J. K. Hargreaves, 1 D. L. Detrick, and T. J. Rosenberg

Size: px
Start display at page:

Download "J. K. Hargreaves, 1 D. L. Detrick, and T. J. Rosenberg"

Transcription

1 Radio Science, Volume 26, Number 4, Pages , July-August 1991 Space-time structure of auroral radio absorption events observed with the imaging riometer at south pole J. K. Hargreaves, 1 D. L. Detrick, and T. J. Rosenberg Institute for Physical Science and Technology, University of Maryland, College Park (Received July 9, 1990; accepted December 17, 1990) An imaging riometer system comprising 49 independent beams has been operathag at South Pole station since January A study of intense, short-duration events from the premidnight sector has defined their typical shape as elliptical, with axial ratio 2.3 oriented along the local L shell. The space-time evolution shows rapid intensifications of the moving absorption patches. INTRODUCTION ray of 64 crossed dipoles, 49 independent beams are formed simultaneously by means of a network built up from 15 Butler matrices. The beam width For more than 25 years the riometer has been a depends on the elevation and is 13' between 3-dB standard instrument for monitoring the incidence points for the overhead beams. Adjacent beams of abnormal radio absorption in the D region [Hargreaves, 1969], and it has been well established that in touch between the 3- and 6-dB levels. Projected to auroral regions most of the sporadic absorption the lower ionosphere at 90 km altitude (Figure 1), the inner beams are about 20 km across and the events are due to energetic (> 20 kev) electrons outer are wider and more elongated. The whole penetrating below 100 km. For practical reasons, array covers 200 to 300 km; for comparison, the most riometer installations use a relatively small dotted circle in Figure 1 shows the area viewed by a antenna with the consequence that the spatial resolution is about 100 km and smaller structures in the typical wide-beam riometer. absorption are not resolved. In order to achieve fin- The signals received from the 49 beams are recorder resolution, some narrow-beam systems, having ed by rapid switching into seven riometers. The dwell larger antennas, have been constructed lnsar/, 1964; time for each step is about 1/8 S, and the whole array Berkey, 1968; Theander, 1972; Nielsen and Axford, is scanned every second. The data are recorded digi- 1977; Nielsen, 1980; Kikuchi et al., 1988]. Whereas tally, and are averaged to 10 s for the present analysis. the earlier systems formed a single beam, Nielsen and collaborators employed the Butler [1966] matrix to The instrument operates at a radio frequency of form several beams from a single array Ml-Iz. Following standard riometer technique, it At the south pole the "imaging riometer for ionois necessary to derive 49 quiet-day curves instead of spheric studies," IRIS, has taken the concept of the only one. (See Ktishnaswarny et al. [1985] and Detn'ck multiple beam riometer to a further level of sophis- and Rosenberg [1990] for further discussion of the tication [Detn'ck and Rosenberg, 1990]. From an ar- calculation of quiet-day curves and examples derived from the IRIS data.) However, there are several outstanding advantages. Compared with most standard riometers, the IRIS covers a wider area, has better spatial resolution, achieves excellentemporal resolasso at Environmental Science Division, Univer- lution, can measure the spatial size of absorption sity of Lancaster, Lancaster, England. patches up to 200 km across, and can observe their motion. With only a single beam, one cannot say Copyright 1991 by the American Geophysical Union. whether a change of absorption is due to a movement of the absorbing region or to a true change of Paper number 91 RS intensity. The IRIS enables us to examine this ques /91 / 91 RS tion for different kinds of events. 925

2 926 HARGREAVES ET AL.: AURORAL RADIO ABSORPTION EVENTS STUDY OF INTENSE, SHORT-DURATION EVENTS OCCURRING BEFORE MIDNIGHT Quicklook Statistically, the absorption events observed at the south pole fall into two groups, one before midnight IRIS // Ionospheric // / if..,. Projection / / Ok N Fig. 1. IRIS beams projected to 90 km altitude as viewed from above the ionosphere. The dotted cir- cle is the field of view of a conventional broadbeam riometer. The indicated directions are referenced to a magnetic compass. and the other before noon [Hargreaves et al., 1964]. Quick look plots show that the premidnight group contains some short but intense events, often with spiky appearance, and three have been selected for study (Table 1). Two points immediately stand out. First, in each case the greatest absorption seen in any of the narrow beams is considerably larger than that in the wide beam, and this means that the precipitation was not uniform over the field of view of the wide-beam riometer. Second, the first event is remarkable for its intensity; 8.9 db at 38.2 MHz is equivalento 14.4 db at 30 MHz, making this possibly the most intense event of the auroral kind that has yet been reported. (Note that the absorption levels quoted in this paper have not been corrected for nonlinearity in the response of the riometer receivers or for the influence of the D region temperature. Corrected values would be 10 to 20% higher for each effect in the case of a 10-dB absorption measured from a riometer quiet level corresponding to a radio sky temperature of 10,000 K and D region temperature of 250 K.) Earlier studies of large nightside auroral absorption events at the south pole have shown that the absorption can be accounted for by intense fluxes of electrons in the 10- to 100-keV energy range [Imhof et al., 1984; Rosenberg et al., 1987]. Figure 2 compares the event as seen by the widebeam riometer and by one of the narrow beams, and this comparison emphasizes that the event contains fine structure that is not visible to a wide-beam riometer. The importance of the location and scale size of the region of auroral precipitation on broadbeam measurements has been discussed previously by Hargreaves et al. [1979]. This work showed the effects of the antenna reception pattern, ½onvolved with the geometry of the electron precipitation region, on measured auroral absorption. A recent extension of this work was presented by Van Bavel et al. [1989], demonstrating that the imaging riometer can be used TABLE 1. Selected Events Event Date Time, UT Peak Absorption Peak Absorption Wide Beam, db IRIS, db Ratio I July 22, May 18, Feb 24,

3 HARGREAVES ET AL.: AURORAL RADIO ABSORPTION EVENTS MHz Riometer IRIS (b) 0 I I I I ß I UT, South Pole 22 July, 1988 Fig. 2. (a) Wide and (b) narrow beam observations of sharp event on July 22, The inset in Figure 2b identifies which IRIS beam (solid square) is plotted. to model, and verify, the absorption which should be expected from a broadbeam instrument. Propera'es at the maxima A contour plot of the absorption at the peak of the event of July 22 (Figure 3) shows a roughly elliptical 1.75 /, i, i ' I I I I ' km, LW absorption patch measuring about 150 x 60 km between absorption levels half that at the peak. The patch is dearly not circular, but neither is it a highly elongated strip. It has sometimes been supposed that events of this type (high intensity, short duration, premidnight) might be extended strips or bands that move rapidly across the observing beam. That is not so in this case, and the events of May 18 and February 24 present similar results. Table 2 gives the median values from 23 measurements taken during the growth and decay of these three events. To consider the possible significance of the axial ratio, we suppose that the energetic particle precipitation producing the absorption is due to an active region in the magnetosphere situated near the nose TABLE 2. Median Results Value Major dimension 205 km _1.75/, I I, I I, I, I, Distance in 100 km Fig. 3. Contour plot of absorption patch at peak of event on July 22, 1988, as viewed from above. Minor dimension 85 km Axial ratio 2.3 Orientation 65*

4 928 HARGREAVES ET AL.' AURORAL RADIO ABSORPTION EVENTS 0.25 "" ' ' I, I, I, I, I, I, Distance in 100 km Fig. 4. Contour plot of absorption patch on February 24, 1988, showing orientation along L shell as viewed from above. of the field line passing through the antenna. A circular region of diameter D, at the nose of the field line, maps in along the dipole field lines to an elliptical patch at the Earth's surface, having dimension y = D/L 3/ andx = D/(L3/ (4-3/L) /z) in the zonal and the meridional directions, respectively, where L is the usual L parameter. The axial ratio x/y = (4-3/L) /z). At the south pole, L - 13, giving x/y = This compares tolerably with the observed value of 2.3, though the comparison could obviously be refined by more realistic field line modeling. The circular active region in the magnetosphere would be 8000 to 9000 km in diameter. The orientation of the south pole IRIS was set by magneti compass, and the markings SWNE on Figure 1 are approximate directions. Computed L shells show that L = 13.2 (invariant latitude-74') passes virtually through the center of the beam pattern at an angle of 73' measured dockwise from the S-N line. This is almost the same as the measured orientation of the absorption patches (Table 2). Figure 4 illustrates a contour plot from the event of February 24 for which the orientation was about average. There 50- July 22 May 18 Feb 24 I I t I I I I I I I I I I I I i I ,043 9,9,30 9,9,31 I I I I I I 2235 UT UT UT Fig. 5. Relations between event magnitude and area.

5 HARGREAVES ET AL.' AURORAL RADIO ABSORPTION EVENTS O O I [ I i [ [ ] I [ [ ' l Absorption (db) ABOVE o-6.o BELOW 0.5 Time (10 s) Fig. 6. Event of July 22, 1988, plotted against S-N distance and time. is to the top. South (poleward) is some variation in the orientation from event to event, but the data are not sufficient to indicate any systematic variation with season or time of day. Finally, it appears that for each of the events studied there is a relation between the magnitude of the event and its area (Figure 5), where the area is defined by the contour of absorption half that of the peak. In each example the event covers the smallest area while at its most intense, suggesting that the additional precipitation is confined to a more localized region. Dynamics Each of the events showed movement and, although the movements are not simple, it is dear that they were not in themselves responsible for the growth and decay of the major absorption as observed. In each case the peak absorption (Table 1) was due to an intensification lasting about 1 min, and the absorption patch did not move very far in that time. However, if we look over a longer period, then movements can be seen. In Figure 6 a cross section of the absorption taken from the seven beams along the S-N axis is plotted againstime. This plot, for the July 22 event, covers 193 km in distance and 15 min of time at 10-s resolution. The event moved into the field of view from the equatorward side (north), rapidly intensified and decayed (at point 47), and retreated toward the equator. The events of May 18 and February 24 were similar in so far that intensifications of short dura- tion occurred within a longer period showing movements, though each was different in detail. CONCLUSIONS The IRIS at the south pole is able to resolve spatial detail in ionospheric radio absorption regions down to 20 km and temporal detail to 1 s. A study of three intense short-duration events has shown that the precipitation region is elliptical, typically 205 x 85 km. The axial ratio of 2.3 and the orientation near the local L shell (on average) are consistent with a source region about 8000 km across in the magnetosphere near the nose of the local field line. The area covered by the event tends to shrink as the event intensifies. Movements of the absorbing patches can be ob- served but the intense events studied here are due to short-lived intensifications of absorption rather than to movement of steady absorption over the riometer beam. Acknowledgments. The IRIS project from design to installation was supported by NSF grant DPP Operation and maintenance of the instrument, as well as data processing and analysis, are being supported by NSF grants DPP and DPP One of us (J.K.H.) wishes to thank the Institute for Physical Science and Technology

6 930 HARGREAVES ET AL.: AURORAL RADIO ABSORPTION EVENTS for the support of several visits to the University of Maryland during various phases of the project. REFERENCES tense electron precipitation spike over the southern polar cap, J. Geophys. Res., 89, 10,837, Kikuchi, T., H. Yamagishi, and N. Sato, Eastward propagation of CNA pulsations of Pc 4-5 periods in the morning sector observed with scanning narrow beam riometer at L = 6.1, Geophys. Res. Lett., 15, 168, Krishnaswamy, S., D. L. Detrick, and T. J. Rosenberg, The inflection point method of determining riometer quiet-day curves, Radio Sci., 20, 123, Nielsen, E., Dynamics and spatial scale of auroral absorption spikes associated with the substorm expansion phase, J. Geophys. Res., 85, 2092, Nielsen, E., and W. I. Axford, Small scale auroral absorption events associated with substorms, Nature, 267, 502, Rosenberg, T. J., D. L. Detrick, P. F. Mizera, D. J. Gorney, F. T. Berkey, R. H. Eather, and L. J. Lanzerotti, Coordinated ground and space measurements of an auroral surge over South Pole, J. Geophys. Res., 92, 11,123, Theander, A., Studies of auroral absorption substorms, K/runa Geophys. Observ. Rep., 723, 1, Ansari, Z. A., The aurorally associated absorption of cosmic noise at College, Alaska, J. Geophys. Res., 69, 4493, Berkey, F. T., Coordinated measurements of auroral absorption and luminosity using the narrow beam technique, J. Geophys. Res., 73, 319, Butler, J. L., Digital, matrix and intermediate frequency scanning, Microwave Scanning Antennas, vol. 3, Array Systems, edited by R.C. Hansen, p. 262, Academic, San Diego, Calif., Detrick, D. L., and T. J. Rosenberg, A phased-array radiowave imager for studies of cosmic noise absorption, Radio Sci., 25, 325, Hargreaves, J. K., Auroral absorption of HF radio waves in the ionosphere -A review of results from the first decade of riometry, Proc. IEEE, 57, 1348, Hargreaves, J. K., H. J. A. Chivers, and J. D. Petlock, A study of auroral absorption events at the South Van Bavel, G., D. L. Detrick, T. J. Rosenberg, and Pole, 1, Characteristics of the events, J. Geophys. D. Venkatesan, The influence of spatial nonuni- Res., 69, 5001, formity and motion on the frequency dependence Hargreaves, J. K., H. J. A. Chivers, and E. Nielsen, of auroral absorption, Eos Trans. A GU, 70, 1250, Properties of spike events in auroral radio absorption, J. Geophys. Res., 84, 4245, Imhof, W. L., T. J. Rosenberg, L. J. Lanzerotti, J. B. Reagan, H. D. Voss, D. W. Daftowe, J. R. Kilner, D. L. Detrick, J. K. Hargreaves, and T. J. Rosen- E. E. Gaines, J. Mobilia, and R. G. Joiner, A coor- berg, Institute for Physical Science and Technology, dinated satellite and groundbased study of an in- University of Maryland, College Park, MD

Application of polar cap absorption events to the calibration of riometer systems

Application of polar cap absorption events to the calibration of riometer systems RADIO SCIENCE, VOL. 37, NO. 3, 1035, 10.1029/2001RS002465, 2002 Application of polar cap absorption events to the calibration of riometer systems J. K. Hargreaves Department of Communication Systems, University

More information

Small-Scale Structure of Ionospheric Absorption of Cosmic Noise During Pre-Onset and Sharp Onset Phases of an Auroral Absorption Substorm

Small-Scale Structure of Ionospheric Absorption of Cosmic Noise During Pre-Onset and Sharp Onset Phases of an Auroral Absorption Substorm Geophysica (1999), 35(1-2), 45-57 Small-Scale Structure of Ionospheric Absorption of Cosmic Noise During Pre-Onset and Sharp Onset Phases of an Auroral Absorption Substorm Hilkka Ranta 1, Aarne Ranta 1

More information

Study of Solar Proton Event Observed using Riometers

Study of Solar Proton Event Observed using Riometers Proceedings of the National Symposium on Current trends in Atmospheric Research including Communication And Navigation aspects (CARCAN-), Vignana Bharathi Institute of Technology, Hyderabad, A.P. December

More information

Relationship of Oscillating Aurora to Substorms and Magnetic Field Line Resonances

Relationship of Oscillating Aurora to Substorms and Magnetic Field Line Resonances Proceedings ICS-6, 2002 Relationship of Oscillating Aurora to Substorms and Magnetic Field Line Resonances James A. Wanliss and Robert Rankin Department of Physics, University of Alberta Edmonton, AB,

More information

Observing SAIDs with the Wallops Radar

Observing SAIDs with the Wallops Radar Observing SAIDs with the Wallops Radar Raymond A. Greenwald, Kjellmar Oksavik, J. Michael Ruohoniemi, and Joseph Baker The Johns Hopkins University Applied Physics Laboratory SuperDARN-Storms New Technologies--Antenna

More information

Electron Polar Cap and the Boundary oœ Open Geomagnetic Field Lines

Electron Polar Cap and the Boundary oœ Open Geomagnetic Field Lines VOL. 77, NO. 28 JOURNAL OF GEOPHYSICAL RESEARCH OCTOBER 1, 1972 Electron Polar Cap and the Boundary oœ Open Geomagnetic Field Lines L. C. EVANS 1 AND E. C. STONE 2 California Institute o[ Technology, Pasadena,

More information

Response of morning auroras and cosmic noise absorption to the negative solar wind pressure pulse: A case study

Response of morning auroras and cosmic noise absorption to the negative solar wind pressure pulse: A case study ÓPTICA PURA Y APLICADA. www.sedoptica.es Sección Especial: 37 th AMASON / Special Section: 37 th AMASON Aurora Response of morning auroras and cosmic noise absorption to the negative solar wind pressure

More information

Total ozone decrease in the Arctic after REP events

Total ozone decrease in the Arctic after REP events Ann. Geophysicae 18, 332±336 (2000) Ó EGS ± Springer-Verlag 2000 Total ozone decrease in the Arctic after REP events V. C. Roldugin 1, M. I. Beloglazov 1, G. F. Remenets 2 1 Polar Geophysical Institute,

More information

A comparison of two different techniques for deriving the quiet day curve from SARINET riometer data

A comparison of two different techniques for deriving the quiet day curve from SARINET riometer data Ann. Geophys., 30, 1159 1168, 2012 doi:10.5194/angeo-30-1159-2012 Author(s) 2012. CC Attribution 3.0 License. Annales Geophysicae A comparison of two different techniques for deriving the quiet day curve

More information

Auroral Disturbances During the January 10, 1997 Magnetic Storm

Auroral Disturbances During the January 10, 1997 Magnetic Storm Auroral Disturbances During the January 10, 1997 Magnetic Storm L. R. Lyons and E. Zesta J. C. Samson G. D. Reeves Department of Atmospheric Sciences Department of Physics NIS-2 Mail Stop D436 University

More information

Dayside Red Auroras at Very High latitudes: The Importance of Thermal Excitation

Dayside Red Auroras at Very High latitudes: The Importance of Thermal Excitation Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 1984 Dayside Red Auroras at Very High latitudes: The Importance of Thermal Excitation Vincent B. Wickwar Utah State University

More information

The Solar wind - magnetosphere - ionosphere interaction

The Solar wind - magnetosphere - ionosphere interaction The Solar wind - magnetosphere - ionosphere interaction Research seminar on Sun-Earth connections Eija Tanskanen Friday January 27, 2006 12-14 a.m., D115 Outline 1. Basics of the Earth s magnetosphere

More information

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle.

cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle. Chapter 5 The Inner Magnetosphere 5.1 Trapped Particles The motion of trapped particles in the inner magnetosphere is a combination of gyro motion, bounce motion, and gradient and curvature drifts. In

More information

ON THE PERIODIC MODULATION OF ENERG TitleELECTRONS IN THE MAGNETOSPHERIC SKI REGION.

ON THE PERIODIC MODULATION OF ENERG TitleELECTRONS IN THE MAGNETOSPHERIC SKI REGION. ON THE PERIODIC MODULATION OF ENERG TitleELECTRONS IN THE MAGNETOSPHERIC SKI REGION Author(s) SAKURAI, Kunitomo Citation Special Contributions of the Geophy University (1967), 7: 15-21 Issue Date 1967-12

More information

Andrew Keen, Inari, Finland 18 Feb º C spaceweather.com

Andrew Keen, Inari, Finland 18 Feb º C spaceweather.com ESS 7 Lecture 17 May 14, 2010 The Aurora Aurora Amazing Light Show Andrew Keen, Inari, Finland 18 Feb 2010-31º C spaceweather.com Athabasca Aurora Oct 3 2003 Courtesy Mikko Syrjäsuo There is a Long Record

More information

MODELING PARTICLE INJECTIONS TEST PARTICLE SIMULATIONS. Xinlin Li LASP, University of Colorado, Boulder, CO , USA

MODELING PARTICLE INJECTIONS TEST PARTICLE SIMULATIONS. Xinlin Li LASP, University of Colorado, Boulder, CO , USA 1 MODELING PARTICLE INJECTIONS TEST PARTICLE SIMULATIONS Xinlin Li LASP, University of Colorado, Boulder, CO 80303-7814, USA ABSTRACT We model dispersionless injections of energetic particles associated

More information

Effect of the Interplanetary Magnetic Field Y Component on the High latitude Nightside Convection

Effect of the Interplanetary Magnetic Field Y Component on the High latitude Nightside Convection Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 1985 Effect of the Interplanetary Magnetic Field Y Component on the High latitude Nightside Convection O. de la Beaujardiere

More information

Simultaneous Observations of E-Region Coherent Backscatter and Electric Field Amplitude at F-Region Heights with the Millstone Hill UHF Radar

Simultaneous Observations of E-Region Coherent Backscatter and Electric Field Amplitude at F-Region Heights with the Millstone Hill UHF Radar Simultaneous Observations of E-Region Coherent Backscatter and Electric Field Amplitude at F-Region Heights with the Millstone Hill UHF Radar J. C. Foster and P. J. Erickson MIT Haystack Observatory Abstract

More information

A LOOK INSIDE THE AURORAL ZONE by Carl Luetzelschwab K9LA

A LOOK INSIDE THE AURORAL ZONE by Carl Luetzelschwab K9LA A LOOK INSIDE THE AURORAL ZONE by Carl Luetzelschwab K9LA (this article appeared in the ARRL s Antenna Compendium Volume 7) Ever wonder what s going on in the auroral zone when the magnetic indices are

More information

Ionospheric Scintillation Impact Report: South African SKA Site

Ionospheric Scintillation Impact Report: South African SKA Site NW RA NorthWest Research Associates, Inc. University of Arizona Science and Technology Park : South African SKA Site Prepared for the University of Manchester, Jodrell Bank Centre for Astrophysics NWRA

More information

1 Introduction. Cambridge University Press Physics of Space Plasma Activity Karl Schindler Excerpt More information

1 Introduction. Cambridge University Press Physics of Space Plasma Activity Karl Schindler Excerpt More information 1 Introduction Space plasma phenomena have attracted particular interest since the beginning of the exploration of space about half a century ago. Already a first set of pioneering observations (e.g.,

More information

V.L.F. Emissions and Geomagnetic Disturbances at the Auroral Zone

V.L.F. Emissions and Geomagnetic Disturbances at the Auroral Zone V.L.F. Emissions and Geomagnetic Disturbances at the Auroral Zone By Hachiroe ToKUDA Geophysical Institute, Kyoto University (Read, November 22, 1961; Received Feb. 28, 1962) Abstract Some studies of the

More information

Substorms: Externally Driven Transition to Unstable State a few Minutes Before Onset

Substorms: Externally Driven Transition to Unstable State a few Minutes Before Onset Substorms: Externally Driven Transition to Unstable State a few Minutes Before Onset L. R. Lyons 1, I. O Voronkov 2, J. M. Ruohoniemi 3, E. F. Donovan 4 1 Department of Atmospheric Sciences, University

More information

Ionospheric Tomography II: Ionospheric Tomography II: Applications to space weather and the high-latitude ionosphere

Ionospheric Tomography II: Ionospheric Tomography II: Applications to space weather and the high-latitude ionosphere Ionospheric Tomography II: Ionospheric Tomography II: Applications to space weather and the high-latitude ionosphere Why tomography at high latitudes? Why tomography at high latitudes? Magnetic field railway

More information

Understanding Solar Indices

Understanding Solar Indices Understanding Solar Indices By Ken Larson KJ6RZ Long distance HF radio communications is made possible by a region of charged particles in the Earth s upper atmosphere, 30 to 200 miles above the Earth

More information

Practice Questions: Seasons #1

Practice Questions: Seasons #1 1. Seasonal changes on Earth are primarily caused by the A) parallelism of the Sun's axis as the Sun revolves around Earth B) changes in distance between Earth and the Sun C) elliptical shape of Earth's

More information

Conjugate observations of traveling convection vortices: The field-aligned current system

Conjugate observations of traveling convection vortices: The field-aligned current system JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1306, doi:10.1029/2002ja009456, 2002 Conjugate observations of traveling convection vortices: The field-aligned current system D. L. Murr and W. J. Hughes

More information

12. Low Latitude A.urorae on October 21, I

12. Low Latitude A.urorae on October 21, I No. 3] Proc. Japan Acad., 66, Ser. B (199) 47 12. Low Latitude A.urorae on October 21, 1989. I By Hiroshi MIYAOKA, *) Takeo HIRASAWA, *) Kiyohumi and Yoshihito TANAKA**> (Communicated by Takesi NAGATA,

More information

Possible eigenmode trapping in density enhancements in Saturn s inner magnetosphere

Possible eigenmode trapping in density enhancements in Saturn s inner magnetosphere Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L04103, doi:10.1029/2006gl028647, 2007 Possible eigenmode trapping in density enhancements in Saturn s inner magnetosphere J. D. Menietti,

More information

Two-dimensional structure of auroral poleward boundary intensifications

Two-dimensional structure of auroral poleward boundary intensifications JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A11, 1350, doi:10.1029/2001ja000260, 2002 Two-dimensional structure of auroral poleward boundary intensifications E. Zesta, 1 E. Donovan, 2 L. Lyons, 1 G.

More information

Predicted Diurnal Variations of Electron Density for Three High-Latitude Incoherent Scatter Radars

Predicted Diurnal Variations of Electron Density for Three High-Latitude Incoherent Scatter Radars DigitalCommons@USU All Physics Faculty Publications Physics 1982 Predicted Diurnal Variations of Electron Density for Three High-Latitude Incoherent Scatter Radars Jan Josef Sojka Robert W. Schunk Follow

More information

Magnetospheric Currents at Quiet Times

Magnetospheric Currents at Quiet Times Magnetospheric Currents at Quiet Times Robert L. McPherron Institute of Geophysics and Planetary Physics University of California Los Angeles Los Angeles, CA 90095-1567 e-mail: rmcpherron@igpp.ucla.edu

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

Global-scale electron precipitation features seen in UV and X rays during substorms

Global-scale electron precipitation features seen in UV and X rays during substorms Global-scale electron precipitation features seen in UV and X rays during substorms N. Østgaard, 1 J. Stadsnes, 1 and J. Bjordal 1 R. R. Vondrak 2 and S. A Cummer 2 D. L. Chenette 3 G. K. Parks 4 and M.

More information

Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective

Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective Sub-Auroral Electric Fields: An Inner Magnetosphere Perspective Bob Spiro Rice University 2005 GEM/CEDAR Tutorial 1 Introduction/Outline Introduction/Outline Importance of Sub-Auroral E-Fields Early Models

More information

Planned talk schedule. Substorm models. Reading: Chapter 9 - SW-Magnetospheric Coupling from Russell book (posted)

Planned talk schedule. Substorm models. Reading: Chapter 9 - SW-Magnetospheric Coupling from Russell book (posted) Reading: Chapter 9 - SW-Magnetospheric Coupling from Russell book (posted) Today: Example of dynamics/time variation Review of intro to auroral substorms Substorm models How do we know a substorm is occurring?

More information

Estimates of the Suprathermal O + outflow characteristic energy and relative location in the auroral oval

Estimates of the Suprathermal O + outflow characteristic energy and relative location in the auroral oval Estimates of the Suprathermal O + outflow characteristic energy and relative location in the auroral oval L. Andersson, W. K. Peterson and K. M. McBryde Laboratory for Atmospheric and Space Physics, University

More information

Effect of Solar Flare X-Rays on digisonde fmin values. S. C. Tripathi H. Haralambous

Effect of Solar Flare X-Rays on digisonde fmin values. S. C. Tripathi H. Haralambous Effect of Solar Flare X-Rays on digisonde fmin values S. C. Tripathi H. Haralambous SOLAR FLARE Solar flares occur when the sun's magnetic field twists up and reconnects, blasting energy outward and superheating

More information

The Two-Dimensional Structure of Auroral Poleward Boundary Intensifications (PBI)

The Two-Dimensional Structure of Auroral Poleward Boundary Intensifications (PBI) The Two-Dimensional Structure of Auroral Poleward Boundary Intensifications (PBI) E. Zesta 1, E. Donovan 2, L. Lyons 1, G. Enno 2, J. S. Murphree 2, and L. Cogger 2 1 Department of Atmospheric Sciences,

More information

SuperDARN E-region backscatter boundary in the dusk-midnight sector tracer of equatorward boundary of the auroral oval

SuperDARN E-region backscatter boundary in the dusk-midnight sector tracer of equatorward boundary of the auroral oval Annales Geophysicae (22) 2: 1899 194 c European Geosciences Union 22 Annales Geophysicae SuperDARN E-region backscatter boundary in the dusk-midnight sector tracer of equatorward boundary of the auroral

More information

MAIN (MULTISCALE AURORA IMAGING NETWORK) AURORAL CAMERAS: OVERVIEW OF EVENTS OBSERVED DURING LAST WINTER SEASONS. Boris V. Kozelov

MAIN (MULTISCALE AURORA IMAGING NETWORK) AURORAL CAMERAS: OVERVIEW OF EVENTS OBSERVED DURING LAST WINTER SEASONS. Boris V. Kozelov MAIN (MULTISCALE AURORA IMAGING NETWORK) AURORAL CAMERAS: OVERVIEW OF EVENTS OBSERVED DURING LAST WINTER SEASONS Boris V. Kozelov Polar Geophysical Institute, Apatity, Murmansk region, 184209; e-mail:

More information

Azimuthal structures of ray auroras at the beginning of auroral substorms

Azimuthal structures of ray auroras at the beginning of auroral substorms GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L23106, doi:10.1029/2009gl041252, 2009 Azimuthal structures of ray auroras at the beginning of auroral substorms K. Sakaguchi, 1 K. Shiokawa, 1 and E. Donovan 2 Received

More information

Observation of aurora at South Pole Station: A past, present and future perspective

Observation of aurora at South Pole Station: A past, present and future perspective Observation of aurora at South Pole Station: A past, present and future perspective NIPR symposium on conjugate aurora and SuperDARN past, present and future Feb 16 17, 2012 Yusuke Ebihara RISH, Kyoto

More information

A LOOK AT PROPAGATION FOR THE 2017/2018 CONTEST SEASON

A LOOK AT PROPAGATION FOR THE 2017/2018 CONTEST SEASON A LOOK AT PROPAGATION FOR THE 2017/2018 CONTEST SEASON Frank Donovan W3LPL Carl Luetzelschwab K9LA 1 THANKS TO THE WWROF FOR SPONSORING THIS WEBINAR wwrof.org And thanks to Ken K4ZW for facilitating this

More information

Dynamic geomagnetic rigidity cutoff variations during a solar proton event

Dynamic geomagnetic rigidity cutoff variations during a solar proton event Dynamic geomagnetic rigidity cutoff variations during a solar proton event Craig J. Rodger Department of Physics, University of Otago, Dunedin, New Zealand Mark A. Clilverd Physical Sciences Division,

More information

INNER MAGNETOSPHERE PLASMA DENSITIES. Bodo W. Reinisch and Xueqin Huang

INNER MAGNETOSPHERE PLASMA DENSITIES. Bodo W. Reinisch and Xueqin Huang XA0303034 INNER MAGNETOSPHERE PLASMA DENSITIES Bodo W. Reinisch and Xueqin Huang Environmental, Earth, and Atmospheric Sciences Department, Centerfor Atmospheric Research, University of Massachusetts Lowell,

More information

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus In June 2015, the Sun emitted several M-Class flares over a 2-day period. These flares were concurrent with

More information

Convection dynamics and driving mechanism of a small substorm during dominantly IMF By+, Bz+ conditions

Convection dynamics and driving mechanism of a small substorm during dominantly IMF By+, Bz+ conditions GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L08803, doi:10.1029/2003gl018878, 2004 Convection dynamics and driving mechanism of a small substorm during dominantly IMF By+, Bz+ conditions Jun Liang, 1 G. J.

More information

Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica Annales Geophysicae (2004) 22: 1633 1648 SRef-ID: 1432-0576/ag/2004-22-1633 European Geosciences Union 2004 Annales Geophysicae Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

More information

Elliptical LWA Station Configurations Optimized to Minimize Side Lobes.

Elliptical LWA Station Configurations Optimized to Minimize Side Lobes. Elliptical LWA Station Configurations Optimized to Minimize Side Lobes. Leonid Kogan (NRAO), Aaron Cohen (NRL) and Emil Polisensky(NRL) June 24, 28 ABSTRACT An elliptical station, elongated in the north-south

More information

Combined THEMIS and ground-based observations of a pair of substorm-associated electron precipitation events

Combined THEMIS and ground-based observations of a pair of substorm-associated electron precipitation events JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja016933, 2012 Combined THEMIS and ground-based observations of a pair of substorm-associated electron precipitation events Mark A. Clilverd,

More information

The Structure of the Magnetosphere

The Structure of the Magnetosphere The Structure of the Magnetosphere The earth s magnetic field would resemble a simple magnetic dipole, much like a big bar magnet, except that the solar wind distorts its shape. As illustrated below, the

More information

Combined THEMIS and ground-based observations of a pair of

Combined THEMIS and ground-based observations of a pair of 1 2 Combined THEMIS and ground-based observations of a pair of substorm associated electron precipitation events 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Mark A. Clilverd British Antarctic Survey, Cambridge,

More information

AURORA: GLOBAL FEATURES

AURORA: GLOBAL FEATURES AURORA: GLOBAL FEATURES Jean-Claude Gérard LPAP Université de Liège OUTLINE - collisional processes involved in the aurora - remote sensing of auroral electron energy - Jupiter - Saturn MOP meeting - 2011

More information

G. Balasis (1), I. A. Daglis (1,2), M. Georgiou (1,2), C. Papadimitriou (1,2), E. Zesta (3), I. Mann (4) and R. Haagmans (5)

G. Balasis (1), I. A. Daglis (1,2), M. Georgiou (1,2), C. Papadimitriou (1,2), E. Zesta (3), I. Mann (4) and R. Haagmans (5) G. Balasis (1), I. A. Daglis (1,2), M. Georgiou (1,2), C. Papadimitriou (1,2), E. Zesta (3), I. Mann (4) and R. Haagmans (5) (1) IAASARS-National Observatory of Athens; (2) University of Athens; (3) NASA;

More information

Small Scale Structures and Motions of Auroral Signatures as Observed From the Ground: a Planned Field Study Using Camera and Radar Observations

Small Scale Structures and Motions of Auroral Signatures as Observed From the Ground: a Planned Field Study Using Camera and Radar Observations Small Scale Structures and Motions of Auroral Signatures as Observed From the Ground: a Planned Field Study Using Camera and Radar Observations Preliminary Results for Return Current Region Structures

More information

ESS 200C Aurorae. Lecture 15

ESS 200C Aurorae. Lecture 15 ESS 200C Aurorae Lecture 15 The record of auroral observations dates back thousands of years to Greek and Chinese documents. The name aurora borealis (latin for northern dawn) was coined in 1621 by P.

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 87. NO. A4, PAGES , APRIL 1, 1982

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 87. NO. A4, PAGES , APRIL 1, 1982 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 87. NO. A4, PAGES 2301-2310, APRIL 1, 1982 FIELD-ALIGNED ION STREAMS IN THE EARTH'S MIDNIGHT REGION Richard Christopher Olsen Department of Physics, University of

More information

The statistical dependence of auroral absorption on geomagnetic and solar wind parameters

The statistical dependence of auroral absorption on geomagnetic and solar wind parameters Annales Geophysicae () : 77 7 SRef-ID: 13-57/ag/--77 European Geosciences Union Annales Geophysicae The statistical dependence of auroral absorption on geomagnetic and solar wind parameters A. J. Kavanagh

More information

Research Institute of Atmospherics, Nagoya University, Toyokawa, Aichi 442, Japan. (Received August 20, 1982; Revised February 2, 1983)

Research Institute of Atmospherics, Nagoya University, Toyokawa, Aichi 442, Japan. (Received August 20, 1982; Revised February 2, 1983) J. Geomag. Geoelectr., 35, 29-38, 1983 Recent Measurements of Electrical Conductivity and Ion Pair Production Rate, and the Ion-Ion Recombination Coefficient Derived from Them in the Lower Stratosphere

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

VENUS: DETAILED MAPPING OF MAXWELL MONTES REGION

VENUS: DETAILED MAPPING OF MAXWELL MONTES REGION VENUS: DETAILED MAPPING OF MAXWELL MONTES REGION Yu. N. Alexandrov, A. A. Crymov, V. A. Kotelnikov, G. M. Petrov, O. N. Rzhiga, A. I. Sidorenko, V. P. Sinilo, A. I. Zakharov, E. L. Akim, A. T. Basilevski,

More information

arxiv: v1 [physics.space-ph] 21 Jan 2019

arxiv: v1 [physics.space-ph] 21 Jan 2019 Cosmic Noise Absorption During Solar Proton Events in WACCM-D and Riometer Observations Erkka Heino 1,2, Pekka T. Verronen 3, Antti Kero 4, Niilo Kalakoski 3, Noora Partamies 1,5 arxiv:1901.06884v1 [physics.space-ph]

More information

Joule heating and nitric oxide in the thermosphere, 2

Joule heating and nitric oxide in the thermosphere, 2 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015565, 2010 Joule heating and nitric oxide in the thermosphere, 2 Charles A. Barth 1 Received 14 April 2010; revised 24 June 2010; accepted

More information

Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes. J. F. Fennell 1 and P. T.

Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes. J. F. Fennell 1 and P. T. Mission to Understand Electron Pitch Angle Diffusion and Characterize Precipitation Bands and Spikes J. F. Fennell 1 and P. T. O Brien 2 1 The Aerospace Corporation, MS:M2-260, P.O.Box 92957, Los Angeles,

More information

Nonlinear stability of the near-earth plasma sheet during substorms

Nonlinear stability of the near-earth plasma sheet during substorms 9 Nonlinear stability of the near-earth plasma sheet during substorms P. Dobias, J. A. Wanliss, and J. C. Samson 1. Introduction Abstract: We analyze a nonlinear stability of the near-earth plasma sheet

More information

Microwave-induced thermoacoustic tomography using multi-sector scanning

Microwave-induced thermoacoustic tomography using multi-sector scanning Microwave-induced thermoacoustic tomography using multi-sector scanning Minghua Xu, Geng Ku, and Lihong V. Wang a) Optical Imaging Laboratory, Biomedical Engineering Program, Texas A&M University, 3120

More information

Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 2. Application to different storm phases

Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 2. Application to different storm phases JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013420, 2008 Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 2. Application to

More information

Comparison between POES energetic electron precipitation observations and

Comparison between POES energetic electron precipitation observations and 1 2 Comparison between POES energetic electron precipitation observations and riometer absorptions; implications for determining true precipitation fluxes 3 4 Craig J. Rodger Department of Physics, University

More information

Relation of Substorm Breakup Arc to other Growth-Phase Auroral Arcs

Relation of Substorm Breakup Arc to other Growth-Phase Auroral Arcs Relation of Substorm Breakup Arc to other Growth-Phase Auroral Arcs by L. R. Lyons Department of Atmospheric Sciences University of California, Los Angeles Los Angeles, CA 90095-1565 I. O. Voronkov Dept.

More information

Lesson 2: Auroral oval and precipita4on within the oval. AGF 351 Op4cal methods in auroral physics research UNIS,

Lesson 2: Auroral oval and precipita4on within the oval. AGF 351 Op4cal methods in auroral physics research UNIS, Lesson 2: Auroral oval and precipita4on within the oval AGF 351 Op4cal methods in auroral physics research UNIS, 24. 25.11.2011 Anita Aikio University of Oulu Finland Photo: J. Jussila Regions in which

More information

Detailed analysis of a substorm event on 6 and 7 June 1989: 2. Stepwise auroral bulge evolution during expansion phase

Detailed analysis of a substorm event on 6 and 7 June 1989: 2. Stepwise auroral bulge evolution during expansion phase JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A12, 1480, doi:10.1029/2001ja009129, 2002 Detailed analysis of a substorm event on 6 and 7 June 1989: 2. Stepwise auroral bulge evolution during expansion

More information

EXTREMELY QUIET 2009 STATE OF GEOMAGNETIC FIELD AS A REFERENCE LEVEL FOR AMPLITUDE OF THE LOCAL GEOMAGNETIC DISTURBANCES

EXTREMELY QUIET 2009 STATE OF GEOMAGNETIC FIELD AS A REFERENCE LEVEL FOR AMPLITUDE OF THE LOCAL GEOMAGNETIC DISTURBANCES EXTREMELY QUIET 2009 STATE OF GEOMAGNETIC FIELD AS A REFERENCE LEVEL FOR AMPLITUDE OF THE LOCAL GEOMAGNETIC DISTURBANCES A.E. Levitin, L.I. Gromova, S.V. Gromov, L.A. Dremukhina Pushkov Institute of Terrestrial

More information

Relation of substorm breakup arc to other growth-phase auroral arcs

Relation of substorm breakup arc to other growth-phase auroral arcs JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A11, 1390, doi:10.1029/2002ja009317, 2002 Relation of substorm breakup arc to other growth-phase auroral arcs L. R. Lyons, 1 I. O. Voronkov, 2 E. F. Donovan,

More information

In-Situ vs. Remote Sensing

In-Situ vs. Remote Sensing In-Situ vs. Remote Sensing J. L. Burch Southwest Research Institute San Antonio, TX USA Forum on the Future of Magnetospheric Research International Space Science Institute Bern, Switzerland March 24-25,

More information

FAST Observations of Ion Outflow Associated with Magnetic Storms

FAST Observations of Ion Outflow Associated with Magnetic Storms FAST Observations of Ion Outflow Associated with Magnetic Storms J. P. McFadden 1, Y. K. Tung 1, C. W. Carlson 1, R. J. Strangeway 2, E. Moebius 3, and L. M. Kistler 3 New observations from the FAST mission

More information

Characteristics of the storm-induced big bubbles (SIBBs)

Characteristics of the storm-induced big bubbles (SIBBs) JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006ja011743, 2006 Characteristics of the storm-induced big bubbles (SIBBs) Hyosub Kil, 1 Larry J. Paxton, 1 Shin-Yi Su, 2 Yongliang Zhang, 1 and

More information

Simulating the Ionosphere, one electron at a time.

Simulating the Ionosphere, one electron at a time. Simulating the Ionosphere, one electron at a time. Meers Oppenheim CEDAR June 2016 Research supported by NSF, NASA, AFRL, and DOE Grants What? Plasma Physics Particle-in-Cell Simulations Two Examples:

More information

Copyright , Larry Randall, d/b/a The NRE Group All Rights Reserved

Copyright , Larry Randall, d/b/a The NRE Group All Rights Reserved NEAR VERTICAL INCIDENCE SKYWAVE (NVIS) Larry Randall -WA5BEN The NRE Group larry@nregroup.net Revision: 1.6 Issue Date: 06 Nov 2014 Copyright 2007 2015, Larry Randall, d/b/a The NRE Group All Rights Reserved

More information

A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO

A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO Phillip C. Anderson Space Science Applications Laboratory The Aerospace Corporation PO Box 92957 M2/260 Los Angeles, CA 90009-2957 ph:

More information

New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation

New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 5833 5837, doi:10.1002/2013gl058546, 2013 New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation L. W. Blum, 1,2 Q. Schiller,

More information

Earth Moon Motions A B1

Earth Moon Motions A B1 Earth Moon Motions A B1 1. The Coriolis effect provides evidence that Earth (1) rotates on its axis (2) revolves around the Sun (3) undergoes cyclic tidal changes (4) has a slightly eccentric orbit 9.

More information

Statistical relationships between cosmic radio noise absorption and ionospheric electrical conductances in the auroral zone

Statistical relationships between cosmic radio noise absorption and ionospheric electrical conductances in the auroral zone JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007ja012519, 2007 Statistical relationships between cosmic radio noise absorption and ionospheric electrical conductances in the auroral zone A.

More information

Magnetospherically-Generated Ionospheric Electric Fields

Magnetospherically-Generated Ionospheric Electric Fields Magnetospherically-Generated Ionospheric Electric Fields Stanislav Sazykin Rice University sazykin@rice.edu June 26, 2005 Sazykin--Ionospheric E-Fields--CEDAR Student Workshop 1 Overall Magnetospheric

More information

Record Charging Events from Applied Technology Satellite 6

Record Charging Events from Applied Technology Satellite 6 Record Charging Events from Applied Technology Satellite 6 R. C. Olsen* University of Alabama, Huntsville, Alabama Applied Technology Satellite 6 regularly charged to large negative potentials in sunlight

More information

discovers a radio-quiet gamma-ray millisecond Journal Group

discovers a radio-quiet gamma-ray millisecond Journal Group Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar @CHEA Journal Group Contribution of the paper Contribution of the paper Millisecond Pulsars (MSPs) Ver y rapid rotating neutron star

More information

Solar Radiophysics with HF Radar

Solar Radiophysics with HF Radar Solar Radiophysics with HF Radar Workshop on Solar Radiophysics With the Frequency Agile Solar Radiotelescope (FASR) 23-25 May 2002 Green Bank, WV Paul Rodriguez Information Technology Division Naval Research

More information

Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF)

Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF) GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L03202, doi:10.1029/2004gl021392, 2005 Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF) Keiichiro Fukazawa and Tatsuki Ogino

More information

Contents of this file Text S1-S3. Figures S1-S2. Tables S1-S2.

Contents of this file Text S1-S3. Figures S1-S2. Tables S1-S2. Journal of Geophysical Research (Space Physics) Supporting Information for Cassini Plasma Observations of Saturn's Magnetospheric Cusp Jamie M. Jasinski, 1,2,3 Christopher S. Arridge, 4 Andrew J. Coates,

More information

Imaging Capability of the LWA Phase II

Imaging Capability of the LWA Phase II 1 Introduction Imaging Capability of the LWA Phase II Aaron Cohen Naval Research Laboratory, Code 7213, Washington, DC 2375 aaron.cohen@nrl.navy.mil December 2, 24 The LWA Phase I will consist of a single

More information

Variability of dayside convection and motions of the cusp/cleft aurora

Variability of dayside convection and motions of the cusp/cleft aurora Variability of dayside convection and motions of the cusp/cleft aurora Article Published Version Lockwood, M., Moen, J., Cowley, S. W. H., Farmer, A. D., Løvhaug, U. P., Lühr, H. and Davda, V. N. (1993)

More information

A plasmapause like density boundary at high latitudes in Saturn s magnetosphere

A plasmapause like density boundary at high latitudes in Saturn s magnetosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044466, 2010 A plasmapause like density boundary at high latitudes in Saturn s magnetosphere D. A. Gurnett, 1 A. M. Persoon, 1 A. J. Kopf, 1 W.

More information

Observations of high-velocity SAPS-like flows with the King Salmon SuperDARN radar

Observations of high-velocity SAPS-like flows with the King Salmon SuperDARN radar Ann. Geophys., 24, 1591 1608, 2006 European Geosciences Union 2006 Annales Geophysicae Observations of high-velocity SAPS-like flows with the King Salmon SuperDARN radar A. V. Koustov 1, R. A. Drayton

More information

2014 Utah NASA Space Grant Consortium Symposium 1

2014 Utah NASA Space Grant Consortium Symposium 1 2014 Utah NASA Space Grant Consortium Symposium 1 Rayleigh Scatter Lidar Observations of the Midlatitude Mesosphere's Response to Sudden Stratospheric Warmings Leda Sox 1, Vincent B. Wickwar 1, Chad Fish

More information

Toward Scatter Classification at Middle Latitudes

Toward Scatter Classification at Middle Latitudes Toward Scatter Classification at Middle Latitudes E. S. Miller and E. R. Talaat Geospace and Earth Science Group Johns Hopkins University Applied Physics Laboratory 31 May 2011 SuperDARN Network SuperDARN

More information

The Auroral Zone: Potential Structures in Field and Density Gradients

The Auroral Zone: Potential Structures in Field and Density Gradients The Auroral Zone: Potential Structures in Field and Density Gradients David Schriver May 8, 2007 Global Kinetic Modeling: week 10 Foreshock (week 3) Auroral zone (week 7) (week 8) Radiation Belt (week

More information

Key features of >30 kev electron precipitation during high speed solar wind streams: A superposed epoch analysis

Key features of >30 kev electron precipitation during high speed solar wind streams: A superposed epoch analysis JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011ja017320, 2012 Key features of >30 kev electron precipitation during high speed solar wind streams: A superposed epoch analysis A. J. Kavanagh,

More information

Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 R E

Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 R E JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. A9, PAGES 15,133-15,140, SEPTEMBER I, 1990 Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 R E D. N. BAKER NASA Goddard Space

More information

EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR ACTIVITY YEARS

EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR ACTIVITY YEARS SINET: ETHIOP. J. SCI., 26(1):77 81, 2003 Faculty of Science, Addis Ababa University, 2003 ISSN: 0379 2897 Short communication EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information