You be the Judge: Density

Size: px
Start display at page:

Download "You be the Judge: Density"

Transcription

1 1

2 2

3 You be the Judge: Density Objectives The students will: develop an understanding of density calculate density of objects collect, analyze, and interpret data solve equations collaborate with partners and share materials Standards SEP2 SEP4 SEP5 SEP6 SEP7 SEP8 5-PS1-1 MS-PS1-1 MP4 5.MD.5.b 6.EE.7 8.G.9 RI.5.4 RI.5.10 W.5.10 W.6.1 SL.5.1 RST RST NOTES: Background Each element, compound, atom, and substance has its own density. This physical property is a relationship between mass and volume. Density is equal to mass (g) divided by volume (ml) or D = m (g) v (ml). In chemistry, the density of objects is compared to the density of water. When an object s density is less than that of water, the object will float, but when the object s density is greater than water, the object will sink. Density can also be thought about as how tightly atoms and molecules are packed together. Inquiry Overview Students will be introduced to density by first making a visual model and exploring the relationship between size of particles and the space between them. The second activity allows students to determine density of a variety of objects. 3

4 Suggested Inquiry Approach o Activity #1: Work in Pairs: 1 Hour Explain to students that throughout this unit they will have several chances to observe various properties of substances. Materials Activity #1 for each Pair of Students: Dropper Bottle of Water 2 Graduated Cups Small Steel Spheres Large Steel Spheres Paper Towels Read the problem together. As the group goes through the material s list together, make sure students are acquainted with all of the items, their location, and method of distribution. Demonstrate the proper use of the water bottle. Have students take turns reading the procedure aloud, step by step. Spend time going over the data table. Ask questions to ensure students understand what data is to be collected and how the data are to be organized. Assist pairs of students as they work through the activity. NOTES: When students have had a chance to answer the questions, host a whole group discussion. Explain to students that they have been working with the concept that is called density in science. Density is very important as it affects how substances interact and react with other substances. The size of the particles has an effect on the size of the space between particles. This can translate into a variety of ideas, but the one we are focusing on is that of density. When the particles are more tightly packed, the substance is denser compared to an object that is packed more loosely. A more familiar example may be a snowball. A tightly packed snowball has a greater density than a loosely packed one. Other examples students may be able to easily relate to include less crowded and more crowded areas associated with schools, such as lunchrooms, classrooms, hallways, and busses. Have students record their data on the class data sheet. Discuss the data. Have students share their drawings. Solicit ideas for any differences, similarities, and trends. Discuss the questions from student page 12. Activity #2: o Work in Pairs: 1.5 Hours o 1 Hour to Complete Activity #2 o 30 Minutes to Discuss Class Data & Debrief 4

5 Have students explain to each other in their own words what density is. Next have them make two drawings: one of a less dense object and one of an object with greater density. They should label their drawings and explain the drawings to their partners first and then to entire group. NOTES: Share with the group that they will now have the opportunity to determine a more accurate density of several objects. As before in Activity #1, read through the purpose, materials, procedure, and data table together prior to beginning the activity. Students may need assistance when finding the volume of each of the solids. Write and explain each of the equations for the students to copy on their student pages. They will need these for their calculations. Materials Activity #2 Class to Share: 5 Aluminum Cubes 5 Aluminum Cylinders 5 Aluminum Rectangular Prisms 5 Steel Cubes 5 Steel Cylinders 5 Steel Rectangular Prisms Scale Each Pair of Students: Calculator Cup Paper Towels Ruler Water FORMULAS for finding VOLUME Volume of a Cube = Length x Width x Height Volume of a Rectangular Prism = Length x Width x Height Volume of a Cylinder = pi x Radius x Radius x Height Pi = 3.14 Assist groups as they work through the activity independently. When students have completed the activity, ask the following questions: Which of the blocks sunk? Which block had the greatest density? o What evidence do you have? o How do you know this? What could that mean about how its particles are packed together? Which of the blocks floated? Which block had the smallest/least density? o What evidence do you have? o How do you know this? 5

6 What could that mean about how its particles are packed together? Have students go back to their drawings and make any corrections they need to based on the activity and discussion. Students share and explain their drawings to the group. Debrief How would you describe density? How do you think density affects matter? Why would it be important to know the density of an object? Where are some places that you have seen the effects of density in action? Extensions Test aluminum foil to see if it will sink or float. Change the shape of the foil to test the effects of shape on density. Determine the density of other regularly shaped objects. Predict if they will sink or float and test them. 6

7 You be the Judge: Density Pg. 1 0f 4 Problem: How does the size of the particle affect the amount of space in a container? Materials: (Per Pair) 2 Graduated Cups Dropper Bottle of Water Smaller Steel Spheres Larger Steel Spheres Paper Towels Procedure: 1. Fill the graduated cup with smaller steel spheres until the bottom has one layer. 2. Count and record how many steel spheres covered the bottom of the container. 3. Make a drawing of your observations. 4. Slowly add drops of water one at a time to the container until the steel spheres are covered. Count the number of drops as you add the drops. Record this number on the data table. 5. Look at the cup from the side. Record any additional observations on the data table. 6. Set this cup aside. 7. Fill the other graduated cup using the larger steel spheres until the bottom has one layer. 8. Count and record how many steel spheres covered the bottom of the container. 9. Make a drawing of your observations. 10. Repeat steps 4 and 5. Remember to record the data and observations on the table. 7

8 You be the Judge: Density Pg. 2 0f Answer the discussion questions. 12. Empty the water from the containers. Dry the containers and the steel spheres. Return the steel spheres to the appropriate containers. Cup Small Steel Spheres DENSITY DATA TABLE Number of Number of Steel Drops of Spheres Water Other Observations Large Steel Spheres 8

9 You be the Judge: Density Pg. 3 0f 4 Drawings of Small Steel Spheres Drawings of Large Steel Spheres 9

10 You be the Judge: Density Pg. 4 0f 4 Discussion and Conclusions: 1. What filled the spaces between the steel spheres? 2. Which cup held the most water? 3. How would you describe the relationship between the size of the steel spheres and the number of spheres that fits in the bottom of the cup? 4. How would you describe the relationship between the size of the steel spheres and the amount of water that fits in the spaces between them? 10

11 You be the Judge: Density Pg. 1 0f 4 Problem: How does density affect an object? Materials: (Group of 4) Aluminum Cube Aluminum Cylinder Aluminum Rectangular Prism Steel Cube Steel Cylinder Steel Rectangular Prism Ruler Calculator Cup Water Paper Towel Scale Procedure: 1. Find the mass of each block. Record this on the data table. 2. Determine the volume of each of the three shapes. Write the formula you will use. Show your work on the next page. Make sure to record the volume of each shape on the data table. Volume of a Cube Volume of a Rectangular Prism Volume of a Cylinder 3. Determine the density of each of the blocks. 4. Use your data to calculate the density. 5. Predict if each block will sink or float in water. 6. Test your predictions one block at a time. Record the results. 7. Thoroughly dry off each object. 8. Clean up following your teachers directions. 11

12 You be the Judge: Density Pg. 2 0f 4 VOLUME CALCULATIONS Shape Formula Shape Formula Shape Formula 12

13 You be the Judge: Density Pg. 3 0f 4 Equation for Density: Metal Type Mass & Shape (g) SINK or FLOAT DATA TABLE Volume (cm 3 ) Density (g/cm 3 ) Prediction Results 13

14 You be the Judge: Density Pg. 4 0f 4 Discussion and Conclusions: 1. What surprised you from the results? Explain your answer. 2. Explain why something was able to float. 3. Explain why something was able to sink. 4. How do you think this relates to the previous activity with the steel spheres? 14

15 You be the Judge: Density Group Small Steel Spheres Large Steel Spheres # Spheres Drops Water # Spheres Drops Water Average Transparency Master 15

How is an object s density related to its volume, mass, and tendency to sink or float? Materials

How is an object s density related to its volume, mass, and tendency to sink or float? Materials Investigation 2B 2B How is an object s density related to its volume, mass, and tendency to sink or float? You may be familiar with the trick question Which is heavier: a pound of feathers or a pound of

More information

Chemistry #3 Notebook States of Matter

Chemistry #3 Notebook States of Matter Name Hour Test Date Group # Chemistry #3 Notebook States of Matter LEARNING TARGETS I CAN model the motion and arrangement of particles in typical solids, liquids and gasses. I CAN describe how the motion

More information

Identifying Solids 1-2 KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY ACTIVITY OVERVIEW L A B O R ATO R Y A-69

Identifying Solids 1-2 KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY ACTIVITY OVERVIEW L A B O R ATO R Y A-69 Identifying Solids 40- to 1-2 50-minute sessions ACTIVITY OVERVIEW 7 L A B O R ATO R Y Students conduct tests on the solids separated from the mixture to gain information about the physical and chemical

More information

Lab: Determine the Density and Identify the Substance

Lab: Determine the Density and Identify the Substance SNC1D1 Lab: Determine the Density and Identify the Substance Activity 1: Find the Density 1. Get only one of the numbered blocks. Weigh the block to the nearest tenth of a gram (1 decimal point, example:

More information

Activity Sheet Chapter 3, Lesson 3 Density of water

Activity Sheet Chapter 3, Lesson 3 Density of water Activity Sheet Chapter 3, Lesson 3 Density of water Name Date DEMONSTRATION 1. One of your classmates lifted different amounts of water. The largest amount of water also had the most mass. You know how

More information

Students explore the properties that allow objects and liquids to float and use this information to infer the composition of the Earth s layers.

Students explore the properties that allow objects and liquids to float and use this information to infer the composition of the Earth s layers. Astro-Venture Page 91 Geology Educator Guide Lesson 3: Density Placeholder Introduction Graphic (5.25 X 2.75 ) Anchored buoy floating in ocean; NOAA Students explore the properties that allow objects liquids

More information

Chem. 105 Experiment 2 Name: Partners name(s): Laboratory 2: Density

Chem. 105 Experiment 2 Name: Partners name(s): Laboratory 2: Density Name: Partners name(s): Laboratory 2: Density Stamp: Density/Study of Matter (Theory-Test cycle) Objects to measure mass and volume: blocks of wood, Styrofoam, rubber stoppers, rocks. String, rulers, graduated

More information

Simulation: Density FOR THE TEACHER

Simulation: Density FOR THE TEACHER Simulation: Density FOR THE TEACHER Summary In this simulation, students will investigate the effect of changing variables on both the volume and the density of a solid, a liquid and a gas sample. Students

More information

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it?

Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Part I: How Dense Is It? Fundamental Question: What is matter, and how do we identify it? Everything on Earth is made of matter. Matter is as simple as a single element or as complex as the entire planet.

More information

Lab: Density of Substances

Lab: Density of Substances Name: Date: Unit 1: Measuring the Earth - 2 Lab Hours Period: Lab: Density of Substances Introduction: You often hear statements like lead is heavier than water, or gold is the heaviest material on earth.

More information

Activity Sheet Chapter 3, Lesson 2 Finding Volume The Water Displacement Method

Activity Sheet Chapter 3, Lesson 2 Finding Volume The Water Displacement Method Activity Sheet Chapter 3, Lesson 2 Finding Volume The Water Displacement Method Name Date DEMONSTRATION Think about the longest, middle-sized, and shortest rods your teacher showed you. All of these samples

More information

Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown

Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown Key Concepts Different substances are made from different atoms, ions, or molecules, which interact with water in different ways. Since dissolving

More information

Separating the Mixture

Separating the Mixture Separating the Mixture 40- to 1 50-minute session ACTIVITY OVERVIEW I N V E S T 5 I O N I G AT Students perform their procedures written in Activity 3, A Plan to Separate the Mixture, to physically separate

More information

1 What Is Matter? Math Focus

1 What Is Matter? Math Focus CHAPTER 1 1 What Is Matter? SECTION The Properties of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What is matter? What is volume and mass? What are

More information

Density. weight: a measure of the pull of gravity on an object

Density. weight: a measure of the pull of gravity on an object Imagine that it is a very hot day. You decide to cool a glass of water by placing several ice cubes in the drink. What happens when you drop the ice into the water? Likely, when you place the first ice

More information

Chapter 3, Lesson 1: What is Density?

Chapter 3, Lesson 1: What is Density? Chapter 3, Lesson 1: What is Density? Key Concepts Density is a characteristic property of a substance. The density of a substance is the relationship between the mass of the substance and how much space

More information

Ch100: Fundamentals for Chemistry 1 Instructor: Tony Zable. Experiment: Density

Ch100: Fundamentals for Chemistry 1 Instructor: Tony Zable. Experiment: Density Ch100: Fundamentals for Chemistry 1 Objectives: Experiment: Density To determine the density of a known liquid To identify an unknown liquid by determining its density To determine the density of a regular

More information

Lesson Plan Book-stacking Activity

Lesson Plan Book-stacking Activity T o g o d i r e c t l y t o a l e s s o n, c l i c k o n e o f t h e f o l l o w i n g l i n k s : B o o k - s t a c k i n g A c t i v i t y B a l l o o n A c t i v i t y H y d r o g e n G a s L a b F

More information

Unit 1 - Introduction

Unit 1 - Introduction Unit 1 - Introduction Units and Measurements In Physics, we are constantly measuring PHYSICAL QUANTITIES using MEASURING INSTRUMENTS. When we measure something we need to pay attention to the following:

More information

Floaters and Sinkers. Synopsis. Objectives. Materials

Floaters and Sinkers. Synopsis. Objectives. Materials Floaters and Sinkers Synopsis Students will gain an intuitive understanding of density by comparing objects of equal volumes but which have different masses. They will then use two different methods to

More information

Physical and Chemical Changes Or How Do You Know When You ve Made Something New?

Physical and Chemical Changes Or How Do You Know When You ve Made Something New? Introduction Or How Do You Know When You ve Made Something New? Remember that all matter has characteristic physical and chemical properties. Matter can also undergo physical and chemical changes. How

More information

THE RACI TITRATION STAKES 2018

THE RACI TITRATION STAKES 2018 THE ROYAL AUSTRALIAN CHEMICAL INSTITUTE INCORPORATED THE RACI TITRATION STAKES 08 INSTRUCTIONS FOR TEAM MEMBERS THE CHALLENGE Vinegar is used to prepare many different kinds of sauces. The main constituent

More information

Lesson 2. Color change

Lesson 2. Color change Lesson 2 Color change T E A C H E R G U I D E Lesson summary Students meet marine chemist Sera Tuikabe, who is studying ocean acidification in the water surrounding the Republic of the Fiji Islands. Students

More information

LESSON 4: Buoyant Butter ESTIMATED TIME Setup: 5 minutes Procedure: 5 10 minutes

LESSON 4: Buoyant Butter ESTIMATED TIME Setup: 5 minutes Procedure: 5 10 minutes LESSON 4: Buoyant Butter ESTIMATED TIME Setup: 5 minutes Procedure: 5 10 minutes DESCRIPTION Calculate the density of a stick of butter to determine if it will sink or float in water. OBJECTIVE This lesson

More information

Name Date Period Molecular Nature of Water

Name Date Period Molecular Nature of Water Name Date Period Molecular Nature of Water Purpose: To determine how water molecules react using molecular models and Lab demos. Materials: I cup of 12 water molecules (red & white), 1 Na (blue), 1 Cl

More information

Exponential Form and comparison to the base unit mega M 1,000, million x bigger. n

Exponential Form and comparison to the base unit mega M 1,000, million x bigger. n Lab Maestro: Per: DUE Fri. 9/4/208 Honors Chemistry Lab #: Metric System Introduction: The Metric System is a worldwide standard system of measurement. Scientists must be able to communicate with each

More information

Released Science Inquiry Task A Cool Investigation

Released Science Inquiry Task A Cool Investigation Date: Your Name: Released Science Inquiry Task A Cool Investigation 07 Grade Student Test Booklet Directions: Science You will be reading a story and analyzing the data provided to answer a set of questions.

More information

Laboratory Investigation

Laboratory Investigation Name Class Date Chapter 2 ; Laboratory Investigation Determining Density I i Background Information ' Which is heavier, a kilogram of lead or a kilogram of feathers? This is an old question 1 with a simple

More information

Measurements in the Laboratory

Measurements in the Laboratory Measurements in the Laboratory Objectives The objectives of this laboratory are: a) Use standard laboratory measurement devices to measure length, volume and mass amounts. b) Use these measurements to

More information

Activity 6.5 From gas to liquid to solid

Activity 6.5 From gas to liquid to solid Activity 6.5 This activity is an extension of Activity 6.4a in which ice is used to make a container cold. As in Activity 6.4a, this activity will work only with sufficient water vapor in the air. Here,

More information

Matter and Its Properties. Unit 2

Matter and Its Properties. Unit 2 Matter and Its Properties Unit 2 Lesson 1: Physical & Chemical Properties & Changes Unit 2: Matter and Its Properties Section 1: Physical Properties & Change Lesson 1: Physical & Chemical Properties &

More information

Molecules and Matter. Grade Level: 4 6

Molecules and Matter. Grade Level: 4 6 Molecules and Matter Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 4 Partner Project page 5 Crossword Puzzle page 6 Answer Key page 7 Classroom Procedure 1. Without introduction,

More information

Virtual Library Lesson: Oobleck, Gloop, and Glurch

Virtual Library Lesson: Oobleck, Gloop, and Glurch Oobleck, Gloop, and Glurch Lesson Overview Throughout this lesson, students will use inquiry skills to identify states of matter, describe physical properties, and modify the recipe to change physical

More information

1. Base your answer to the following question on The sphere was dropped into water in a graduated cylinder as shown below.

1. Base your answer to the following question on The sphere was dropped into water in a graduated cylinder as shown below. 1. Base your answer to the following question on The sphere was dropped into water in a graduated cylinder as shown below. 3. A student measured the mass and volume of the mineral crystal below and recorded

More information

Erosion. changing landforms. Purpose. Process Skills. Background. Time 1 1 ½ hours Grouping Pairs, small groups, or class.

Erosion. changing landforms. Purpose. Process Skills. Background. Time 1 1 ½ hours Grouping Pairs, small groups, or class. Purpose To demonstrate how several factors affect the rate of erosion. Process Skills Observe, Measure, Collect data, Interpret data, Form a hypothesis, Make a model, Identify and control variables, Draw

More information

Grade Six: Plate Tectonics 6.11 Density of Granite and Basalt. Density of basalt and granite affect the formation of landmasses on Earth.

Grade Six: Plate Tectonics 6.11 Density of Granite and Basalt. Density of basalt and granite affect the formation of landmasses on Earth. Grade Six: Plate Tectonics 6.11 Density of Granite and Basalt Lesson Concept Density of basalt and granite affect the formation of landmasses on Earth. Link Mountain formation in Lesson 6.10 is dependent

More information

Chapter 3, Lesson 2: Finding Volume The Water Displacement Method

Chapter 3, Lesson 2: Finding Volume The Water Displacement Method Chapter 3, Lesson 2: Finding Volume The Water Displacement Method Key Concepts A submerged object displaces a volume of liquid equal to the volume of the object. One milliliter (1 ml) of water has a volume

More information

Unit 2. Phases of Matter and Density

Unit 2. Phases of Matter and Density Name Pd Unit 2 Phases of Matter and Density Name Pd Name Pd Homework for Unit 2 1. Vocab for Unit 2; due: 2. Pg 17 (1-5), pg 19 (1-5), pg21 (1-5) complete sentences; due: 3. Pg 23 (1-6), pg 27 (1-6) complete

More information

Phy 100 s Lab - Measurement techniques for mass, size and density. Name Course & Sec. Lab Partner

Phy 100 s Lab - Measurement techniques for mass, size and density. Name Course & Sec. Lab Partner Phy 100 s Lab - techniques for mass, size and density. Name Course & Sec Lab Partner Date 1. You should have a metal block and a metal cylinder both made of the same material. If you are unsure if the

More information

Why does a hot air balloon rise up in the air? Record your ideas on the lines below. Why are gases less dense than liquids?

Why does a hot air balloon rise up in the air? Record your ideas on the lines below. Why are gases less dense than liquids? Fluids and Density Before You Read Why does a hot air balloon rise up in the air? Record your ideas on the lines below. What are fluids? A fluid is any form of matter that can flow. Liquids and gases are

More information

DENSITY CALCULATIONS

DENSITY CALCULATIONS PRACTICE Name: Date: Class: DENSITY CALCULATIONS Density is a measure of how much matter exists within a given volume. The mass of an object tells you how many atoms exist within a certain substance (amount

More information

Properties of. Matter. PowerPoint, Student Notes, and Activity

Properties of. Matter. PowerPoint, Student Notes, and Activity Properties of Matter PowerPoint, Student Notes, and Activity Properties of Matter Recommendations pg. 3 Student Notes Pages pg. 4 Penny Activity Directions pg. 9 Penny Student Sheet pg. 11 Journal Entry

More information

Objective: Recognize halves within a circular clock face and tell time to the half hour.

Objective: Recognize halves within a circular clock face and tell time to the half hour. Lesson 13 1 5 Lesson 13 Objective: Recognize halves within a circular clock face and tell time to the half Suggested Lesson Structure Fluency Practice Application Problem Concept Development Student Debrief

More information

Read & Learn. Read the provided article. Use the information in the reading to answer the questions on the task cards on your answer sheet.

Read & Learn. Read the provided article. Use the information in the reading to answer the questions on the task cards on your answer sheet. Read & Learn Read the provided article. Use the information in the reading to answer the questions on the task cards on your answer sheet. Make sure your answers in the correct spot on the answer sheet.

More information

Chapter 1, Lesson 3: The Ups and Downs of Thermometers

Chapter 1, Lesson 3: The Ups and Downs of Thermometers Chapter 1, Lesson 3: The Ups and Downs of Thermometers Key Concepts The way a thermometer works is an example of heating and cooling a liquid. When heated, the molecules of the liquid in the thermometer

More information

Photosynthesis Investigation 1

Photosynthesis Investigation 1 Photosynthesis Investigation 1 Part 1. Measuring the Rate of Photosynthesis You will use the "floating leaf disk" method to measure the rate of photosynthesis. To begin, cut several disks from a spinach

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

Chapter 6, Lesson 9: Neutralizing Acids and Bases

Chapter 6, Lesson 9: Neutralizing Acids and Bases Chapter 6, Lesson 9: Neutralizing Acids and Bases Key Concepts ph is a measure of the concentration of H 3 O + ions in a solution. Adding an acid increases the concentration of H 3 O + ions in the solution.

More information

Mass, Volume, & Density

Mass, Volume, & Density Mass, Volume, & Density Short Informational Videos Mass Volume & Density Buoyancy Mass Measurement of the amount of matter (or stuff) in an object Measured in grams (g) There are 3 states of matter: Solid

More information

Distinguishing Glass Fragments

Distinguishing Glass Fragments Activity 2 Distinguishing Glass Fragments GOALS In this activity you will: Experimentally determine the density of a solid without a definite shape. Understand the difference between intensive and extensive

More information

Unit Wun. Version A. 10. The sphere was dropped into water in a graduated cylinder as shown below.

Unit Wun. Version A. 10. The sphere was dropped into water in a graduated cylinder as shown below. Unit Wun 1. In order to make observations, an observer must always use (1) proportions (2) the senses (3) mathematical calculations (4) experiments 2. Using a ruler to measure the length of a stick is

More information

Working with Solutions. (and why that s not always ideal)

Working with Solutions. (and why that s not always ideal) Page 1 of 13 Working with Solutions (and why that s not always ideal) Learning Objectives: Solutions are prepared by dissolving a solute into a solvent A solute is typically a solid, but may also be a

More information

Section 3. What Drives the Plates? What Do You See? Think About It. Investigate. Learning Outcomes

Section 3. What Drives the Plates? What Do You See? Think About It. Investigate. Learning Outcomes Section 3 What Drives the Plates? What Do You See? Learning Outcomes In this section, you will Calculate the density of liquids and compare their densities with their position in a column of liquid. Observe

More information

#2: THE FLOATING PAPER CLIP

#2: THE FLOATING PAPER CLIP Activity #1: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. Procedure: Make sure the penny is dry. Begin by estimating the number of drops of water that can be piled on the penny before it spills

More information

Station 1: measuring & graphing short lengths

Station 1: measuring & graphing short lengths Station 1: measuring & graphing short lengths 1. Read the task carefully. 2. Make a TABLE to collect your data. 3. Collect your data. 4. Graph the data using a bar graph. 5. Clean up the station & put

More information

Unit 2: Chemistry. Unit Overview:

Unit 2: Chemistry. Unit Overview: Unit 2: Chemistry Unit Overview: This unit will focus on basic chemistry and some of the major process of organic chemistry (dehydration synthesis, hydrolysis, and enzyme action) that help form carbon

More information

PREPARE FOR THE ACTIVITY. Activity Sheet Chapter 6, Lesson 8 ph and Color Change

PREPARE FOR THE ACTIVITY. Activity Sheet Chapter 6, Lesson 8 ph and Color Change Activity Sheet Chapter 6, Lesson 8 ph and Color Change Name Date DEMONSTRATION 1. Your teacher poured green universal indicator into each of two cups. What does the change in color of the indicator solution

More information

The complete lesson plan for this topic is included below.

The complete lesson plan for this topic is included below. Home Connection Parent Information: Magnets provide a simple way to explore force with children. The power of a magnet is somewhat like magic to them and requires exploration to understand. When forces

More information

DETERMINING AND USING H

DETERMINING AND USING H DETERMINING AND USING H INTRODUCTION CHANGES IN CHEMISTRY Chemistry is the science that studies matter and the changes it undergoes. Changes are divided into two categories: physical and chemical. During

More information

ATOMIC DIMENSIONS. Background for Teachers KEY CONCEPT

ATOMIC DIMENSIONS. Background for Teachers KEY CONCEPT ATOMIC DIMENSIONS KEY CONCEPT The volume of an atom is mainly empty space. Relative distances within an atom are difficult to visualize using drawings because they are similar to distances found in our

More information

Measurement and Density

Measurement and Density Measurement and Density Goals q q q Learn to record accurate measurements from a variety of devices. Measure the density of solids and solutions. Use the property of density and measurement to calculate

More information

Amount of Substance and Its Unit Mole- Connecting the Invisible Micro World to the Observable Macro World Part 2 (English, mp4)

Amount of Substance and Its Unit Mole- Connecting the Invisible Micro World to the Observable Macro World Part 2 (English, mp4) Amount of Substance and Its Unit Mole- Connecting the Invisible Micro World to the Observable Macro World Part 2 (English, mp4) [MUSIC PLAYING] Instructor: Hi, everyone. Welcome back. I hope you had some

More information

Chesapeake Campus Chemistry 111 Laboratory

Chesapeake Campus Chemistry 111 Laboratory Chesapeake Campus Chemistry 111 Laboratory Objectives Calculate the density of a sugar solution. Evaluate lab sources of error and their effect on an experiment. Introduction The density of an object is

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement Name: Regents Chemistry: Notes: Unit 1: Math and Measurement www.chempride.weebly.com Key Ideas Major Understandings: o Chemistry is the study of matter: Matter takes up space and has mass. (K- 4, 3.1a)

More information

UNIT 1 - MATH & MEASUREMENT

UNIT 1 - MATH & MEASUREMENT READING MEASURING DEVICES NOTES Here are a couple of examples of graduated cylinders: An important part of Chemistry is measurement. It is very important that you read the measuring devices we use in lab

More information

ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION. A Collection of Learning Experiences on LOOKING AT LIQUIDS

ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION. A Collection of Learning Experiences on LOOKING AT LIQUIDS ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION A Collection of Learning Experiences on LOOKING AT LIQUIDS CATTARAUGUS-ALLEGANY BOCES GRADES 5/6 TABLE OF CONTENTS Unit Overview... 2 Format

More information

Measuring Keepers S E S S I O N 1. 5 A

Measuring Keepers S E S S I O N 1. 5 A S E S S I O N 1. 5 A Measuring Keepers Math Focus Points Naming, notating, and telling time to the hour on a digital and an analog clock Understanding the meaning of at least in the context of linear measurement

More information

Chapter 5, Lesson 2 Surface Tension

Chapter 5, Lesson 2 Surface Tension Chapter 5, Lesson 2 Surface Tension Key Concepts The attraction of molecules at the surface of a liquid is called surface tension. The polarity of water molecules can help explain why water has a strong

More information

Lab Activity 3: Factors Affecting Reaction Rate

Lab Activity 3: Factors Affecting Reaction Rate Chemistry 3202 Lab #3 factors affecting Reaction Rate Page 1 of 5 Lab Activity 3: Factors Affecting Reaction Rate Introduction Several factors influence how fast a reaction proceeds. In this activity,

More information

Density of an Unknown

Density of an Unknown Experiment 3 Density of an Unknown Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The density of an

More information

Table of Contents. Diagnostic Pre-test... 5 Lesson 1: What Is an Atom? Lesson 5: Gases. Lesson 6: Melting and Freezing. Lesson 2: What Are Molecules?

Table of Contents. Diagnostic Pre-test... 5 Lesson 1: What Is an Atom? Lesson 5: Gases. Lesson 6: Melting and Freezing. Lesson 2: What Are Molecules? Table of Contents Diagnostic Pre-test................. 5 Lesson 1: What Is an Atom? What Can You See?................ 11 What Is Matter Made Of?........... 12 Describing the Atom............... 13 What

More information

10. How many significant figures in the measurement g? a. 2 b. 3 c. 4 d. 5 e. 6

10. How many significant figures in the measurement g? a. 2 b. 3 c. 4 d. 5 e. 6 Summer Practice Test Ch 1 (va pg 1 of 5) Matter and Measurement Name Per You should NOT use a calculator except for #0. This practice test should be in your 3 ring notebook on the first day of school.

More information

Do Now: Use the ruler below to answer the following questions

Do Now: Use the ruler below to answer the following questions Chemistry Ms. Ye Name Date Block Do Now: Use the ruler below to answer the following questions 1. What is each tick mark worth on the ruler? 2. When measuring, to which decimal place should you estimate

More information

Name Class Date. Section: Measurements and Calculations in Chemistry

Name Class Date. Section: Measurements and Calculations in Chemistry Skills Worksheet Concept Review Section: Measurements and Calculations in Chemistry Answer the following questions in the space provided. 1. What is the difference between accuracy and precision? 2. Suppose

More information

Lab 1: Precision and accuracy in glassware, and the determination of density

Lab 1: Precision and accuracy in glassware, and the determination of density Chemistry 140 Please have the following pages ready before class on Monday, October 2. Note that the different parts will be standard divisions in all lab writeups. For this particular writeup, please

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Graphing and Density

Graphing and Density Graphing and Density In addition to values that you can directly measure like length, mass, or volume, chemistry is filled with values that must be calculated. The most common of these is density. Density

More information

Chapter 3 - Measurements

Chapter 3 - Measurements Chapter 3 - Measurements You ll learn it in the summer, If not, it ll be a bummer. You ll need to know conversions, For units, Euro version. Metrics are powers of ten, And you might cry when, You re forced

More information

Floating Disks: An Investigation of Photosynthesis Student Materials. Introduction Lab Protocol Data Collection Worksheet...

Floating Disks: An Investigation of Photosynthesis Student Materials. Introduction Lab Protocol Data Collection Worksheet... Student Materials Introduction... 2 Lab Protocol... 3 Data Collection Worksheet... 5 Pre-Lab Questions... 6 Post-Lab Questions and Analysis... 7 Students You should read the Introduction and Lab Protocol

More information

1. Scientific Notation A shorthand method of displaying very (distance to. Express in Scientific Notation

1. Scientific Notation A shorthand method of displaying very (distance to. Express in Scientific Notation Unit 2: MEASUREMENT 1. Scientific Notation 2. Metric System 3. Accuracy and Precision 4. Measuring & Counting Significant Figures 5. Calculations with Significant Figures 6. Density 1. Scientific Notation

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Grade Level 3rd Melting, Freezing, and More!: Phase Transitions Steven Scroggins, Ailey Crow, Tom Holcombe, and Terence Choy California

More information

The picture of an atom that you may have in your mind that of a nucleus

The picture of an atom that you may have in your mind that of a nucleus Electron Probability Visualizing a Probability Region Chemistry Electron Probability Chemistry MATERIALS beans, pinto cup, 3-oz plastic graduated cylinder, 100 ml meter stick string tape, masking target,

More information

1 Three States of Matter

1 Three States of Matter CHAPTER 3 1 Three States of Matter SECTION States of Matter BEFORE YOU READ After you read this section, you should be able to answer these questions: What is matter made of? What are the three most common

More information

Physics. Practical 5: Density. Practical Objective. Content Objective. Apparatus. Your teacher may watch to see if you can:

Physics. Practical 5: Density. Practical Objective. Content Objective. Apparatus. Your teacher may watch to see if you can: The density of a substance is the mass of a unit volume of that substance. Almost all substances are most dense when they are solids and least dense when they are gases. The arrangement of particles can

More information

EngrTEAMS 12/13/2017. Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page.

EngrTEAMS 12/13/2017. Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page. TABLE OF CONTENTS EngrTEAMS Ecuadorian Fishermen Set up the first page of your EngrTEAMS notebook with a TABLE OF CONTENTS page. VOCABULARY On the next to last page, write Vocabulary across the top of

More information

States of Matter: A Solid Lesson where Liquids Can be a Gas!

States of Matter: A Solid Lesson where Liquids Can be a Gas! TEACHER GUIDE STATES OF MATTER 60 Minute Physical Science Lesson Science- to- Go! Program Grades: 1-3 States of Matter: A Solid Lesson where Liquids Can be a Gas! Description Your classroom will be converted

More information

CO 2. Lesson 1. Production of a gas

CO 2. Lesson 1. Production of a gas Lesson 1 Production of a gas T E A C H E R G U I D E CO 2 Lesson summary Students meet volcanologist Victor Helguson, who is studying the gases released by volcanoes in Iceland. Students conduct a chemical

More information

MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED!

MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED! MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED! MASS A measurement of the amount of matter in an object Can be measured with a triple beam balance or electronic balance It is measured in grams!

More information

Chapter 5, Lesson 1: Water is a Polar Molecule

Chapter 5, Lesson 1: Water is a Polar Molecule Chapter 5, Lesson 1: Water is a Polar Molecule Key Concepts The water molecule, as a whole, has 10 protons and 10 electrons, so it is neutral. In a water molecule, the oxygen atom and hydrogen atoms share

More information

Density of Brass: Accuracy and Precision

Density of Brass: Accuracy and Precision Density of Brass: Accuracy and Precision Introduction Density is a measure of a substance s mass-to-volume ratio. For liquids and solids, density is usually expressed in units of g/ml or g/cm 3 ; these

More information

Chesapeake Campus Chemistry 111 Laboratory

Chesapeake Campus Chemistry 111 Laboratory Chesapeake Campus Chemistry 111 Laboratory Objectives Calculate molar mass using the ideal gas law and laboratory data. Determine the identity of an unknown from a list of choices. Determine how sources

More information

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions Inquiry INVESTIGATION 7-A Skill Check Initiating and Planning Performing and Recording Analyzing and Interpreting Communicating Safety Precautions Wear safety eyewear throughout this investigation. Wear

More information

RUN TIME: 50 MIN POGIL 10 Page 1 of 5

RUN TIME: 50 MIN POGIL 10 Page 1 of 5 RUN TIME: 50 MIN POGIL 10 Page 1 of 5 POGIL EXERCISE 10 What Is a Mole and Why Do Chemists Need It? Each member should assume his or her role at this time. The new manager takes charge of the POGIL folder

More information

Physical Science Capstone Instructional Segment This is a two-week summative designed to give students an opportunity to review and re-examine the

Physical Science Capstone Instructional Segment This is a two-week summative designed to give students an opportunity to review and re-examine the Physical Science Capstone Instructional Segment This is a two-week summative designed to give students an opportunity to review and re-examine the concepts covered in this course. Student Science Performance

More information

Weather Tanks. NC Standards 5.E.1, 5.P.2.1 Page 3. Grade 5 Earth Science, Physical Science. Activity Description & Estimated Class Time.

Weather Tanks. NC Standards 5.E.1, 5.P.2.1 Page 3. Grade 5 Earth Science, Physical Science. Activity Description & Estimated Class Time. Weather Tanks NC Standards 5.E.1, 5.P.2.1 Page 3 Grade 5 Earth Science, Physical Science Throughout the guide, teaching tips are in red. Activity Description & Estimated Class Time Objectives This activity

More information

Front page = 1 point, Questions on back = 1 point each, Mastery Question = 1 point DENSITY OF SOLIDS Sink or Float?

Front page = 1 point, Questions on back = 1 point each, Mastery Question = 1 point DENSITY OF SOLIDS Sink or Float? Last name First name Date Period Front page = 1 point, Questions on back = 1 point each, Mastery Question = 1 point DENSITY OF SOLIDS Sink or? Question to investigate Why does a heavier candle float and

More information

DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY

DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY DO NOW LABEL LEFT AND RIGHT PAGES PROPERTIES OF MATTER: DENSITY LAB DEBRIEF What was the independent (test) variable? What was the dependent (outcome) variable? Which trial was solid, liquid, gas? Explain.

More information

Investigating Similar Triangles and Understanding Proportionality: Lesson Plan

Investigating Similar Triangles and Understanding Proportionality: Lesson Plan Investigating Similar Triangles and Understanding Proportionality: Lesson Plan Purpose of the lesson: This lesson is designed to help students to discover the properties of similar triangles. They will

More information

ATOMIC AND MOLECULAR ATTRACTION

ATOMIC AND MOLECULAR ATTRACTION ATOMIC AND MOLECULAR ATTRACTION Name(s) PART 1 DROPS ON A PENNY Assemble the following materials: three pennies, two eye droppers, several paper towels, a small cup of water, a small cup of alcohol, and

More information