annie Jump Cannon, Harvard astronomers looked at the spectra of >200,000 stars. Classified them as A, B, C etc. Cannon rearranged them into OBAFGKM based on how lines

More information

Lecture 12: Distances to stars. Astronomy 111

Lecture 12: Distances to stars. Astronomy 111 Lecture 12: Distances to stars Astronomy 111 Why are distances important? Distances are necessary for estimating: Total energy released by an object (Luminosity) Masses of objects from orbital motions

More information

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010 Aim Review the characteristics of regions of ionized gas within young massive star forming regions. Will focus the discussion

More information

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

More information

Classification of nova spectra

Classification of nova spectra International Workshop on Stellar Spectral Libraries ASI Conference Series, 2012, Vol. 6, pp 143 149 Edited by Ph. Prugniel & H. P. Singh Classification of nova spectra G. C. Anupama Indian Institute of

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift 17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

More information

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift 17. The Nature of the Stars Parallax reveals stellar distance Stellar distance reveals luminosity Luminosity reveals total energy production The stellar magnitude scale Surface temperature determines stellar

More information

Variable Stars South. Who we are What we do. 2

Variable Stars South. Who we are What we do.   2 Who we are What we do www.variablestarssouth.org 2 We are a group of amateur astronomers. Mainly from Australia New Zealand with a few from other parts of the globe We study stars that vary in brightness

More information

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev Electromagnetic Spectra AST443, Lecture 13 Stanimir Metchev Administrative Homework 2: problem 5.4 extension: until Mon, Nov 2 Reading: Bradt, chapter 11 Howell, chapter 6 Tenagra data: see bottom of Assignments

More information

The orbital period variations of AH Virgins

The orbital period variations of AH Virgins Research in Astron. Astrophys. Vol.0 (20xx) No.0, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics The orbital period variations of AH Virgins Ming

More information

Lecture 21. Stellar Size

Lecture 21. Stellar Size Lecture 21 Stellar Mass; The Main Sequence Visual and Spectroscopic Binaries Mass and the Main Sequence Explaining the Main Sequence Mar 8, 2006 Astro 100 Lecture 21 1 Stellar Size Taking ratios to the

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. The Deaths of Stars The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant. Once the giant phase of a mediummass star ends, it exhales its outer

More information

X-ray and infrared properties of Be/X-ray binary pulsars

X-ray and infrared properties of Be/X-ray binary pulsars Recent Trends in the Study of Compact Objects: Theory and Observation ASI Conference Series, 203, Vol. 8, pp 03 08 Edited by Santabrata Das, Anuj Nandi and Indranil Chattopadhyay X-ray and infrared properties

More information

Astronomy 7A Midterm #1 September 29, 2016

Astronomy 7A Midterm #1 September 29, 2016 Astronomy 7A Midterm #1 September 29, 2016 Name: Section: There are 2 problems and 11 subproblems. Write your answers on these sheets showing all of your work. It is better to show some work without an

More information

Stellar Masses: Binary Stars

Stellar Masses: Binary Stars Stellar Masses: Binary Stars The HR Diagram Again A Diagram for People Q: What is happening here? A: People grow. They are born small, and then grow in height and mass as they age (with a fair bit of individual

More information

National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL

National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL Artist Illustration of Red Giant, White Dwarf and Accretion Disk (Wikimedia) TEAM NUMBER: TEAM

More information

The orbital period variations of AH Virginis

The orbital period variations of AH Virginis RAA 2015 Vol. 15 No. 2, 275 280 doi: 10.1088/1674 4527/15/2/010 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics The orbital period variations of AH Virginis

More information

Measuring star formation in galaxies and its evolution. Andrew Hopkins Australian Astronomical Observatory

Measuring star formation in galaxies and its evolution. Andrew Hopkins Australian Astronomical Observatory Measuring star formation in galaxies and its evolution Andrew Hopkins Australian Astronomical Observatory Evolution of Star Formation Evolution of Star Formation Evolution of Star Formation Evolution of

More information

Revision: Sun, Stars (and Planets) See web slides of Dr Clements for Planets revision. Juliet Pickering Office: Huxley 706

Revision: Sun, Stars (and Planets) See web slides of Dr Clements for Planets revision. Juliet Pickering Office: Huxley 706 Revision: Sun, Stars (and Planets) See web slides of Dr Clements for Planets revision Juliet Pickering Office: Huxley 706 Office hour (Pickering): Thursday 22nd May 12-11 pm Outline overview of first part

More information

Measuring the components of the binary Mira X Ophiuchi. David Boyd

Measuring the components of the binary Mira X Ophiuchi. David Boyd Measuring the components of the binary Mira X Ophiuchi David Boyd X Ophwas Variable Star of the Year in the 2014 BAA Handbook The article included this light curve from observations by John Toone It appears

More information

Star formation : circumstellar environment around Young Stellar Objects

Star formation : circumstellar environment around Young Stellar Objects Bull. Astr. Soc. India (2005) 33, 327 331 Star formation : circumstellar environment around Young Stellar Objects Manoj Puravankara Inter-University Centre for Astronomy and Astrophysics, Pune - 411007,

More information

Binary Nature and Long-Term Variations of g Cassiopeiae

Binary Nature and Long-Term Variations of g Cassiopeiae Publications of the Astronomical Society of the Pacific, 114:1226 1233, 2002 November 2002. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Binary Nature and Long-Term Variations

More information

1 of 6 5/2/2015 6:12 PM

1 of 6 5/2/2015 6:12 PM 1 of 6 5/2/2015 6:12 PM 1. What is parallax? The distance to an object, measured in parsecs. The difference between the apparent and absolute magnitude. The apparent shift in POSITION of an object caused

More information

Observations of Pulsating Stars

Observations of Pulsating Stars Observations of Pulsating Stars Noel Richardson April 15, 2008 1 Introduction Pulsating stars are stars that show some sort of instability, often which can be called vibration or oscillation just as easily

More information

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax The Family of Stars Chapter 13 Measuring the Properties of Stars 1 Those tiny glints of light in the night sky are in reality huge, dazzling balls of gas, many of which are vastly larger and brighter than

More information

Short-period cataclysmic variables at Observatorio Astronomico Nacional IA UNAM.

Short-period cataclysmic variables at Observatorio Astronomico Nacional IA UNAM. Contrib. Astron. Obs. Skalnaté Pleso 43, 294 299, (214) Short-period cataclysmic variables at Observatorio Astronomico Nacional IA UNAM. S. Zharikov Observatorio Astronomico Nacional, Instituto de Astronomia,

More information

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc.

Chapter 15 Lecture. The Cosmic Perspective Seventh Edition. Surveying the Stars Pearson Education, Inc. Chapter 15 Lecture The Cosmic Perspective Seventh Edition Surveying the Stars 15.1 Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Sun. Sirius. Tuesday, February 21, 2012

Sun. Sirius. Tuesday, February 21, 2012 Spectral Classification of Stars Sun Sirius Stellar Classification Spectral Lines H Fe Na H Ca H Spectral Classification of Stars Timeline: 1890s Edward C. Pickering (1846-1919) and Williamina P. Fleming

More information

Analysis of the rich optical iron-line spectrum of the x-ray variable I Zw 1 AGN 1H

Analysis of the rich optical iron-line spectrum of the x-ray variable I Zw 1 AGN 1H Analysis of the rich optical iron-line spectrum of the x-ray variable I Zw 1 AGN 1H0707 495 H Winkler, B Paul Department of Physics, University of Johannesburg, PO Box 524, 2006 Auckland Park, Johannesburg,

More information

Astronomy 102: Stars and Galaxies Final Exam Review Problems Revision 2

Astronomy 102: Stars and Galaxies Final Exam Review Problems Revision 2 Astronomy 102: Stars and Galaxies Final Exam Review Problems Revision 2 Multiple Choice Questions: The first eight questions are multiple choice. Except where explicitly noted, only one answer is correct

More information