Status of the Siemens IONTRIS Particle Therapy Systems: Marburg, Kiel and Shanghai

Size: px
Start display at page:

Download "Status of the Siemens IONTRIS Particle Therapy Systems: Marburg, Kiel and Shanghai"

Transcription

1 IONTRIS Particle Therapy Systems Status of the Siemens IONTRIS Particle Therapy Systems: Marburg, Kiel and Shanghai Peter Urschütz SIEMENS Healthcare Particle Therapy Siemens AG All rights reserved.

2 IONTRIS Particle Therapy Systems Outline The Siemens IONTRIS Particle Therapy System Projects HIT Heidelberg PTZ Marburg NRoCK Kiel ShaPHIH Shanghai Summary Page 2

3 IONTRIS Particle Therapy Systems Siemens History in Particle Therapy 2003 Siemens decided to provide combined proton & heavier ion systems Siemens entered technology transfer contract with GSI: Access to accelerator design for Heidelberg HIT Project; synchrotron based solution (design of IONTRIS accelerator system derived from GSI design for HIT, modifications were applied) Build on experience from GSI carbon therapy pilot project 2004 Joint development of Siemens with Danfysik/DK (industrial partner with strong accelerator background) 2005 Order: Patient environment for HIT, Heidelberg 2006 Order: Complete PT equipment for RKA, Marburg 2007 Order: Treatment planning system for CNAO, Pavia 2008 Order: Complete facility (PT and conventional therapy) for NRoCK, Kiel Acquisition of PT branch of Danfysik 2009 Order: Complete PT equipment for ShaPHIH, Shanghai Page 3

4 IONTRIS Particle Therapy Systems Accelerator & Raster Scanning Active energy selection Panoramic beam scanning Courtesy of GSI Scanner Magnets MWPCs ICs Page 4

5 IONTRIS Particle Therapy Systems Treatment Planning System for Protons and Carbon Ions TPS Features Protons and carbon ions Workflow oriented DICOM RT and syngo based (CE certified) Implementation of LEM / TRiP for carbon ions (Cooperation GSI) 2D pencil beam algorithm for protons (Cooperation DKFZ) Patient (Clivus Chordoma) - 12 C Plan Courtesy HIT SAG Session Jan 2009 Page 5

6 IONTRIS Particle Therapy Systems Patient Handling: Robotic Systems Robotic patient positioning system Identical in treatment and CT rooms Position correction in 6 degrees of freedom (including roll & pitch) High position accuracy independent from patient weight (carbon fiber boards) Workflow optimization positioning according to treatment plan Robotic imaging system Orthogonal x-ray and Cone beam CT Position verification in every treatment position High position accuracy in imaging position Page 6

7 IONTRIS Particle Therapy Systems Example: NRoCK, Kiel Footprint: 6000 m² (soccer field) Conventional Therapy Treatment Rooms: Patient Setup and Treatment Concrete: tons (>5.000 trucks) Steel: tons CT and Immobilization Areas Cables: more than 40 km Power: ~ 5MVA Isotope Production IT Integration: Complete workflow from diagnostic to treatment planning, position verification and treatment Page 7

8 IONTRIS Particle Therapy Systems Key Parameters Parameter Protons Carbon Ions # Energy Range (2-30 cm) ~ MeV 1 mm steps ~ MeV/u 1 mm steps ~300 Max Intensity / Spill / Spill Intensity Variation steps steps 15 Beam Width 5 steps 5 steps 5 Extraction time 1-10 s 1-10 s 5 Ramping time < 0.3 s < 1 s Field size 200 x 200 mm x 200 mm 2 Dose homogeneity ±5% ±5% Lateral position accuracy ±0.5 mm* ±0.5 mm* *with position feedback applied Long. position accuracy ±0.3 mm ±0.3 mm Page 8

9 IONTRIS Particle Therapy Systems Project Specific Adaptations IONTRIS is a product Marburg but with project specific variations! (e.g. number of on sources, treatment room configuration beam outlets) Page 9 Kiel & ~Shanghai

10 IONTRIS Particle Therapy Systems Outline The Siemens IONTRIS Particle Therapy System Projects HIT Heidelberg PTZ Marburg NRoCK Kiel ShaPHIH Shanghai Summary Page 10

11 Projects Past and Present 1 HIT Heidelberg University, Germany Provide medical devices, workflow, treatment planning, and patient environment 2 PTZ Marburg University, Rhön Clinic, Germany Provide turn-key solution for carbon and proton ion therapy 3 CNAO, Pavia, Italy Provide treatment planning 4 NRoCK Kiel, University of Schleswig-Holstein, Germany Comprehensive cancer center comprising Particle Therapy, conventional radiotherapy, brachytherapy and isotope production, building and financing (Public-Private Partnership contract). 5 Shanghai Proton and Heavy Ion Hospital, China Provide turn-key solution for carbon and proton ion therapy Page 11

12 IONTRIS Particle Therapy Systems Outline The Siemens IONTRIS Particle Therapy System Projects HIT Heidelberg PTZ Marburg NRoCK Kiel ShaPHIH Shanghai Summary Page 12

13 University of Heidelberg HIT Patient Environment Siemens supplied all components related to patient environment: Scanning and monitoring system Robotic patient positioning system Imaging system (2D x-ray and CB CT) Therapy control system (TCS) Collaboration on TPS syngo PT planning Courtesy of the University of Heidelberg, Germany Accelerator system designed and delivered by GSI Gesellschaft für Schwerionenforschung mbh, Darmstadt Patient treatment started Nov 2009 To date ~ 300 patients have been treated Page 13

14 IONTRIS Particle Therapy Systems Outline The Siemens IONTRIS Particle Therapy System Projects HIT Heidelberg PTZ Marburg NRoCK Kiel ShaPHIH Shanghai Summary Page 14

15 University of Marburg /Giessen Rhön Klinikum AG Building Page 15

16 University of Marburg /Giessen Rhön Klinikum AG Layout All particle therapy equipment is provided by Siemens 3 rooms with horizontal beams 1 room with semi vertical beam Start of construction: August 2007 Start of installation: August 2008 Start of commissioning: January 2009 Handover to customer: End of m / 216.5ft 110m / 361ft Courtesy of Rhön-Klinikum AG, Germany Page 16

17 University of Marburg /Giessen Rhön Klinikum AG Accelerator - Injector RFQ IH mode DTL Debuncher ECR Ion source 7 MeV/u Beam chopper MeV/u 0.4 MeV/u Stripper foil (H 3+ to p, C 4+ to C 6+ ) Beam chopper Courtesy: Pantechnic Quadrupole triplett for intensity variation (factor 100 in 15 steps at RKA) Page 17

18 University of Marburg /Giessen Rhön Klinikum AG Accelerator - Synchrotron Synchrotron key parameters (at Marburg): Active energy selection, ~ 300 energy steps/ion species Energy: MeV/u (C6+), MeV (p) Ramp speed: 6.6 Tm/s (1s to highest carbon extraction energy) Extraction time: 8 s Electrostatic extraction septum To Patient RF Cavity ~22m RF frequency from1-7 MHz From Injector (7 MeV/u) Page 18

19 University of Marburg /Giessen Rhön Klinikum AG Accelerator High Energy Beam Transport Line HEBT: 3 horizontal places, 1 semi-vertical Optics: Dispersion free optics in the isocenters Fast spill abort system (magnetic chicane): shutoff < 200 µs Extraction Septum Magnetic chicane Dipole magnets slit Beam parameters in isocenter (at Marburg): Maximum intensities: 2 x protons, 1 x 10 9 carbon ions Beam Foci (FWHM in air at isocenter): 8 33 mm (p), 3 14 mm (carbon ions) RF Cavity 1-7 MHz Page 19

20 University of Marburg /Giessen Rhön Klinikum AG Photos Sources and LEBT Linac Synchrotron HEBT Page 20

21 University of Marburg /Giessen Rhön Klinikum AG Commissioning status - Injection, acceleration and extraction control Multi-turn injection scheme (30 turns injected - pulse length defined by micro chopper) Slow 3rd order resonance extraction scheme using an RF KO exciter for spill shape control. Fast pausing and resuming extraction Beam Gating (Breathing Motion) Carbon 300 MeV/u Time resolved intensity variation of a spill (1 ms integration time) Beam Intensity [ions/s] 2.50E E E E E E Time [s] Injection Pulse MEBT 50µs Time resolved intensity variation of multiple spill pauses 2.50E+08 multi-turn injection 50µs Beam Intensity [ions/s] 2.00E E E E+07 stored current 1s 0.00E Time [s] Example of extracted beam, 300 MeV/u carbon ions Page 21

22 University of Marburg / Giessen Rhön Klinikum AG Commissioning Status Beam Library Commissioning of a beam library Parameter Protons Carbon Ions # Energy MeV MeV/u ~300 Range (2-30 cm) 1 mm steps 1 mm steps Max Intensity / Spill / Spill Intensity , 15 Variation 12 steps 15 steps Beam Width 4 steps 5 steps 4, 5 Extraction time 8 s 8 s 1 Beam Lines Combinations/Beam Line: ~36000 Beam library as presently commissioned at Marburg Page 22

23 University of Marburg /Giessen Rhön Klinikum AG Commissioning Strategy Define commissioning strategy (Synchrotron extraction, HEBT) Example: horizontal tune shift prior to extraction E.g. parameters kept constant (chromaticity, size and angle of extraction separatrix, average orbit corrected to zero, ) What knobs to touch? Fine-tuning of some beams Interpolation over parameter space Request and test beams in between Goal: Similar starting condition (beams) for HEBT over entire parameter space Choose HEBT optics (e.g. dispersion in isocenter, large beam size in final focusing quadrupoles) support points Interpolation Q hor. Page 23

24 University of Marburg /Giessen Rhön Klinikum AG Commissioning Status Example: Beam width at the isocenter Scan of all foci over all E from available treatment beam library Excellent reproducibility All foci (5), energies (~300), intensities (15) commissioned Horizontal and Vertical Projections of a High-E Proton Beam at Isocenter horizontal beam width FWHM (mm) multiple scattering in window + detectors Carbon Ions Energy (MeV/u) Page 24

25 University of Marburg /Giessen Rhön Klinikum AG Commissioning Status Beam properties (position and width) over intensity (without position feedback) horizontal position vertical position horizontal position (mm) vertical position (mm) horizontal width vertical width horizontal width (mm) vertical width (mm) intensity 1x10 7 1x10 9 particles/spill Page 25

26 University of Marburg /Giessen Rhön Klinikum AG Beam Intensity Control Beam intensity control: Pre set value for the KO Exciter Monitoring system measures current Comparison to reference and feedback on KO Exciter Carbon 300 MeV/u Reference Controller Set value Exciter meas. current beam Monitoring system Spill noise: max/avg = 1.6 (1ms integration time) Spill shape with and w/o feedback Page 26

27 University of Marburg /Giessen Rhön Klinikum AG Beam width measurements with Isocenter MWPC Measured focus vs. energy (Protons, Focus setting 1) Beam width (FWHM) measured for all energy and focus settings using an Isocenter MWPC (plots show focus setting 1). Agreement with requested beam size (beam library) is within tolerances. For final adjustments, measurements with films are used Focus [mm] Energy [MeV/u] Focus X (IsoMWPC) Focus Y (IsoMWPC) Measured focus vs. energy (Carbon, Focus setting 1) Focus [mm] Energy [MeV/u] Focus X (IsoMWPC) Focus Y (IsoMWPC) Page 27

28 University of Marburg /Giessen Rhön Klinikum AG Beam width measurements with films Film response correction Beam profiles measured in x and y Film response corrected (with grey scale method Dr. U. Weber, private communication) beam profile measurements All foci at low/mid/high energy measured Measured beam width results are within tolerances Page 28

29 University of Marburg /Giessen Rhön Klinikum AG Depth distribution of dose Position of the Bragg-Peak was measured for both ion species for low, medium and high energies Position of the peaks agree well with the expected penetration depth Dose Depth Distribution Protons in Water Dose Depth Distribution Carbon Ions in Water rel. Dose MeV 150.1MeV 221.1MeV 31mm 159mm 310mm rel. Dose MeV 430.1Mev 110.6MeV 31mm 159mm 310mm Depth(mm) Depth(mm) Page 29

30 University of Marburg /Giessen Rhön Klinikum AG Treatment Rooms Not only the beams are in good shape, but also the treatment rooms (robotic patient positioning and imaging systems) Page 30

31 University of Marburg /Giessen Rhön Klinikum AG Summary for Marburg Example: Intensity modulated 2D raster-scan of arbitrary shapes Mr. Edwin McMillan Summary for Marburg: Accelerator commissioning practically complete (rooms 1 and 2) - ~ beams available. Formal testing ongoing, e.g. System Integration Final parameterization of the treatment delivery system ongoing 430 MeV/u carbon beam Page 31

32 IONTRIS Particle Therapy Systems Outline The Siemens IONTRIS Particle Therapy System Projects HIT Heidelberg PTZ Marburg NRoCK Kiel ShaPHIH Shanghai Summary Page 32

33 North European Radiooncological Center Kiel NRoCK Integrated Cancer Treatment Hospital Cancer treatment center with PT integrated as a department Patient care facilities Standard Treatment Options Conventional Radiotherapy Brachytherapie PET Isotope production Page 33

34 North European Radiooncological Center Kiel NRoCK Accelerator Installation 3 ECR sources Upper HEBT Vertical beam line Page 34

35 North European Radiooncological Center Kiel NRoCK Actual Commissioning Status Accelerator commissioning: Beams in the first two treatment rooms Setting up complete parameter space for carbon ions/protons ongoing Doubled Linac transmission, twice the amount of extracted particles System integration: System integration work has started Beams request from Therapy control system Conventional Radiotherapy: Ready to start in autumn 2011 Linacs, PET cyclotron installed on site Carbon spill (not final) 2.3E9 particles Page 35

36 North European Radiooncological Center Kiel NRoCK Project Duration Comparison - Marburg vs. Kiel Duration [Calendar days] Marburg Sum Marburg: 553 calendar days Kiel Sum Kiel: 337 calendar days Sources/LEBT RFQ IH-Linac MEBT 1st turn 1st beam in TR All beam combinations available Durations for installation and commissioning activities of the accelerator Time reduction: ~1/3 Tasks related to patient environment and complete system integration run in parallel Page 36

37 IONTRIS Particle Therapy Systems Outline The Siemens IONTRIS Particle Therapy System Projects HIT Heidelberg PTZ Marburg NRoCK Kiel ShaPHIH Shanghai Summary Page 37

38 Shanghai Proton & Heavy Ion Hospital (ShaPHIH) 上海质子和重离子医院项目 1 st shipment Autumn This Year Installation starting early 2012 Page 38

39 Shanghai Proton & Heavy Ion Hospital (ShaPHIH) Components for Shipment 1 st shipment - autumn 2011 Most of the components are manufactured, tested and ready for shipment. Start of installation - early 2012 Sync dipoles waiting for shipment at production site in Jyllinge/Denmark Page 39

40 Shanghai Proton & Heavy Ion Hospital (ShaPHIH) 上海质子和重离子医院项目 Date: 14 Jan Level 4 in construction. Synchrotron area completed. JanuaryJune February March April May June July Page 40

41 IONTRIS Particle Therapy Systems Outline The Siemens IONTRIS Particle Therapy System Projects HIT Heidelberg PTZ Marburg NRoCK Kiel ShaPHIH Shanghai Summary Page 41

42 Summary IONTRIS: fully-integrated solution for particle therapy PTZ Marburg: Full treatment beam library available for treatment delivery. Beam tests ongoing. Customer handover in November this year. NRoCK KIEL: First beam in treatment rooms. Work progressing to commission beams. Start of system integration. Conventional radiotherapy handover in autumn this year. ShaPhiP Shanghai: Component production and shipments on schedule, building nearing completion. Start of installation early Page 42

43 IONTRIS with an integrated careflow Thank you for your attention! just another intensity modulated 2D raster-scan Page 43

44 IONTRIS with an integrated careflow Thank you for your attention Page 44 Siemens AG Healthcare Sector Particle Therapy Siemens AG All rights reserved.

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz

Overview and Status of the Austrian Particle Therapy Facility MedAustron. Peter Urschütz Overview and Status of the Austrian Particle Therapy Facility MedAustron Peter Urschütz MedAustron Centre for ion beam therapy and non-clinical research Treatment of 1200 patients/year in full operation

More information

Partikel terapi accelerator (Siemens)

Partikel terapi accelerator (Siemens) Partikel terapi accelerator (Siemens) 1 Dose and intensity Range of Proton energy: Carbon energy: 30 cm (50-)250 MeV (100-)430 MeV/u=5GeV Dose of 2 Gy (=J/kg) in 2(10) l in 2 min. Particle intensity 6

More information

Proposal to convert TLS Booster for hadron accelerator

Proposal to convert TLS Booster for hadron accelerator Proposal to convert TLS Booster for hadron accelerator S.Y. Lee -- Department of Physics IU, Bloomington, IN -- NSRRC Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV,

More information

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems: A Project to convert TLS Booster to hadron accelerator 1. Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV, and a storage ring. The TLS storage ring is currently operating

More information

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI) Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI), 2003, A dedicated proton accelerator for 1p-physics at the future GSI Demands facilities for

More information

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND S. Yaramyshev, W. Barth, M. Maier, A. Orzhekhovskaya, B. Schlitt, H. Vormann, GSI, Darmstadt R. Cee, A. Peters, HIT, Heidelberg Abstract The Therapy Linac in

More information

Development of beam delivery systems for proton (ion) therapy

Development of beam delivery systems for proton (ion) therapy 7th 28th of July 213, JINR Dubna, Russia Development of beam delivery systems for proton (ion) therapy S t u d e n t : J o z e f B o k o r S u p e r v i s o r : D r. A l e x a n d e r M o l o k a n o v

More information

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND

UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND UPGRADE OF THE HIT INJECTOR LINAC-FRONTEND S. Yaramyshev, W. Barth, M. Maier, A. Orzhekhovskaya, B. Schlitt, H. Vormann, GSI, Darmstadt R. Cee, A. Peters, HIT, Heidelberg Abstract The Therapy Linac in

More information

Advanced Linac Solutions for Hadrontherapy

Advanced Linac Solutions for Hadrontherapy Workshop on Innovative Delivery Systems in Particle Therapy Torino, 23-24 th February 2017 Advanced Linac Solutions for Hadrontherapy A. Garonna on behalf of Prof. U. Amaldi V. Bencini, D. Bergesio, D.

More information

The heavy ion irradiation facility at KVI-CART

The heavy ion irradiation facility at KVI-CART The heavy ion irradiation facility at KVI-CART Brian N. Jones 1, Marc-Jan van Goethem 1,2, Rob Kremers 1, Harry Kiewiet 1, Emiel van der Graaf 1, Sytze Brandenburg 1 1 University of Groningen, KVI-Center

More information

CERN Medical Applications. Giovanni Porcellana. Medical Applications Officer. Knowledge Transfer Accelerating Innovation

CERN Medical Applications. Giovanni Porcellana. Medical Applications Officer. Knowledge Transfer Accelerating Innovation CERN Medical Applications Giovanni Porcellana Medical Applications Officer CERN The Large Hadron Collider (LHC) CMS ALICE ATLAS LHCb http://natronics.github.io/science-hack-day-2014/lhc-map/ The LHC KT

More information

NIRS. Outline HIMAC. Introduction Gantry developments. Superconducting magnets Construction of gantry structure. Future project.

NIRS. Outline HIMAC. Introduction Gantry developments. Superconducting magnets Construction of gantry structure. Future project. Yoshiyuki Iwata National Institutes for Quantum and Radiological Science and Technology (QST), National Institute of Radiological Sciences () 2016/11/25 Outline Introduction Gantry developments Superconducting

More information

Particle Beam Technology and Delivery

Particle Beam Technology and Delivery Particle Beam Technology and Delivery AAPM Particle Beam Therapy Symposium Types of Accelerator Systems Laser Linac Cyclotron Synchrotron Rf Linac CycFFAG FFAG CycLinac Isochronous Cyclotron Strong Focusing

More information

THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS

THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS THE GSI FUTURE PROJECT: AN INTERNATIONAL ACCELERATOR FACILITY FOR BEAMS OF IONS AND ANTIPROTONS Ina Pschorn Gesellschaft für Schwerionenforschung mbh, D-64291 Darmstadt, Germany 1. INTRODUCTION The GSI

More information

SPIRAL 2 Commissioning Status

SPIRAL 2 Commissioning Status SPIRAL 2 Commissioning Status Jean-Michel Lagniel (GANIL) for the SPIRAL 2 Team With thanks to the SPIRAL 2 team Page 1 Menu 1- SPIRAL 2 facility (Phase 1) presentation 2- Injector commisionning (Sources

More information

TERA CONTRIBUTIONS TO PARTNER

TERA CONTRIBUTIONS TO PARTNER TERA CONTRIBUTIONS TO PARTNER Ugo Amaldi University of Milano Bicocca and TERA Foundation 1 CNAO status 2 The CNAO Foundation builds with INFN in Pavia the Centre designed by TERA on the basis of PIMMS.

More information

Design Status of the PEFP RCS

Design Status of the PEFP RCS Design Status of the PEFP RCS HB2010, Morschach, Switzerland J.H. Jang 1) Y.S. Cho 1), H.S. Kim 1), H.J. Kwon 1), Y.Y. Lee 2) 1) PEFP/KAERI, 2) BNL (www.komac.re.kr) Contents PEFP (proton engineering frontier

More information

Development of the UNILAC towards a Megawatt Beam Injector

Development of the UNILAC towards a Megawatt Beam Injector Development of the UNILAC towards a Megawatt Beam Injector W. Barth, GSI - Darmstadt 1. GSI Accelerator Facility Injector for FAIR 2. Heavy Ion Linear Accelerator UNILAC 3. SIS 18 Intensity Upgrade Program

More information

A high intensity p-linac and the FAIR Project

A high intensity p-linac and the FAIR Project A high intensity p-linac and the FAIR Project Oliver Kester Institut für Angewandte Physik, Goethe-Universität Frankfurt and GSI Helmholtzzentrum für Schwerionenforschung Facility for Antiproton and Ion

More information

Upgrade of the HIT Injector Linac-Frontend

Upgrade of the HIT Injector Linac-Frontend Upgrade of the HIT Injector Linac-Frontend S. Yaramyshev, W. Barth, M. Maier, A. Orzhekhovskaya, B. Schlitt, H. Vormann (GSI, Darmstadt) R. Cee, A. Peters (HIT, Heidelberg) HIT - Therapy Accelerator in

More information

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors.

Beam diagnostics: Alignment of the beam to prevent for activation. Accelerator physics: using these sensitive particle detectors. Beam Loss Monitors When energetic beam particles penetrates matter, secondary particles are emitted: this can be e, γ, protons, neutrons, excited nuclei, fragmented nuclei... Spontaneous radiation and

More information

Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center

Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center George Coutrakon, Jeff Hubbard, Peter Koss, Ed Sanders, Mona Panchal Loma Linda University Medical Center 11234 Anderson Street

More information

Accelerator Design and Construction Progress of TPS Project

Accelerator Design and Construction Progress of TPS Project Accelerator Design and Construction Progress of TPS Project Taiwan Light Source (TLS), a 120-m storage ring originally designed for 1.3 GeV, was commissioned and opened to users in 1993. The energy of

More information

Status & Plans for the TRIUMF ISAC Facility

Status & Plans for the TRIUMF ISAC Facility Status & Plans for the TRIUMF ISAC Facility P.W. Schmor APAC 07, Jan 29-Feb 2 Indore, India TRIUMF ISAC Schematic Layout of TRIUMF/ISAC with H- Driver, ISOL Production & Post Accelerators ISAC-II High

More information

Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans. Upgrade Injector

Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans. Upgrade Injector Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans RI Beam Factory (1997-) Heavy Ion Beams (2007-) Low intensity Beam now (2008) (Goal: 1pμA U-ion beam) Upgrade Injector H. Okuno, et. al.

More information

HITRAP Low Energy Diagnostics and Emittance Measurement

HITRAP Low Energy Diagnostics and Emittance Measurement HITRAP Low Energy Diagnostics and Emittance Measurement Jochen Pfister 1, Oliver Kester 2, Ulrich Ratzinger 1, Gleb Vorobjev 3 1 Institut für Angewandte Physik, JW Goethe-University Frankfurt, Germany

More information

Commissioning of the SNS Beam Instrumentation

Commissioning of the SNS Beam Instrumentation Commissioning of the SNS Beam Instrumentation Commissioning of the SNS Beam Instrumentation Tom Shea for the SNS Diagnostics Team Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA The Spallation

More information

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego

Physics of Novel Radiation Modalities Particles and Isotopes. Todd Pawlicki, Ph.D. UC San Diego Physics of Novel Radiation Modalities Particles and Isotopes Todd Pawlicki, Ph.D. UC San Diego Disclosure I have no conflicts of interest to disclose. Learning Objectives Understand the physics of proton

More information

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1 Small Synchrotrons Michael Benedikt CERN, AB-Department CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1 Contents Introduction Synchrotron linac - cyclotron Main elements of the synchrotron Accelerator

More information

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements A. Shemyakin 1, M. Alvarez 1, R. Andrews 1, J.-P. Carneiro 1, A. Chen 1, R. D Arcy 2, B. Hanna 1, L. Prost 1, V.

More information

S-Band side coupled drift tube linac

S-Band side coupled drift tube linac S-Band side coupled drift tube linac LUIGI PICARDI UTAPRAD ENEA Frascati International School on Hadrontherapy «Edwin McMillan» 2nd Workshop on Hadron Beam Therapy of Cancer Erice, Sicily, Italy May 20,

More information

Best Particle Therapy, Inc. is Developing a Highly Revolutionary New Treatment for Cancer Therapy

Best Particle Therapy, Inc. is Developing a Highly Revolutionary New Treatment for Cancer Therapy Best Particle Therapy, Inc. is Developing a Highly Revolutionary New Treatment for Cancer Therapy The most precise and conformal Cancer Therapy, using hypo-fractionation, supported by a range of the most

More information

Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy *

Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy * Non-Scaling Fixed Field Gradient Accelerator (FFAG) Design for the Proton and Carbon Therapy * D. Trbojevic 1), E. Keil 2), and A. Sessler 3) 1) Brookhaven National Laboratory, Upton, New York, USA 2)

More information

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY

HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY TU31 Proceedings of LINAC 26, Knoxville, Tennessee USA HIGH CURRENT PROTON BEAM INVESTIGATIONS AT THE SILHI-LEBT AT CEA/SACLAY R. Hollinger, W. Barth, L. Dahl, M. Galonska, L. Groening, P. Spaedtke, GSI,

More information

Status of the ESR And Future Options

Status of the ESR And Future Options Status of the ESR And Future Options M. Steck for the Storage Ring Division (C. Dimopoulou, A. Dolinskii, S. Litvinov, F. Nolden, P. Petri, U. Popp, I. Schurig) Outline 1) New Old ESR 2) Slow (Resonant)

More information

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons)

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons) Statusreport Status of the GSI accelerators for FRS operation Jens Stadlmann (FAIR Synchrotrons) Overview Intensities reached and "candidates" for experiments. Uranium? Upgrade program New developments:

More information

OVERVIEW OF RECENT RFQ PROJECTS *

OVERVIEW OF RECENT RFQ PROJECTS * OVERVIEW OF RECENT RFQ PROJECTS * A. Schempp Institut für Angewandte Physik, J. W. Goethe-Universität, D-60486 Frankfurt am Main, Germany Abstract RFQs are the new standard injector for a number of projects.

More information

Developments of the RCNP cyclotron cascade

Developments of the RCNP cyclotron cascade CYCLOTRONS 2007 The 18th International Conference on Cyclotrons and Their Applications Developments of the RCNP cyclotron cascade K. Hatanaka,, M. Fukuda, T. Saito, T. Yorita,, H. Tamura, M. Kibayashi,

More information

ELECTRON COOLING EXPERIMENTS IN CSR*

ELECTRON COOLING EXPERIMENTS IN CSR* ELECTRON COOLING EXPERIMENTS IN CSR* Xiaodong Yang #, Guohong Li, Jie Li, Xiaoming Ma, Lijun Mao, Ruishi Mao, Tailai Yan, Jiancheng Yang, Youjin Yuan, IMP, Lanzhou, 730000, China Vasily V. Parkhomchuk,

More information

The optimization for the conceptual design of a 300 MeV proton synchrotron *

The optimization for the conceptual design of a 300 MeV proton synchrotron * The optimization for the conceptual design of a 300 MeV proton synchrotron * Yu-Wen An ( 安宇文 ) 1,2), Hong-Fei Ji ( 纪红飞 ) 1,2), Sheng Wang ( 王生 ) 1,2), Liang-Sheng Huang ( 黄良生 ) 1,2;1) 1 Institute of High

More information

Markus Roth TU Darmstadt

Markus Roth TU Darmstadt Laser-driven Production of Particle Beams and their application to medical treatment Markus Roth TU Darmstadt The Case Laser-driven electrons Potential for Applications in Therapy Use of secondary Radiation

More information

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy Part 2

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy Part 2 NIRS Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy Part 2 Takeshi Murakami Research Center of Charged Particle Therapy National Institute of Radiological Sciences 212.7.4-5 Medical application

More information

Secondary Particles Produced by Hadron Therapy

Secondary Particles Produced by Hadron Therapy Iranian Journal of Medical Physics Vol. 12, No. 2, Spring 2015, 1-8 Received: March 10, 2015; Accepted: July 07, 2015 Original Article Secondary Particles Produced by Hadron Therapy Abdolkazem Ansarinejad

More information

Development and application of the RFQs for FAIR and GSI Projects

Development and application of the RFQs for FAIR and GSI Projects Development and application of the RFQs for FAIR and GSI Projects Stepan Yaramyshev GSI, Darmstadt Facility for Antiproton and Ion Research at Darmstadt The FAIR Accelerator Complex GSI Today SIS 100 SIS18

More information

A NOVEL DESIGN OF A CYCLOTRON BASED ACCELERATOR SYSTEM FOR MULTI-ION THERAPY

A NOVEL DESIGN OF A CYCLOTRON BASED ACCELERATOR SYSTEM FOR MULTI-ION THERAPY A NOVEL DESIGN OF A CYCLOTRON BASED ACCELERATOR SYSTEM FOR MULTI-ION THERAPY J.M. Schippers, A. Adelmann, W. Joho, M. Negraus, M. Seidel, M.K. Stam, Paul Scherrer Institut, Villigen, Switerland H. Homeye

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

THE mono-energetic hadron beam such as heavy-ions or

THE mono-energetic hadron beam such as heavy-ions or Verification of the Dose Distributions with GEANT4 Simulation for Proton Therapy T.Aso, A.Kimura, S.Tanaka, H.Yoshida, N.Kanematsu, T.Sasaki, T.Akagi Abstract The GEANT4 based simulation of an irradiation

More information

PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC

PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC THO3AB3 Proceedings of HB, East-Lansing, MI, USA PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC P.K. Saha, H. Harada, H. Hotchi and T. Takayanagi J-PARC

More information

NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics

NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics National Superconducting Cyclotron Laboratory An overview Ana D. Becerril NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics University of North

More information

Feasibility study of TULIP: a TUrning

Feasibility study of TULIP: a TUrning Feasibility study of TULIP: a TUrning LInac for Protontherapy ICTR-PHE 2012 Conference 28.02.2012 A. Degiovanni U. Amaldi, M. Garlasché, K. Kraus, P. Magagnin, U. Oelfke, P. Posocco, P. Riboni, V. Rizzoglio

More information

Heavy ion linac as a high current proton beam injector

Heavy ion linac as a high current proton beam injector PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 18, 050102 (2015) Heavy ion linac as a high current proton beam injector Winfried Barth, 1,2 Aleksey Adonin, 1 Sabrina Appel, 1 Peter Gerhard, 1

More information

HEATHER. HElium ion Acceleration for radiotherapy. Jordan Taylor, Rob Edgecock University of Huddersfield Carol Johnstone, Fermilab

HEATHER. HElium ion Acceleration for radiotherapy. Jordan Taylor, Rob Edgecock University of Huddersfield Carol Johnstone, Fermilab HEATHER HElium ion Acceleration for radiotherapy Jordan Taylor, Rob Edgecock University of Huddersfield Carol Johnstone, Fermilab PPRIG workshop 1 st -2 nd Dec 2016 Scope Current particle therapy situation

More information

LHC Status and CERN s future plans. Lyn Evans

LHC Status and CERN s future plans. Lyn Evans LHC Status and CERN s future plans Lyn Evans Machine layout L. Evans EDMS document no. 859415 2 Cryodipole overview 1250 1000 Equivalent dipoles 750 500 250 0 01-Jan-01 01-Jan-02 01-Jan-03 01-Jan-04 01-Jan-05

More information

The SARAF 40 MeV Proton/Deuteron Accelerator

The SARAF 40 MeV Proton/Deuteron Accelerator The SARAF 40 MeV Proton/Deuteron Accelerator I. Mardor, D. Berkovits, I. Gertz, A. Grin, S. Halfon, G. Lempert, A. Nagler, A. Perry, J. Rodnizki, L. Weissman Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler,

More information

Carbon/proton therapy: A novel gantry design

Carbon/proton therapy: A novel gantry design PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 10, 053503 (2007 Carbon/proton therapy: A novel gantry design D. Trbojevic* and B. Parker Brookhaven National Laboratory, Upton, New York 11973,

More information

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements T. Kieck 1, H. Dorrer 1, Ch. E. Düllmann 1,2, K. Eberhardt 1, L. Gamer 3, L. Gastaldo 3, C. Hassel 3, U. Köster 4, B. Marsh 5, Ch. Mokry 1, S. Rothe

More information

Status of the EBIT in the ReA3 reaccelerator at NSCL

Status of the EBIT in the ReA3 reaccelerator at NSCL Status of the EBIT in the ReA3 reaccelerator at NSCL ReA3 concept and overview: - Gas stopping EBIT RFQ LINAC EBIT commissioning National Science Foundation Michigan State University S. Schwarz, TCP-2010,

More information

STATUS OF HIRFL-CSR PROJECT *

STATUS OF HIRFL-CSR PROJECT * STATUS OF HIRFL-CSR PROJECT * Y.J. Yuan #, H.W. Zhao, J.W. Xia, X.D. Yang, H.S. Xu and CSR Group Institute of Modern Physics(IMP), CAS, Lanzhou, 730000, P.R. China. Abstract The HIRFL-CSR project is a

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

COMPARISON OF TRACKING SIMULATION WITH EXPERIMENT ON THE GSI UNILAC

COMPARISON OF TRACKING SIMULATION WITH EXPERIMENT ON THE GSI UNILAC COMPARISON OF TRACKING SIMULATION WITH EXPERIMENT ON THE GSI UNILAC X.Yin 1,2, L. Groening 2, I. Hofmann 2, W. Bayer 2, W. Barth 2,S.Richter 2, S. Yaramishev 2, A. Franchi 3, A. Sauer 4 1 Institute of

More information

Accelerators for Hadrontherapy -- Present & Future --

Accelerators for Hadrontherapy -- Present & Future -- IVICFA Institut Valencià d Investigació Cooperativa en Física Avançada Miniworkshop on Medical Physics Accelerators for Hadrontherapy -- Present & Future -- Silvia Verdú-Andrés TERA / IFIC (CSIC-UV) Valencia,

More information

A PRELIMINARY ALIGNMENT PLAN FOR RIA AT MSU

A PRELIMINARY ALIGNMENT PLAN FOR RIA AT MSU IWAA2004, CERN, Geneva, 4-7 October 2004 A PRELIMINARY ALIGNMENT PLAN FOR RIA AT MSU D. P. Sanderson, NSCL-MSU, 1 Cyclotron Lab, East Lansing, MI 48824, USA 1. INTRODUCTION The Rare Isotope Accelerator

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

Radiation protection issues in proton therapy

Radiation protection issues in proton therapy Protons IMRT Tony Lomax, Centre for Proton Radiotherapy, Paul Scherrer Institute, Switzerland Overview of presentation 1. Proton therapy: An overview 2. Radiation protection issues: Staff 3. Radiation

More information

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses P. Spiller, K. Blasche, B. Franczak, J. Stadlmann, and C. Omet GSI Darmstadt, D-64291 Darmstadt, Germany Abstract:

More information

Hadron Therapy Medical Applications

Hadron Therapy Medical Applications Hadron Therapy Medical Applications G.A. Pablo Cirrone On behalf of the CATANA GEANT4 Collaboration Qualified Medical Physicist and PhD Student University of Catania and Laboratori Nazionali del Sud -

More information

arxiv: v1 [physics.acc-ph] 20 Jun 2013

arxiv: v1 [physics.acc-ph] 20 Jun 2013 Beam dynamics design of the main accelerating section with KONUS in the CSR-LINAC arxiv:1306.4729v1 [physics.acc-ph] 20 Jun 2013 ZHANG Xiao-Hu 1,2;1) YUAN You-Jin 1 XIA Jia-Wen 1 YIN Xue-Jun 1 DU Heng

More information

Electromagnetic characterization of big aperture magnet used in particle beam cancer therapy

Electromagnetic characterization of big aperture magnet used in particle beam cancer therapy Electromagnetic characterization of big aperture magnet used in particle beam cancer therapy Jhonnatan Osorio Moreno M.Pullia, C.Priano Presented at Comsol conference 2012 Milan Milan 10 th October 2012

More information

BEAM DYNAMICS ISSUES IN THE SNS LINAC

BEAM DYNAMICS ISSUES IN THE SNS LINAC BEAM DYNAMICS ISSUES IN THE SNS LINAC A. Shishlo # on behalf of the SNS Accelerator Group, ORNL, Oak Ridge, TN 37831, U.S.A. Abstract A review of the Spallation Neutron Source (SNS) linac beam dynamics

More information

Front end, linac upgrade, and commissioning of J-PARC. Y. Liu KEK/J-PARC, Japan

Front end, linac upgrade, and commissioning of J-PARC. Y. Liu KEK/J-PARC, Japan KEK Front end, linac upgrade, and commissioning of J-PARC j-parc Y. Liu KEK/J-PARC, Japan ICFA mini-workshop on Beam Commissioning for High Intensity Accelerators Dongguan, China, June 8-10, 2015 Outlines

More information

Accelerator Complex U70 of IHEP-Protvino: Status and Prospects for Upgrade

Accelerator Complex U70 of IHEP-Protvino: Status and Prospects for Upgrade NRC Kurchatov Institute INSTITUTE FOR HIGH ENERGY PHYSICS () 1, Nauki Sq., Protvino, Moscow Region, 142281, Russia Accelerator Complex U70 of -Protvino: Status and Prospects for Upgrade Sergey IVANOV 16

More information

The scanning microbeam PIXE analysis facility at NIRS

The scanning microbeam PIXE analysis facility at NIRS Nuclear Instruments and Methods in Physics Research B 210 (2003) 42 47 www.elsevier.com/locate/nimb The scanning microbeam PIXE analysis facility at NIRS Hitoshi Imaseki a, *, Masae Yukawa a, Frank Watt

More information

The CIS project and the design of other low energy proton synchrotrons

The CIS project and the design of other low energy proton synchrotrons The CIS project and the design of other low energy proton synchrotrons 1. Introduction 2. The CIS project 3. Possible CMS 4. Conclusion S.Y. Lee IU Ref. X. Kang, Ph.D. thesis, Indiana University (1998).

More information

China high-intensity accelerator technology developments for Neutron Sources & ADS

China high-intensity accelerator technology developments for Neutron Sources & ADS AT/INT-04 China high-intensity accelerator technology developments for Neutron Sources & ADS J. Wei, Tsinghua University, China S.N. Fu, IHEP, CAS, China International Topical Meeting on Nuclear Research

More information

Linac4: From Initial Design to Final Commissioning

Linac4: From Initial Design to Final Commissioning Linac4: From Initial Design to Final Commissioning Alessandra M Lombardi for the LINAC4 Team 1 Oliver.Abevrle,Davide.Aguglia,Luca.Arnaudon,Philippe.Baudrenghien, Giulia.Bellodi Caterina.Bertone,Yannic.Body,Jan.Borburgh,Enrico.Bravin,Olivier.Brunner,Jean-

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

1. Introduction (beam power, beam quality - tutorial) 2. Point Study: Radiation Pressure Acceleration (Yan et al.) 3. Beam chromatic emittance and

1. Introduction (beam power, beam quality - tutorial) 2. Point Study: Radiation Pressure Acceleration (Yan et al.) 3. Beam chromatic emittance and Performance of laser accelerated ion beams for therapy applications I. Hofmann, HI Jena & GSI Darmstadt WE-Heraeus Heraeus-Seminar Bonn, December 13-17, 17, 2010 1. Introduction (beam power, beam quality

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Urschütz Peter (AB/ABP) CLIC meeting, 29.10.2004 1 Overview General Information on the PS Booster Synchrotron Motivation

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #8 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

Outline. Physics of Charge Particle Motion. Physics of Charge Particle Motion 7/31/2014. Proton Therapy I: Basic Proton Therapy

Outline. Physics of Charge Particle Motion. Physics of Charge Particle Motion 7/31/2014. Proton Therapy I: Basic Proton Therapy Outline Proton Therapy I: Basic Proton Therapy Bijan Arjomandy, Ph.D. Narayan Sahoo, Ph.D. Mark Pankuch, Ph.D. Physics of charge particle motion Particle accelerators Proton interaction with matter Delivery

More information

Beam Diagnostics. Measuring Complex Accelerator Parameters Uli Raich CERN BE-BI

Beam Diagnostics. Measuring Complex Accelerator Parameters Uli Raich CERN BE-BI Beam Diagnostics Measuring Complex Accelerator Parameters Uli Raich CERN BE-BI CERN Accelerator School Prague, 2014 Contents Some examples of measurements done with the instruments explained during the

More information

FAIR AT GSI. P. Spiller, GSI, Darmstadt, Germany

FAIR AT GSI. P. Spiller, GSI, Darmstadt, Germany FAIR AT GSI P. Spiller, GSI, Darmstadt, Germany Abstract Based on the experience of the existing GSI facility and with the aim to apply new technical concepts in phase space cooling and fast ramping of

More information

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007 LIS section meeting PS2 design status Y. Papaphilippou April 30 th, 2007 Upgrade of the injector chain (R. Garoby, PAF) Proton flux / Beam power 50 MeV 160 MeV Linac2 Linac4 1.4 GeV ~ 5 GeV PSB SPL RCPSB

More information

Status of PAMELA an overview of uk particle therapy facility using NS-FFAG

Status of PAMELA an overview of uk particle therapy facility using NS-FFAG Status of PAMELA an overview of uk particle therapy facility using NS-FFAG Takeichiro Yokoi (JAI, Oxford University, UK) On behalf of PAMELA group Contents Overview of CONFORM & PAMELA PAMELA design Lattice

More information

International Scientific Spring 2010, March 1-6, 1. R. Garoby. slhc

International Scientific Spring 2010, March 1-6, 1. R. Garoby. slhc International Scientific Spring 2010, March 1-6, 1 2010 R. Garoby slhc 1. Plans for future LHC injectors 2. Implementation stages 3. Final words R.G. 2 3/10/2009 R.G. 3 3 3/10/2009 Motivation 1. Reliability

More information

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE AND MEDICINE Hans-H. Braun, CERN

PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE AND MEDICINE Hans-H. Braun, CERN 5 th Particle Physics Workshop National Centre for Physics Quaid-i-Azam University Campus, Islamabad PARTICLE BEAMS, TOOLS FOR MODERN SCIENCE AND MEDICINE Hans-H. Braun, CERN 2 nd Lecture Examples of Modern

More information

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis FY04 Luminosity Plan SAG Meeting September 22, 2003 Dave McGinnis FY03 Performance Accelerator Issues TEV Pbar Main Injector Reliability Operations Study Strategy Shot Strategy Outline FY04 Luminosity

More information

Heavy ion fusion energy program in Russia

Heavy ion fusion energy program in Russia Nuclear Instruments and Methods in Physics Research A 464 (2001) 1 5 Heavy ion fusion energy program in Russia B.Yu. Sharkov*, N.N. Alexeev, M.D. Churazov, A.A. Golubev, D.G. Koshkarev, P.R. Zenkevich

More information

arxiv: v2 [physics.med-ph] 29 May 2015

arxiv: v2 [physics.med-ph] 29 May 2015 The Proton Therapy Nozzles at Samsung Medical Center: A Monte Carlo Simulation Study using TOPAS Kwangzoo Chung, Jinsung Kim, Dae-Hyun Kim, Sunghwan Ahn, and Youngyih Han Department of Radiation Oncology,

More information

The Mainz Microtron MAMI

The Mainz Microtron MAMI The Mainz Microtron MAMI Hans-Jürgen Arends Institut für Kernphysik Johannes Gutenberg-Universität Mainz Race-Track-Mikrotron D E out =z E L i+1 L i L 1 E λ coherence condition: (for lowest possible energy

More information

NSCL Operations and ReAcclerator Facility at MSU. Daniela Leitner Michigan State University

NSCL Operations and ReAcclerator Facility at MSU. Daniela Leitner Michigan State University NSCL Operations and ReAcclerator Facility at MSU Daniela Leitner Michigan State University CCF Operations In Perspective NSCL is funded by NSF in support of a versatile user program with a historical average

More information

THE SUPER-FRS PROJECT AT GSI

THE SUPER-FRS PROJECT AT GSI THE SUPER-FRS PROJECT AT GSI M. Winkler 1,2, H. Geissel 2,1,, G. Münzenberg 2, V. Shiskine 2, H. Weick 2, H. Wollnik 1, M. Yavor 3 1 University of Giessen, Germany, 2 GSI, Germany, 3 Institute for Analytical

More information

Proton LINAC for the Frankfurt Neutron Source FRANZ

Proton LINAC for the Frankfurt Neutron Source FRANZ 1 Proton LINAC for the Frankfurt Neutron Source FRANZ O. Meusel 1, A. Bechtold 1, L.P. Chau 1, M. Heilmann 1, H. Podlech 1, U. Ratzinger 1, A. Schempp 1, C. Wiesner 1, S. Schmidt 1, K. Volk 1, M. Heil

More information

Ion- and proton-beams: Experience with Monte Carlo Simulation

Ion- and proton-beams: Experience with Monte Carlo Simulation Ion- and proton-beams: Experience with Monte Carlo Simulation Katia Parodi, Ph.D. Heidelberg Ion Therapy Centre, Heidelberg, Germany (Previously: Massachusetts General Hospital, Boston, USA) Workshop on

More information

Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder

Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder Dielectric Wall Accelerator (DWA) and Distal Edge Tracking Proton Delivery System Rock Mackie Professor Dept of Medical Physics UW Madison Co-Founder and Chairman of the Board or TomoTherapy Inc I have

More information

THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY*

THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY* THE DESIGN AND COMMISSIONING OF THE ACCELERATOR SYSTEM OF THE RARE ISOTOPE REACCELERATOR ReA3 AT MICHIGAN STATE UNIVERSITY* X. Wu#, B. Arend, C. Compton, A. Facco, M. Johnson, D. Lawton, D. Leitner, F.

More information

High Energy Electron Radiation Exposure Facility at PSI

High Energy Electron Radiation Exposure Facility at PSI Journal of Applied Mathematics and Physics, 2014, 2, 910-917 Published Online August 2014 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2014.29103 High Energy Electron Radiation

More information

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in

Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton and ion beams. High in 2009/12/16 Proton Linac for the Frankfurt Neutron Source Christoph Wiesner Introduction Frankfurt Neutron Source at Stern-Gerlach-Zentrum FRANZ Development of new accelerator concepts for intense proton

More information