Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: Broadband IR-UV extinction spectra

Size: px
Start display at page:

Download "Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: Broadband IR-UV extinction spectra"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi: /2007jd008890, 2007 Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: Broadband IR-UV extinction spectra Praveen K. Mogili, 1 K. H. Yang, 2 Mark A. Young, 3 Paul D. Kleiber, 4 and Vicki H. Grassian 1,3 Received 28 April 2007; revised 12 July 2007; accepted 2 August 2007; published 7 November [1] Mineral dust aerosol plays an important role in the Earth s radiative budget on both regional and global scales. To better understand the impact of this component of the Earth s atmosphere, the extinction spectra for several key components of mineral dust aerosol have been measured in an environmental aerosol reaction chamber. The extinction spectra are measured over a broad wavelength range, which includes both IR (650 to 5000 cm 1 ) and UV-Vis (12,500 to 40,000 cm 1 ) spectral regions. Experimental data are compared with Mie theory simulations derived from available literature optical constants. In a few cases, we have needed to modify the published optical constant data sets to ensure Kramers-Kronig consistency. In general, the Mie-based simulations are in excellent agreement with experimental data over the full IR-UV spectral range, except in the immediate neighborhood of the IR resonance absorption lines where particle shape effects on the resonance line profiles can be significant. Citation: Mogili, P. K., K. H. Yang, M. A. Young, P. D. Kleiber, and V. H. Grassian (2007), Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: Broadband IR-UV extinction spectra, J. Geophys. Res., 112,, doi: /2007jd Introduction [2] Mineral dust aerosol is of great interest because of the effect it can have on global and regional climate [Tegen et al., 1996; Haywood and Boucher, 2000; Satheesh and Moorthy, 2005]. Annual mineral dust aerosol emission fluxes into the atmosphere range between Tg, as estimated by recent modeling studies [Bauer et al., 2004]. Mineral dust can affect the global radiative budget by both direct and indirect means. Mineral dust aerosol can have a cooling (negative forcing) effect on the atmosphere by scattering incoming solar radiation at short wavelengths, and a warming effect (positive forcing) by absorbing outgoing terrestrial radiation at long wavelengths. Thus mineral dust aerosol impacts temperature profiles, photolysis rates and atmospheric dynamics. Estimating the effects of mineral dust on climate forcing requires accurate modeling of dust optical properties across the entire spectral range from infrared (IR) to the ultraviolet (UV), including both nonresonant scattering and resonance absorption regions [Sokolik and Toon, 1996; Sokolik and Toon, 1 Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, Iowa, USA. 2 Department of Physics, St. Ambrose College, Davenport, Iowa, USA. 3 Department of Chemistry, The University of Iowa, Iowa City, Iowa, USA. 4 Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa, USA. Copyright 2007 by the American Geophysical Union /07/2007JD ; Quijano et al., 2000; Conant et al., 2003]. Unfortunately, the radiative forcing of mineral dust aerosol in the troposphere is not well understood; even the sign of the direct radiative forcing contribution due to mineral dust aerosol is uncertain [Haywood and Boucher, 2000; Myhre and Stordahl, 2001]. Indeed, the impact of aerosols remains one of the most uncertain forcing components in climate models [Forster et al., 2007]. [3] Accurate measurement of the optical properties of mineral dust aerosol is also important in remote sensing applications [Kaufman et al., 1997; Satheesh et al., 2006; Balkanski et al., 2007]. Outgoing IR radiances observed by satellites are noticeably affected by atmospheric dust [Ackerman, 1997; Sokolik, 2002; Pierangelo et al., 2004; Darmenov and Sokolik, 2005; Hong et al., 2006]. Atmospheric and oceanic properties, such as atmospheric temperature profiles, water content, trace gas concentrations, and sea surface temperatures, can be determined from satellite data, and accurate modeling of mineral dust optical properties are needed for the data retrieval algorithms [DeSouza-Machado et al., 2006; Weaver et al., 2003]. [4] Mie theory is commonly used to model key optical properties of mineral dust, such as optical thickness, single scattering albedo and asymmetry factor [Hess et al., 1998; Ramanathan et al., 2001]. Mie theory requires knowledge of the dust particle concentration, size distribution, and index of refraction (the optical constants) [Sokolik and Toon, 1999]. Optical constants have been measured and tabulated for many of the most abundant components of mineral dust aerosol, but these are usually measured under bulk 1of12

2 Figure 1. Schematic diagram of environmental aerosol reaction chamber and associated instrumentation showing the dust sample cartridge (DC), solenoid valve (SV), sample chamber valve (V), thermocouples (TC), temperature read out (T), pressure transducers (P), and relative humidity sensor (RH). Also shown is the FT-IR spectrometer (FT-IR) with mirrors (M) and purge boxes for the external IR beam path (PB), and mid-band HgCdTe detector (MCT). The UV-Vis spectrometer consisting of the source (L), spectrograph (S), fiber optics (FO), and fiber optic collimators (C) is also depicted. (Only one of the two collimators is shown.) conditions and the results have generally not been validated in experiments on aerosols. In addition, optical constants in different spectral regions (such as in the IR and in the visible) are usually measured in different laboratories using different experimental methods. In some cases, the data sets are in disagreement where they overlap and this can present problems when attempting to model optical properties across a broad spectral range. [5] Even in cases where the optical constants are well established, Mie theory is strictly valid only for homogeneous spheres. It is known from both experimental and theoretical studies that the use of Mie theory can lead to serious errors in some cases [Kalashnikova and Sokolik, 2002, 2004], particularly for angle resolved studies of light scattering [Mishchenko et al., 1997; Volten et al., 2001; Veihelmann et al., 2004; Kahnert et al., 2006]. T-matrix based calculations on distributions of randomly oriented spheroids suggest that the errors associated with using Mie theory to calculate angle-integrated properties such as total extinction may be small [Mishchenko et al., 1997]. However, these conclusions have not been widely tested against laboratory measurements of extinction for well-characterized particles across a broad spectral range that includes both nonresonant scattering and resonant absorption regions. [6] Rayleigh-Gans theory offers an alternate approach that might be used to model the effects of larger irregularly shaped particles and particle aggregates [Bohern and Huffmann, 1983; Wang and Sorenson, 2002; Garcia-Lopez et al., 2006]. This method requires a model for particle shape (the form function), which is not always available for atmospheric mineral dust aerosols. While the Rayleigh- Gans method may have advantages over Mie theory for large, irregular particles, it has not yet been widely implemented in atmospheric radiative transfer calculations. [7] In this study, IR and UV-Vis extinction spectra have been measured in an environmental simulation chamber for several key components of mineral dust aerosol, including silicate clay (illite, kaolinite, and montmorillonite), oxide (quartz and hematite), carbonate (calcite), and sulfate (anhydrite) constituents. Aerosol optical properties can then be investigated over the spectral range from the IR to the UV. Experimental spectra are compared with Mie theory-based simulations that use optical constants derived from published literature data sets and a best fit lognormal size distribution function. This comparison allows us to test, both the reliability of Mie theory across the full spectral range from the IR to the UV (including both resonant absorption and nonresonant scattering regions), and the database of published optical constants for these important mineral constituents. 2. Experimental Methods 2.1. Environmental Aerosol Chamber [8] An environmental aerosol reaction chamber is used to measure the extinction spectra for selected components of 2of12

3 Table 1. Sources and Literature References for the Optical Constants of the Components of Mineral Dust Aerosol Used in This Study Mineral Dust Source & Purity Optical Constants Spectral Range, mm Reference Illite (clay) a Source Clay Repository Querry et al., Egan and Hilgeman, 1979 Kaolinite (clay) a Source Clay Repository Roush et al., 1991 Montmorillonite (clay) a Source Clay Repository Querry et al., Egan and Hilgeman, 1979 Quartz (SiO 2 ) Strem Chemicals (>99.5%) Longtin et al., 1988 Hematite (a-fe 2 O 3 ) Sigma -Aldrich (>99.5%) Longtin et al., 1988 Anhydrite (CaSO 4 ) Alfa Aesar (>99.0%) Ivlev and Popova, Long et al., 1993 Calcite (small)(caco 3 ) OMYA products (98.0%) Ivlev and Popova, 1973 Calcite (large) EM science (>98.0%) Lane, 1999 a See Table 2 in Usher et al., 2003, for clay mineral formulas. mineral dust aerosol. A schematic diagram of the chamber is shown in Figure 1. It is an FEP-Teflon coated steel chamber with 151 L volume and a surface to volume ratio of 10.7 m 1. It is sealed by large flanges at the top and bottom, and is fitted with eight sidearms to access the interior of the chamber. A mechanical pump is connected through an opening near the bottom of the chamber. The pressure in the chamber is measured with capacitance manometers. All the experiments in this study are carried out at room temperature, ca. 296 k. [9] The mineral dust components investigated in this study were obtained from several sources. The manufacturer information and specifications, along with the literature references for the optical constants used for the different mineral dust aerosol samples, are given in Table 1. Note that only well-characterized single component mineral samples are investigated in this work. The samples have each been characterized by X-ray diffraction to verify the mineralogy. Results for more authentic mineral dust samples that are more complex internal or external mixtures of minerals will be reported in future work Extinction Spectra Measurements [10] An Ocean Optics UV-Vis spectrometer (Ocean Optics, SD 2000) is used to measure the extinction in the range 12,500 to 40,000 cm 1. The UV-Vis spectrometer beam is coupled through quartz windows to the chamber using optical fibers with matched collimating lenses. An adjustable aperture of diameter 8 mm is placed in the beam path, immediately before the final focusing lens, to limit the field of view and discriminate against near forward scattered light. Even with the aperture in place, we cannot entirely rule out some error in the UV-Vis extinction signal at short wavelengths resulting from the collection of very near forward scattered light from large particles. The window-to-window path length for the UV-Vis beam is 66.5 ± 0.5 cm. [11] A Mattson Infinity 60 AR FT-IR spectrometer is used to measure the infrared extinction spectra in the range of cm 1. The IR beam is directed through Germanium windows mounted on the chamber in a single-pass configuration, using a series of gold-coated mirrors and an off-axis parabolic mirror to focus onto an external liquidnitrogen cooled, MCT detector. The path length for the IR beam is 58.5 ± 0.5 cm. [12] The IR and UV-Vis spectroscopic probe beams are perpendicular to each other, and lie in the same horizontal plane. The data integration times for the instruments are also adjusted so that they are matched. Since the IR and UV-Vis spectrometers are collecting data over the same time intervals, and the probe beams lie in the same horizontal plane in the chamber, the two instruments sample the same particle distribution. Note that the instruments used in these studies leave a gap in the spectral coverage between ,500 cm 1. While it is possible to modify the FTIR source and detector to better cover this near IR gap, we would sacrifice the IR spectral range <2000 cm 1 that encompasses the resonance absorption lines Experimental Protocol [13] The chamber is evacuated to its base pressure of 10 mtorr, at the beginning of the experiment, using a mechanical pump. The chamber is then filled to atmospheric pressure with purge air, generated in the laboratory. A background reference spectrum is taken with both spectrometers before the aerosol is introduced into the chamber. The mineral dust sample under investigation is typically held under vacuum for two hours prior to the experiment to remove water. Montmorillonite is a swellable clay and retains water; in this particular case the sample holder was heated and pumped overnight in order to better remove the residual water. [14] The mineral dust sample is rapidly introduced into the chamber by pressurizing the sample holder up to 100 psi with an inert gas, and activating a pulsed solenoid valve between the chamber and sample holder. An impactor plate is placed in the flow path, directly behind the nozzle, to ensure efficient deagglomeration of the sample. The mixing time of the chamber following sample introduction is less than 1 minute. Extinction is measured with both the spectrometers after the dust is well mixed in the chamber, typically after about 10 minutes. While there may be some variation in the particle size distribution and concentration as a function of height in the chamber due to sedimentation, persistent local density gradients in a horizontal plane are unlikely to be important after this mixing time. [15] Extinction is measured simultaneously in both the IR and UV-Vis. Both spectrometers are set to collect data in the same horizontal plane and over the same 53 s time period. For the FTIR this corresponds to an average of 256 scans at 3of12

4 8cm 1 resolution. For the UV-Vis, the integrated signal corresponds to an average of 3300 individual scans over the period. The effects of any short-term density fluctuations on the spectra are averaged out during the scan averaging. These 53-s data collection periods could then be repeated many times as the dust settled. To account for the differences in path length between the two beams, the extinction signals measured by the different spectrometers are scaled and normalized to a constant 100 cm path length. Reproducibility in the results was ensured by repeated measurements of the extinction spectra over successive days. Spectra taken at different times or on different days show no significant spectral variations when normalized to the same peak intensity. 3. Modeling [16] We have measured extinction spectra for several of the abundant components of typical mineral dust aerosol including the silicate clays, illite, kaolinite, montmorillonite, as well as quartz, hematite, calcite, and anhydrite, over the spectral range covering the IR ( cm 1 ) and UV- Vis (12,500 40,000 cm 1 ) regions [Claquin et al., 1999]. Optical constants derived from the published literature and assumed lognormal size distribution functions are used to calculate a Mie theory extinction spectrum for comparison. [17] The Mie extinction for aerosol particles in air is given by C ext ¼ 2p X k 2 ð2n þ 1ÞRe ½ a n nðm; X Þþb n ðm; X ÞŠ ð1þ where a n and b n are the scattering coefficients given by Bohern and Huffmann [1983] in terms of Ricatti-Bessel functions, k = (2p/l), where l is the wavelength, m = n +ik is the complex index of refraction, and X is the dimensionless size parameter (X = pd/l, where D is the particle diameter). [18] In the Mie simulations, refractive index data tabulated in the published literature are used as a basis for the calculations. The literature references for the optical constant data sets used are given in Table 1. Optical constants from these reference sources are often used to model the radiative properties of mineral aerosols [Sokolik and Toon, 1999]. Because these measurements cover such a broad wavelength range it is generally necessary to combine optical constants from multiple sources, measured in different spectral regions. These tabulated optical constants have been measured on different samples using different methods. Perhaps not surprisingly, in some cases the optical constants are in some disagreement in the spectral regions where the data sets overlap (e.g., kaolinite and calcite). In such cases the mismatch in optical constants can lead to an unphysical discontinuity in the simulated spectrum (vide infra). In addition, the Kramers-Kronig relations are clearly not satisfied. This situation may also be encountered in efforts to model the effects of real mineral dust aerosol in radiative forcing calculations. For such cases, we have made an attempt to provide a smoothed and Kramers-Kronig consistent set of optical constants for the simulation. This procedure is outlined below. [19] In a typical case, a table of optical constants that have been measured in the IR, up to 4000 cm 1, must be connected to a different set of optical constants measured across the UV, visible, and near IR, down to 4000 cm 1. Thus E 4000 cm 1 is the typical overlap region for these data sets. In most cases, there is very low absorption in this overlap region, and the imaginary parts of the refractive index values for the two different data sets are small and not too dissimilar. However, in a few cases there is an appreciable mismatch in the real part of the refractive index at this point. In such a case, the imaginary part of the refractive index is assumed correct (averaging the small values from the two data sets near 4000 cm 1, as needed). The imaginary component of the refractive index and the subtractive Kramers-Kronig relations are then used to generate a new real part for the refractive index. The subtractive Kramers-Kronig dispersion principle relates real and imaginary part of index by the following equation [Clapp et al., 1995]: nðnþ ¼ nðn 0 Þþ 2 n2 n 2 0 p Z 1 P 0 ~nk ð~n Þ d~n ðn 2 ~n 2 Þ n 2 ð2þ 0 ~n2 where n is frequency, n(n 0 ) is the real index at a wavelength at some anchor point inside the integration region, and P indicates the Cauchy principle value. [20] This calculation requires an anchor point, n o, where the refractive index is known. Without another independent measurement of the optical constants, there is some ambiguity about how to select this point. To choose the anchor point, in each individual case a judgment is made about which data set is deemed more reliable, and an anchor point is selected from that data set. The choice is inevitably somewhat arbitrary and open to debate. As a result, we cannot claim that the new derived optical constants are correct, only that they are (at least) consistent with the Kramers-Kronig relations. The choice of a different anchor point would lead to a different (shifted) real index. This would change some of the fine details of the fittings, but the essential conclusions drawn from this work would not be altered (vide infra). [21] In addition, several of the mineral samples studied here (quartz, hematite, and calcite) are anisotropic (birefringent) materials with o-ray and e-ray optical constants for light transmission along different crystal axes. The accepted method for calculating the optical properties for a distribution of randomly oriented dust particles is to calculate individual spectra for both o-ray and e-ray indices, and then to take a weighted average of the spectra in the form [(2/3) o-ray + (1/3) e-ray], since there are 2 equivalent axes for the o-ray and 1 for the e-ray. [Bohern and Huffmann, 1983]. We refer to this as the spectral averaging (SA) method. Alternatively, while not rigorously justified, one could first average the o-ray and e-ray optical constants with a (2/3):(1/3) weighting, and then calculate the spectra from the averaged optical constants, which we refer to as the optical constant averaging (OCA) method. It is interesting to ask what errors may result in a practical case from using the numerically simpler, but less justified OCA method. For the quartz, hematite, and calcite samples here, 4of12

5 Table 2. Lognormal Size Distribution Parameters Determined by the Least Squares Fitting Algorithm Discussed in the Modeling Section a Mineral Sample Mean Diameter (D p ), nm Sigma (s) Number Density (N), cm 3 Effective Radius, R eff, mm Illite Kaolinite 115 (73) 2.65 (2.90) ( ) 0.62 (0.62) Montmorillonite 357 (106) 2.72 (3.33) ( ) 2.1 (1.7) Quartz Hematite Anhydrite Calcite (small) Calcite (large) a For kaolinite, parameters are given for both the modified and unmodified literature (in parentheses) optical constants. For montmorillonite, parameters are given for both the combined Roush and Egan data sets and for the combined Querry and Egan data sets (in parentheses). See text for details. Mie extinction is calculated using both the SA and OCA methods for comparison to experiment. [22] In addition to the optical constants, Mie theory simulation requires knowledge of the particle size distribution. For this analysis, a lognormal size distribution function is used, dn N ¼ pffiffiffiffiffi exp 1 2 ln D=D p ð3þ d ln D p 2p ln s 2 ln s with three adjustable parameters, the particle number density N, mode diameter D p, and distribution width s. The tabulated optical constants (modified as described above if necessary) and an initial guess for the size distribution function are used to generate an initial Mie theory extinction spectrum for comparison with the experimentally observed spectrum. The root-mean square (RMS) difference between the simulated and experimental results is then calculated. The lognormal size distribution parameters are then iteratively adjusted in a nonlinear least squares fitting procedure to minimize the RMS difference. Because the IR resonances are not well modeled by Mie theory, the size distribution is fit by matching the spectra only over the nonresonant scattering range, 1500 cm 1 40,000 cm 1. For the purpose of adjusting the size distribution function, a simple linear interpolation is used to cover the gap region between the IR and visible data in the experimental spectrum (5000 cm 1 12,500 cm 1 ). The result is the best fit lognormal size distribution function. This and the corresponding final best fit simulated extinction spectrum are given for comparison with the experimental spectrum for each dust sample. The best fit size parameters (N, D p, s) are summarized in Table 2. Note that the extinction due to scattering scales roughly like the projected surface area of the particle, and as a result larger particles in the tail of the lognormal distribution dominate the extinction. A more appropriate measure of the effective particle size in these experiments is the commonly used effective radius (projected surface area weighted radius), R eff, which is also given in Table 2 for reference. [23] We note that individual optical constant data sets used in the fitting process may be in error. In addition, there may be source dependent variability in the silicate clay samples. These uncertainties in the optical constants will impact the accuracy of our derived size distributions; varying the optical constants would lead to somewhat different best fit size parameters. However, the size distribution is determined by fitting only over the nonresonant scattering part of the spectrum where (with the exception of hematite) the imaginary index is small and the scattering is determined primarily by the real index value. We have carried out sensitivity tests to determine the effect on the size distribution fits associated with variations in the real index value. This is most easily done using the SKK relation and changing the index value at the anchor point. In fact, while the best fit lognormal size distribution mode parameters (N, D p, s) do vary appreciably with changes in the real index value there is relatively little variation in the large particle tail of the distribution that is primarily important in determining the extinction spectrum, i.e., the derived size distribution is robust for diameters >700 nm. As a result, R eff is quite insensitive to changes in the optical constants. (See, for example, the results for kaolinite and montmorillonite in the next section.) In other words, while our experiment does not constrain the small particle part of the distribution well, the large particle tail of the distribution and the effective radius are well constrained. This result is consistent with idea that the extinction due to scattering for large particles is dominated by diffraction, which depends primarily on the particle cross-sectional area and is relatively independent of particle shape and refractive index [Bohern and Huffmann, 1983]. [24] The spectral fitting is based on the assumption that the particle size distribution function is lognormal, which may not be true in practice. However, the previous discussion also suggests that this assumption is not critical. Another distribution with a different shape for small particle diameters, but with a large particle tail that falls off similarly to the lognormal would lead to a similar fit to the extinction data. 4. Results [25] The experimental extinction spectra measured over the IR and UV-Vis spectral ranges are shown in Figures 2 4, together with the best fit Mie simulations. The Mie simulations are based on optical constants drawn from the published literature and the best fit lognormal size distribution (shown as an inset in each panel). The figures also show an expanded view of the IR region for each mineral aerosol sample. The absolute extinction signal levels vary significantly for the different dust samples. For clarity each individual spectrum is scaled independently. The scales are given along the vertical axes. 5of12

6 Figure 2. Comparison of measured and Mie simulated extinction for clay components of mineral dust aerosol over the spectral range (650 40,000 cm 1 ), (a) illite, (b) kaolinite, and (c) montmorillonite. The inset in each figure shows the size distribution obtained from RMS minimization procedure, the size parameters are given in Table 1. The solid black line corresponds to the measured extinction. In (b) the solid blue line and green dotted line correspond to the Mie simulated extinction with modified optical constants and literature optical constants, respectively. In (c) the solid blue line and green dotted line correspond to the Mie simulated extinction with the Roush-Egan optical constants and the Querry-Egan optical constants, respectively. See text for details. The right panel of each figure shows the extinction in the infrared spectral region where resonance absorptions occur Silicate Clays (Illite, Kaolinite, Montmorillonite) [26] For illite the optical constants in the IR [Querry et al., 1987] and in the near IR, visible, and near UV [Egan and Hilgeman, 1979] are in good agreement in the spectral region where they overlap ( cm 1 ). These optical constants, together with an assumed lognormal size distribution, are used to simulate the extinction spectrum. The least squares fitting procedure described above yields the best fit lognormal size distribution parameters: mode diameter D p = 107 nm, width s = 2.57, and number density N = , yielding an effective particle radius, R eff = 6of12

7 Figure 3. Comparison of measured and Mie simulated extinction for oxide components of mineral dust aerosol over the spectral range (650 40,000 cm 1 ), (a) quartz, (b) and (c) hematite. The inset in each figure shows the size distribution obtained from RMS minimization procedure, the size parameters are given in Table 1. The solid black line corresponds to the measured extinction, and solid blue line and green dotted line corresponds to the Mie simulated extinction with SA method and OCA method respectively. The right panel of each figure shows the extinction in the infrared spectral region mm. The size distribution is shown in the inset to Figure 2a, and the fit parameters are summarized in Table 2. The resulting best fit simulated extinction profile is shown in Figure 2a with an expanded view of the IR shown in the right panel. [27] For kaolinite (and for montmorillonite below), the NIR - UV optical constants are also taken from Egan and Hilgeman [1979], but there are two different IR data sets that can be evaluated [Querry et al., 1987; Roush et al., 1991]. For kaolinite the Roush and the Querry data sets are in good agreement in the major Si-O stretch resonance absorption region near 1050 cm 1, leading to very similar fits to the resonance profile. However, the Roush data extends only to 2000 cm 1, leaving a significant interpolation gap to the onset of the Egan data near 4000 cm 1.In addition, there is a weak kaolinite absorption band near 3650 cm 1 assigned to an O-H stretch mode that is then missed in the interpolation between the Roush and Egan data. For these reasons only the comparison using the Querry and Egan optical constant data sets for kaolinite [Querry et al., 1987; Egan and Hilgeman, 1979] are presented. [28] Unfortunately, the Querry and Egan data sets for kaolinite do not match well in the overlap region near 4000 cm 1. Using a table of optical constants that simply splices these two data sets together yields a discontinuity in the real part of the index of refraction at the connection point. Using these combined optical constants and following the least squares fitting procedure described above, leads to a best fit simulation to the extinction data shown in Figure 2b for kaolinite. The best fit lognormal size distribution parameters are summarized in Table 2 (in parentheses). Note the step near 4000 cm 1 in the expanded IR view of the simulated spectrum (right panel of Figure 2b), which results from the mismatch in the optical constant data sets. [29] To improve the simulation we have used the subtractive Kramers-Kronig relations as previously described to derive a smooth and Kramers-Kronig consistent set of optical constants. To select the anchor point, we note the reasonably good agreement between the Roush et al. [1991] and Querry et al. [1987] IR data sets in the region where they overlap. On the basis of this agreement, the Querry data set is assumed to be reliable and an anchor point is 7of12

8 Figure 4. Comparison of measured and Mie simulated extinction for (a) anhydrite, (b) calcite (small particles), and (c) calcite (large particles) over the spectral range (650 40,000 cm 1 ). The inset in each figure shows the size distribution obtained from RMS minimization procedure, the size parameters are given in Table 1. The solid black line corresponds to the measured extinction, and solid blue line and green dotted line corresponds to the Mie simulated extinction with SA and OCA methods respectively. The right panel of each figure shows the extinction in the infrared spectral region. selected from this data at 3000 cm 1 (m = i 0.049). With this choice, an improved set of optical constants that are Kramers-Kronig consistent is determined. (These modified optical constants are available upon request). The best fit size distribution parameters are then reevaluated using the modified optical constants and the iterative procedure described above, and the results are also given in Table 2. The resulting extinction spectrum is displayed in Figure 2b, and best fit size distributions are shown in the inset. [30] Between the two sets of results for kaolinite (with the original and the modified optical constants) there are significant differences in the real index value in the near IR and visible. These differences in the optical constants lead to quite different best fit size distribution mode 8of12

9 Figure 5. Contributions from scattering and absorption to the extinction spectrum of hematite, calculated from Mie theory, are shown along with Mie simulated extinction spectrum of hematite. parameters. However, the tails of the distributions overlap well and the effective radius values are nearly identical. [31] For montmorillonite, we similarly find that the Querry and Egan optical constant data sets do not match well in the overlap region near 4000 cm 1 [Querry et al., 1987; Egan and Hilgeman, 1979]. In this case the best spectral fit is very poor over the IR. The results are shown in Figure 2c and the best fit size parameters are given in Table 2 (in parentheses). We have attempted to use the subtractive Kramers-Kroenig procedure outlined above to generate an improved set of optical constants for montmorillonite based on the Querry and Egan data sets, with no real improvement in the quality of the spectral fit through the IR. (The kink in the data at 4000 cm 1 can be eliminated but the overall fit through the IR is still very poor.) This could indicate that the Querry optical constants may be in error. However, it may also simply reflect differences in the montmorillonite samples that have been used in these experiments. Montmorillonite does not define a unique chemical structure but refers to a class of smectite clays that can show significant variability. [32] The Roush optical constants for montmorillonite, however, lead to a much improved spectral fit. In this case we simply combined the Roush data set in the IR with the Egan data set in the NIR -UV, with a linear interpolation through the gap, cm 1. This leads to the results also shown in Figure 2c, with the size distribution parameters as shown in Table 2. Again note that despite the significant differences in mode parameters for the two size distributions used in this analysis, the effective radius parameters are not markedly different. Also, note this montmorillonite size distribution is shifted toward much larger particles than the kaolinite or illite clay samples Oxides (Quartz, Hematite) [33] Quartz optical constants (both e-ray and o-ray) are available in the literature over the IR and near IR, visible and UV [Longtin et al., 1988] spectral ranges. The least squares fitting procedure discussed above is used to find the best fit lognormal size distribution parameters using the OCA method, since it is numerically simpler and more readily applied in the nonlinear least squares fitting procedure. The best fit size lognormal size distribution parameters are N = cm 3,D p = 22 nm, and s =3.89for the number density, mode diameter, and distribution width, respectively. These values are summarized in Table 2, and the distribution is shown in the inset to Figure 3a. In this case the mode diameter seems anomalously small. However, recall that our experimental method really only constrains the large particle part of the distribution well, and it is the large particles that dominate the extinction spectrum. In this case the effective radius for the distribution is a very reasonable R eff =1.1mm. The Mie extinction for quartz is then calculated by both the averaging methods for the optimized size distribution. The comparisons between Mie extinction (using both the SA and OCA methods) and the experimentally measured extinction spectra are also shown in Figure 3a. [34] A similar study has been carried out for hematite. The optical constants (e-ray and o-ray) for hematite have been published by Longtin et al. [1988]. As hematite is a birefringent material, the extinction is calculated using both averaging methods, and the comparisons are also shown in Figure 3b. The comparison between the measured and best fit theoretical size distributions using the OCA method is shown in the inset of Figure 3b. [35] Note that the calculated spectrum for hematite shows clear evidence for interference fringes across much of the visible portion of the spectrum. The interference fringes result from the spherical particle assumption inherent in Mie theory. Interference fringes are common and expected in calculations with a narrow distribution of particle sizes. Here they are clearly evident even for the broad distribution of particle sizes shown in Figure 3b. It is interesting that the Mie results for the other samples under study do not show such interference fringes, which are washed out in the average over particle size in the highly dispersed samples used. This difference can be rationalized on the basis that, for hematite, the index of refraction is very different in both the real and imaginary parts from the other materials studied; in particular, the imaginary part of the index begins to rise rapidly in the visible as a result of the onset of a strong visible absorption band. The experimental spectrum shows no evidence for interference fringes because the experiment averages over a distribution of actual particle shapes. [36] Because hematite is a strong absorber in the visible and near UV, it is particularly important in the atmospheric radiative balance. In our apparatus we cannot determine experimentally the ratio of scattering to absorption (the scattering albedo), but we can extract this information from the Mie model results. The model results for the absorption and scattering contributions to the extinction are shown in Figure Sulfates and Carbonates (Anhydrite, Calcite) [37] Anhydrite is a common sulfate component of mineral dust aerosol. The optical constants in the IR ( cm 1 ) have been determined by Long et al. [1993], and in UV/Vis ( ,000 cm 1 )byivlev and Popova [1973]. In the overlap region near 4000 cm 1 the data sets are in reason- 9of12

10 ably good agreement, and so we simply use the combined data sets without any modification. The simulated extinction spectrum, calculated from Mie theory and using the best fit size distribution, is compared to the measured extinction spectrum in Figure 4a. The best fit size distribution parameters for anhydrite are given in Table 2. [38] In our study on calcite, we have measured the extinction for two different calcite particle samples, with very different particle size distributions, a small particle sample (OMYA Products) and a large particle sample (EM Science). The extinction spectra for the two samples, shown in Figures 4b and 4c are markedly different. The large particle sample has a smaller extinction over the entire spectral range for the same mass loading in the chamber when compared to that of the small particle sample. The large particle sample also shows a much earlier onset and steeper rise in the short wavelength scattering part of the spectrum. [39] Calcite is birefringent. The e-ray and o-ray optical constants have been measured in the IR by [Lane, 1999] and in the near IR, visible, and near UV by [Ivlev and Popova, 1973]. In this case the two data sets do not match well in the overlap region near 2000 cm 1. As discussed in previous section for the cases of kaolinite and montmorillonite, this mismatch in the optical constant data set leads to an unphysical kink in the extinction spectrum in the overlap region. In order to improve the fit we have used the subtractive Kramers-Kronig relations to generate a modified and Kramers-Kronig consistent data set for both the e-ray and o-ray optical constants. For calcite an anchor point for the index in visible spectral region at 18,182 cm 1 is chosen since calcite optics are commonly used in UV-Vis spectroscopy and the optical properties are well determined in this region. [40] For both the large and small calcite particle distributions, the modified optical constants are used in a Mie simulation to optimize the size distribution for comparison to the experimental extinction spectra in Figure 4. Once the size distributions have been optimized (using the OCA method to handle the birefringence), we show the comparison between the measured and simulated extinction spectra for both SA and OCA methods in Figures 4b and 4c. For the small particle calcite sample a best fit lognormal size distribution (shown in the inset to Figure 4b) with fit parameters N = cm 3,D p = 52 nm, and s = 2.68 is determined, resulting in an effective radius of R eff = 0.30 mm. For the large particle calcite sample the best fit parameters are N = cm 3,D p = 271 nm, and s = 3.06, resulting in an effective radius R eff =3.1mm, roughly a factor of 10 larger. These very different size distributions lead to the distinctly different spectra observed in Figures 4b and 4c. 5. Discussion [41] As seen in Figures 2 4, the measured extinction spectrum for each mineral sample matches well with the Mie simulation over the entire spectral range from ,000 cm 1, corresponding essentially to the nonresonant scattering part of the extinction spectrum. Note that the optical constants are fixed in these calculations and the only adjustable parameters are N, s, and D p, which characterize the lognormal size distribution function, making this a 3 parameter fit to the data over the full spectrum in each case. [42] It is also worth noting that we have an additional experimental check on the best fit size distributions that we derive. Recall that the size distributions are determined by fitting the spectra over the nonresonant scattering regions. However, the resonance absorption line strengths calculated using the best fit size distributions are also in reasonable agreement with the experimental line strengths. Since the resonance absorption depends on total aerosol mass, this result essentially verifies that the total aerosol mass in the best fit size distribution is roughly correct in each case. [43] We now turn to a general discussion of the extinction results for these samples across the full IR-UV spectral range. In every case, the Mie simulation is in good agreement with the measured extinction throughout the nonresonant scattering regions of the spectrum from the IR to the UV. Although the particles are not spherical, Mie theory predicts the nonresonant spectral regions very well suggesting that it can be used with confidence to calculate the extinction for nonspherical particles in the spectral regions away from any sharp absorption features. This is in agreement with T-matrix calculations by Mishchenko et al. [1997] that suggest that the errors in using Mie theory to describe angle-integrated properties such as total extinction are small in the nonresonant scattering regions. Interestingly, even for hematite, which has a strong visible and near UV absorption band, the extinction fit is quite good if one averages through the nonphysical interference fringes in the Mie theory simulation. For the birefringent materials (quartz, hematite, and calcite), the extinction spectra calculated by both averaging methods match well with each other and with the experimental result, suggesting that the averaging method has relatively little effect on the extinction in the non-resonance scattering regions. [44] Note that this range of effective particle sizes studied in this work (R eff mm) is primarily relevant for assessing the optical properties of mineral dust in the accumulation mode size range, typical of background aerosols and aerosols that have undergone long-range transport. Field studies during African dust events have shown that up to about 1 = 2 of the total dust mass collected in the southeastern US and Carribean was less than 2 mm in aerodynamic diameter [Moulin et al., 1997; Li-Jones and Prospero, 1998]. Furthermore, studies from different geographic areas have determined that the mass median diameter of mineral dust found over the oceans falls generally in the 2 3 mm range [Prospero et al., 1989; Prospero, 1999]. For comparison, the mass weighted mean diameter for our kaolinite sample is 3 mm. Thus our results are primarily relevant to modeling of long-range transport aerosols. [45] While the spectral fit in the nonresonant scattering regions is quite good, there are clear discrepancies in the fits to the IR resonance absorption lines apparent in the right panels to Figures 2 4. These discrepancies are due to the nonspherical nature of the mineral dust particles in our samples. It is well known that particle shape effects can be especially significant in the neighborhood of infrared resonance absorption lines, and can have a large effect on resonance line positions and line shapes [Bohern and Huffmann, 1983]. Mie theory often fails to correctly predict resonance line profiles and this can be important in model- 10 of 12

11 ing the effects of dust in data retrievals from high spectral resolution satellite measurements. [46] Hudson et al. [2007] have recently carried out a quantitative study of particle shape effects on IR resonance absorption line profiles for a series of silicate clay mineral dust aerosol particles that fall in the accumulation mode size range (D = mm). They find that Mie theory gives a poor fit to the resonance line positions, line shapes, and integrated areas. It was also pointed out that this has potentially important consequences for determining atmospheric dust loading and composition from narrow band or high-resolution satellite data. Dust retrievals based in Mie theory could be in error if the overlap between the narrow band sensor channels and the actual dust absorption resonance is different than predicted by Mie theory. Hudson et al. [2007] also suggest that simple analytic model results, derived in the small particle limit, for absorption by particles with characteristic shapes (disks, ellipsoids, needles, etc.) may offer a better fit to the resonance line absorption profiles than Mie theory, at least for mineral dust aerosols with diameters, D < 1 mm. Such models are commonly used in the astronomy literature to account for particle shape effects on line profiles [Fabian et al., 2001; Min et al., 2003]. Our experimental arrangement allows us to sample larger effective particle diameters than the experiment of Hudson et al. [2007]. We will explore particle shape effects on the IR resonance line profiles, as a function of particle size and composition in a forthcoming paper. 6. Summary [47] Extinction spectra for several important components of mineral dust aerosol including the silicate clays (illite, kaolinite, montmorillonite), as well as quartz, hematite, calcite, and anhydrite have been experimentally measured across a broad spectral range from the IR to the UV. A Mie theory based simulation of the extinction spectra, using optical constants derived from published data sets and an assumed lognormal size distribution has been carried out. For kaolinite and calcite there are discrepancies in the published data sets that lead to unphysical kinks in the simulations. In these cases the literature data sets have been modified to be internally consistent with the Kramers- Kronig relations. [48] Extinction spectra simulated by Mie theory are in good agreement with the measured extinction spectra over the nonresonant scattering region of the spectra from the IR to the UV, for these components of mineral dust aerosol. Although the particles are not spherical in shape, Mie theory predicts the nonresonant spectral regions very well suggesting that it can be used with confidence to calculate the extinction for nonspherical particles in the spectral regions away from any sharp absorption resonances. As noted, this experimental result confirms the conclusions from T-matrix based theoretical calculations, suggesting that angle integrated properties such as extinction are not particularly sensitive to particle shape effects, at least in the nonresonant scattering regime. [49] Acknowledgments. This material is based upon work supported by the National Science Foundation under Grants ATM Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the view of the National Science Foundation. The authors would like to gratefully acknowledge helpful discussions with Dr. Paula Hudson. References Ackerman, S. A. (1997), Remote sensing aerosols using satellite infrared observations, J. Geophys. Res., 102(D14), 17,069 17,080. Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, Bauer, S. E., Y. Balkanski, M. Schulz, D. A. Hauglustaine, and F. Dentener (2004), Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations, J. Geophys. Res., 109, D02304, doi: /2003jd Bohern, C. F., and D. R. Huffmann (1983), Absorption and Scattering of Light by Small Particles, John Wiley, New York. Clapp, M. L., R. E. Miller, and D. R. Worsnop (1995), Frequency - Dependent optical constants of water ice obtained directly from aerosol extinction spectra, J. Phys. Chem., 99, Claquin, T., M. Schulz, and Y. J. Balkanski (1999), Modeling the mineralogy of atmospheric dust sources, J. Geophys. Res., 104, 22,243 22,256. Conant, W. C., J. H. Seinfeld, J. Wang, G. R. Carmichael, Y. Tang, I. Uno, P. J. Flatau, K. M. Markowicz, and P. K. Quinn (2003), A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations, J. Geophys. Res., 108(D23), 8661, doi: /2002jd Darmenov, A., and I. N. Sokolik (2005), Identifying the regional thermal-ir signature of mineral dust with MODIS, Geophys. Res. Lett., 32, L16803, doi: /2005gl DeSouza-Machado, S. G., L. L. Strow, S. E. Hannon, and H. E. Motteler (2006), Infrared dust spectral signatures from AIRS, Geophys. Res. Lett., 33, L03801, doi: /2005gl Egan, W. G., and T. W. Hilgeman (1979), Optical Properties of Inhomogeneous Materials, Academic, San Diego, CA. Fabian, D., T. Henning, C. Jager, H. Mutschke, J. Dorschmer, and O. Wehrman (2001), Steps toward interstellar silicate mineralogy. VI. Dependence of crystalline olivine IR spectra on iron content and particle shape, Astron. Astrophys., 378, Forster, P., et al. (2007), Changes in Atmospheric Constituents and in Radiative Forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Garcia-Lopez, A. C., A. D. Snider, and L. H. Garcia-Rubin (2006), Rayleigh- Debye-Gans as a model for continuous monitoring of biological particles: Part I, Assessment of theoretical limits and approximations, Optics Express, 14, Haywood, J., and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79, Hong, G., P. Yang, H. L. Huang, S. A. Ackerman, and I. N. Sokolik (2006), Simulation of high-spectral-resolution infrared signature of overlapping cirrus clouds and mineral dust (2006), Geophys. Res. Lett., 33, L04805, doi: /2005gl Hudson, P. K., E. R. Gibson, M. A. Young, P. D. Kleiber, and V. H. Grassian (2007), Coupled Infrared Extinction and Size Distribution Measurements for Several Clay Components of Mineral Dust Aerosol, J. Geophys Res., in press. Ivlev, L. S., and S. I. Popova (1973), The complex refractive index of substances in the atmospheric aerosol dispersed phase, Izv. Atmos. Oceanic Phys., 95, Kahnert, M., T. Nousiainen, and P. Raisanen (2006), Mie simulations as an error source in mineral aerosol radiative forcing calculations, Q. J. R. Meteorol. Soc., 133, Kalashinikova, O. V., and I. N. Sokolik (2002), Importance of shapes and composition of wind-blown dust particles for remote sensing at solar wavelengths, Geophys. Res. Lett., 29(10), 1398, doi: / 2002GL Kalashnikova, O. V., and I. N. Sokolik (2004), Modeling the radiative properties of nonspherical soil-derived mineral aerosols, J. Quant. Spec. Rad. Transf., 87, Kaufman, Y. J., D. Tanré, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet (1997), Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, J. Geophys. Res., 102(D14), 16,815 16, of 12

Infrared extinction spectra of mineral dust aerosol. Mineral dust aerosol play a significant role in the atmosphere, however, a comprehensive

Infrared extinction spectra of mineral dust aerosol. Mineral dust aerosol play a significant role in the atmosphere, however, a comprehensive Infrared extinction spectra of mineral dust aerosol. Introduction Mineral dust aerosol play a significant role in the atmosphere, however, a comprehensive understanding of its role in climate is lacking.

More information

Infrared extinction spectroscopy and Raman microspectroscopy of selected components of. mineral dust with organic compounds.

Infrared extinction spectroscopy and Raman microspectroscopy of selected components of. mineral dust with organic compounds. Infrared extinction spectroscopy and Raman microspectroscopy of selected components of mineral dust with organic compounds. 1. Introduction Mineral dust is one of the major constituents of particulate

More information

Correlated IR spectroscopy and visible light scattering measurements of mineral dust aerosol

Correlated IR spectroscopy and visible light scattering measurements of mineral dust aerosol JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jd014389, 2010 Correlated IR spectroscopy and visible light scattering measurements of mineral dust aerosol B. Meland, 1 P. D. Kleiber, 1 V.

More information

Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal

Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal Advances in Space Research 33 (2004) 1104 1108 www.elsevier.com/locate/asr Comparison of aerosol radiative forcing over the Arabian Sea and the Bay of Bengal S. Dey a, S. Sarkar b, R.P. Singh a, * a Department

More information

Modeling Optical Properties of Martian Dust Using Mie Theory

Modeling Optical Properties of Martian Dust Using Mie Theory Modeling Optical Properties of Martian Dust Using Mie Theory Attila Elteto ATOC 5235: Remote Sensing of the Atmosphere and Oceans Spring, 2003 1. Introduction The Mie-Debye theory is a simple method for

More information

Sensitivity of climate forcing and response to dust optical properties in an idealized model

Sensitivity of climate forcing and response to dust optical properties in an idealized model Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007198, 2007 Sensitivity of climate forcing and response to dust optical properties in an idealized model Karen

More information

Indices of Refraction of Absorptive Aerosol Their Importance and Complexity

Indices of Refraction of Absorptive Aerosol Their Importance and Complexity Indices of Refraction of Absorptive Aerosol Their Importance and Complexity Steven T Massie NCAR Earth System Laboratory HITRAN Cambridge, Massachusetts June 16-18, 2010 NCAR is sponsored by the National

More information

Characterization of Atmospheric Mineral Dust from Radiometric and Polarimetric Remote Sensing

Characterization of Atmospheric Mineral Dust from Radiometric and Polarimetric Remote Sensing Characterization of Atmospheric Mineral Dust from Radiometric and Polarimetric Remote Sensing PI: Dr. Irina N. Sokolik School of Earth and Atmospheric Sciences Georgia Institute of Technology 311 Ferst

More information

Identifying the regional thermal-ir radiative signature of mineral dust with MODIS

Identifying the regional thermal-ir radiative signature of mineral dust with MODIS GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L16803, doi:10.1029/2005gl023092, 2005 Identifying the regional thermal-ir radiative signature of mineral dust with MODIS Anton Darmenov and Irina N. Sokolik School

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Satellite remote sensing of aerosols & clouds: An introduction

Satellite remote sensing of aerosols & clouds: An introduction Satellite remote sensing of aerosols & clouds: An introduction Jun Wang & Kelly Chance April 27, 2006 junwang@fas.harvard.edu Outline Principals in retrieval of aerosols Principals in retrieval of water

More information

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer

Comparison of AERONET inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Comparison of inverted size distributions to measured distributions from the Aerodyne Aerosol Mass Spectrometer Peter DeCarlo Remote Sensing Project April 28, 23 Introduction The comparison of direct in-situ

More information

A Newly Designed and Constructed Instrument for Coupled Infrared Extinction and Size Distribution Measurements of Aerosols

A Newly Designed and Constructed Instrument for Coupled Infrared Extinction and Size Distribution Measurements of Aerosols Aerosol Science and Technology ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: http://www.tandfonline.com/loi/uast20 A Newly Designed and Constructed Instrument for Coupled Infrared Extinction

More information

An Overview of the Radiation Budget in the Lower Atmosphere

An Overview of the Radiation Budget in the Lower Atmosphere An Overview of the Radiation Budget in the Lower Atmosphere atmospheric extinction irradiance at surface P. Pilewskie 300 University of Colorado Laboratory for Atmospheric and Space Physics Department

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Dependence of Radiative Forcing on Mineralogy in the Community Atmosphere Model

Dependence of Radiative Forcing on Mineralogy in the Community Atmosphere Model Dependence of Radiative Forcing on Mineralogy in the Community Atmosphere Model Rachel Scanza 1, Natalie Mahowald 1, Jasper Kok 2, Steven Ghan 3, Charles Zender 4, Xiaohong Liu 5, Yan Zhang 6 February

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Aerosol Optical Properties

Aerosol Optical Properties ATM 507 Lecture 25 Text reading Chapter 15 Paper Due Dec. 9 Review Session Dec. 9 Final Dec. 12 (10:30 AM-12:30 PM) Today s topic Aerosol Optical Properties 1 Aerosol Optical Properties There are a number

More information

Comparison of near-infrared and thermal infrared cloud phase detections

Comparison of near-infrared and thermal infrared cloud phase detections Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006jd007140, 2006 Comparison of near-infrared and thermal infrared cloud phase detections Petr Chylek, 1 S. Robinson,

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

An investigation into particle shape effects on the light scattering properties of mineral dust aerosol

An investigation into particle shape effects on the light scattering properties of mineral dust aerosol University of Iowa Iowa Research Online Theses and Dissertations Spring 2011 An investigation into particle shape effects on the light scattering properties of mineral dust aerosol Brian Steven Meland

More information

Scattering of EM waves by spherical particles: Overview of Mie Scattering

Scattering of EM waves by spherical particles: Overview of Mie Scattering ATMO 551a Fall 2010 Scattering of EM waves by spherical particles: Overview of Mie Scattering Mie scattering refers to scattering of electromagnetic radiation by spherical particles. Under these conditions

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

Why is the sky blue?

Why is the sky blue? Why is the sky blue? Volcanic: June 12, 1991: Mt Pinatubo ejected 20 million tons of sulfur dioxide. Aerosols spread globally Haze lowered a drop of global temperature by 1F Size parameter: Rayleigh

More information

Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model

Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007197, 2007 Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model Karen

More information

Refractive indices of water and ice in the to 2.5-gm spectral range

Refractive indices of water and ice in the to 2.5-gm spectral range Refractive indices of water and ice in the 0.65- to 2.5-gm spectral range Linhong Kou, Daniel Labrie, and Petr Chylek New accurate values of the imaginary part, k, of the refractive index of water at T

More information

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL Robert Höller, 1 Akiko Higurashi 2 and Teruyuki Nakajima 3 1 JAXA, Earth Observation Research and Application Center

More information

C. Di Biagio 1, P. Formenti 1, Y. Balkanski 2, M. Cazaunau 1, E. Pangui 1, E. Journet 1, S. Nowak 3, S. Caquineau 4, and J.F.

C. Di Biagio 1, P. Formenti 1, Y. Balkanski 2, M. Cazaunau 1, E. Pangui 1, E. Journet 1, S. Nowak 3, S. Caquineau 4, and J.F. Laboratory estimates of the mineral dust shortwave and longwave refractive index from global sources: a new dataset for climate modelling and remote sensing C. Di Biagio 1, P. Formenti 1, Y. Balkanski

More information

WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES

WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES S. Noël, H. Bovensmann, J. P. Burrows Institute of Environmental Physics, University of Bremen, FB 1, P. O. Box 33 4 4, D 28334 Bremen, Germany

More information

Implications of particle composition and shape to dust radiative effect: A case study from the Great Indian Desert

Implications of particle composition and shape to dust radiative effect: A case study from the Great Indian Desert GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L23814, doi:10.1029/2008gl036058, 2008 Implications of particle composition and shape to dust radiative effect: A case study from the Great Indian Desert S. K. Mishra,

More information

Aerosol chemistry and climate: Laboratory studies of the carbonate component of mineral dust and its reaction products

Aerosol chemistry and climate: Laboratory studies of the carbonate component of mineral dust and its reaction products GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L13811, doi:10.1029/2006gl026386, 2006 Aerosol chemistry and climate: Laboratory studies of the carbonate component of mineral dust and its reaction products Elizabeth

More information

UKCA_RADAER Aerosol-radiation interactions

UKCA_RADAER Aerosol-radiation interactions UKCA_RADAER Aerosol-radiation interactions Nicolas Bellouin UKCA Training Workshop, Cambridge, 8 January 2015 University of Reading 2014 n.bellouin@reading.ac.uk Lecture summary Why care about aerosol-radiation

More information

Supplement of Iodine oxide in the global marine boundary layer

Supplement of Iodine oxide in the global marine boundary layer Supplement of Atmos. Chem. Phys., 1,, 01 http://www.atmos-chem-phys.net/1//01/ doi:.1/acp-1--01-supplement Author(s) 01. CC Attribution.0 License. Supplement of Iodine oxide in the global marine boundary

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2 JP1.10 On the Satellite Determination of Multilayered Multiphase Cloud Properties Fu-Lung Chang 1 *, Patrick Minnis 2, Sunny Sun-Mack 1, Louis Nguyen 1, Yan Chen 2 1 Science Systems and Applications, Inc.,

More information

7. Aerosols and Climate

7. Aerosols and Climate 7. Aerosols and Climate I. Scattering 1. When radiation impinges on a medium of small particles, scattering of some of the radiation occurs in all directions. The portion scattered backward is called the

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

Authors response to the reviewers comments

Authors response to the reviewers comments Manuscript No.: amtd-3-c1225-2010 Authors response to the reviewers comments Title: Satellite remote sensing of Asian aerosols: A case study of clean, polluted, and Asian dust storm days General comments:

More information

Lecture 5. Interstellar Dust: Optical Properties

Lecture 5. Interstellar Dust: Optical Properties Lecture 5. Interstellar Dust: Optical Properties 1. Introduction 2. Extinction 3. Mie Scattering 4. Dust to Gas Ratio 5. Appendices References Spitzer Ch. 7, Osterbrock Ch. 7 DC Whittet, Dust in the Galactic

More information

Atmospheric Radiation

Atmospheric Radiation Atmospheric Radiation NASA photo gallery Introduction The major source of earth is the sun. The sun transfer energy through the earth by radiated electromagnetic wave. In vacuum, electromagnetic waves

More information

Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies

Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L13606, doi:10.1029/2005gl022917, 2005 Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley 7. Dust Grains & Interstellar Extinction James R. Graham University of California, Berkeley Visual Extinction Presence of interstellar gas or nebulae has a long history Existence of absorbing interstellar

More information

Direct radiative forcing due to aerosols in Asia during March 2002

Direct radiative forcing due to aerosols in Asia during March 2002 Direct radiative forcing due to aerosols in Asia during March 2002 Soon-Ung Park, Jae-In Jeong* Center for Atmospheric and Environmental Modeling *School of Earth and Environmental Sciences, Seoul National

More information

Scattered. Incident beam

Scattered. Incident beam Chapter 2 Theory of Aerosol Satellite Remote Sensing 2.1 Introduction Satellite sensors measure the top of the atmosphere (TOA) radiance. For a cloud-free atmosphere, the TOA radiance is caused by scattering

More information

The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols

The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols The Spectral Radiative Effects of Inhomogeneous Clouds and Aerosols S. Schmidt, B. Kindel, & P. Pilewskie Laboratory for Atmospheric and Space Physics University of Colorado SORCE Science Meeting, 13-16

More information

Extinction. Aerosols

Extinction. Aerosols Extinction Extinction is the loss of energy out of a beam of radiation as it propagates. Extinction = absorption + scattering Extinction cross section analogous to the cross-sectional area of absorbers

More information

Spectroscopic Measurements of Optical Elements For Submillimeter Receivers

Spectroscopic Measurements of Optical Elements For Submillimeter Receivers 5- Abstract Spectroscopic Measurements of Optical Elements For Submillimeter Receivers J. Kawamura, S. Paine, and D. C. Papa Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge, Massachusetts

More information

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application

High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application PHOTONIC SENSORS / Vol. 6, No. 2, 2016: 127 131 High Sensitivity Gas Sensor Based on IR Spectroscopy Technology and Application Hengyi LI Department of Electronic Information Engineering, Jincheng College

More information

Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures

Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jd017756, 2012 Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures Olga Laskina, 1 Mark A. Young, 1 Paul

More information

Calibrating the Thermal Camera

Calibrating the Thermal Camera 1 of 5 4/19/2012 5:33 AM from photonics.com: 12/01/2009 http://www.photonics.com/article.aspx?aid=40679 Calibrating the Thermal Camera As thermal cameras gain ground in the commercial market, testing becomes

More information

Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols Chin. Phys. B Vol. 21, No. 5 (212) 5424 Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols Wang Hai-Hua( 王海华 ) and Sun Xian-Ming( 孙贤明 ) School

More information

ATMOSPHERIC RADIATIVE TRANSFER Fall 2009 EAS 8803

ATMOSPHERIC RADIATIVE TRANSFER Fall 2009 EAS 8803 ATMOSPHERIC RADIATIVE TRANSFER Fall 2009 EAS 8803 Instructor: Prof. Irina N. Sokolik Office 3104, phone 404-894-6180 isokolik@eas.gatech.edu Meeting Time: Tuesdays/Thursday: 1:35-2:55 PM Meeting place:

More information

1. The most important aspects of the quantum theory.

1. The most important aspects of the quantum theory. Lecture 5. Radiation and energy. Objectives: 1. The most important aspects of the quantum theory: atom, subatomic particles, atomic number, mass number, atomic mass, isotopes, simplified atomic diagrams,

More information

Direct and semi-direct radiative effects of absorbing aerosols in Europe: Results from a regional model

Direct and semi-direct radiative effects of absorbing aerosols in Europe: Results from a regional model GEOPHYSICAL SEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl050994, 2012 Direct and semi-direct radiative effects of absorbing aerosols in Europe: Results from a regional model J. Meier, 1 I. Tegen, 1 B. Heinold,

More information

Bulk aerosol optical properties over the western North Pacific estimated by MODIS and CERES measurements : Coastal sea versus Open sea

Bulk aerosol optical properties over the western North Pacific estimated by MODIS and CERES measurements : Coastal sea versus Open sea Bulk aerosol optical properties over the western North Pacific estimated by MODIS and CERES measurements : Coastal sea versus Open sea Hye-Ryun Oh 1, Yong-Sang Choi 1, Chang-Hoi Ho 1, Rokjin J. Park 1,

More information

Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols

Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07803, doi:10.1029/2009gl037237, 2009 Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols Xiangao Xia 1 and Xuemei Zong 1 Received 12

More information

SIMULATION OF THE MONOCHROMATIC RADIATIVE SIGNATURE OF ASIAN DUST OVER THE INFRARED REGION

SIMULATION OF THE MONOCHROMATIC RADIATIVE SIGNATURE OF ASIAN DUST OVER THE INFRARED REGION P1.4 SIMULATION OF THE MONOCHROMATIC RADIATIVE SIGNATURE OF ASIAN DUST OVER THE INFRARED REGION Hyo-Jin Han 1, Byung-Ju Sohn 1 *, Aellen Huang 2, and Elizabeth Weisz 2 School of Earth and Environmental

More information

Spectral surface albedo derived from GOME-2/Metop measurements

Spectral surface albedo derived from GOME-2/Metop measurements Spectral surface albedo derived from GOME-2/Metop measurements Bringfried Pflug* a, Diego Loyola b a DLR, Remote Sensing Technology Institute, Rutherfordstr. 2, 12489 Berlin, Germany; b DLR, Remote Sensing

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

Remote sensing of ice clouds

Remote sensing of ice clouds Remote sensing of ice clouds Carlos Jimenez LERMA, Observatoire de Paris, France GDR microondes, Paris, 09/09/2008 Outline : ice clouds and the climate system : VIS-NIR, IR, mm/sub-mm, active 3. Observing

More information

Optical Remote Sensing Techniques Characterize the Properties of Atmospheric Aerosols

Optical Remote Sensing Techniques Characterize the Properties of Atmospheric Aerosols Optical Remote Sensing Techniques Characterize the Properties of Atmospheric Aerosols Russell Philbrick a,b,c, Hans Hallen a, Andrea Wyant c, Tim Wright b, and Michelle Snyder a a Physics Department, and

More information

Course outline, objectives, workload, projects, expectations

Course outline, objectives, workload, projects, expectations Course outline, objectives, workload, projects, expectations Introductions Remote Sensing Overview Elements of a remote sensing observing system 1. platform (satellite, surface, etc) 2. experimental design

More information

Measurements of aerosol optical depths and black carbon over Bay of Bengal during post-monsoon season

Measurements of aerosol optical depths and black carbon over Bay of Bengal during post-monsoon season GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L16115, doi:10.1029/2004gl020681, 2004 Measurements of aerosol optical depths and black carbon over Bay of Bengal during post-monsoon season E. Sumanth, 1 K. Mallikarjuna,

More information

Moderate Spectral Resolution Radiative Transfer Modeling Based on Modified Correlated-k Method

Moderate Spectral Resolution Radiative Transfer Modeling Based on Modified Correlated-k Method Moderate Spectral Resolution Radiative Transfer Modeling Based on Modified Correlated-k Method S. Yang, P. J. Ricchiazzi, and C. Gautier University of California, Santa Barbara Santa Barbara, California

More information

Stratospheric aerosol profile retrieval from SCIAMACHY limb observations

Stratospheric aerosol profile retrieval from SCIAMACHY limb observations Stratospheric aerosol profile retrieval from SCIAMACHY limb observations Yang Jingmei Zong Xuemei Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric

More information

Radiation Quantities in the ECMWF model and MARS

Radiation Quantities in the ECMWF model and MARS Radiation Quantities in the ECMWF model and MARS Contact: Robin Hogan (r.j.hogan@ecmwf.int) This document is correct until at least model cycle 40R3 (October 2014) Abstract Radiation quantities are frequently

More information

Radiative effects of desert dust on weather and climate

Radiative effects of desert dust on weather and climate UNIVERSITY OF ATHENS SCHOOL OF PHYSICS, DIVISION OF ENVIRONMENT AND METEOROLOGY ATMOSPHERIC MODELING AND WEATHER FORECASTING GROUP Radiative effects of desert dust on weather and climate Christos Spyrou,

More information

HIGH-TEMPERATURE OPTICAL CONSTANTS OF DUST ANALOGUES FOR THE SOLAR NEBULA

HIGH-TEMPERATURE OPTICAL CONSTANTS OF DUST ANALOGUES FOR THE SOLAR NEBULA European Conference on Laboratory Astrophysics - ECLA C. Stehlé, C. Joblin and L. d Hendecourt (eds) EAS Publications Series, 58 (2012) 09 13 www.eas.org HIGH-TEMPERATURE OPTICAL CONSTANTS OF DUST ANALOGUES

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA AKIRA ISHIMARU UNIVERSITY of WASHINGTON IEEE Antennas & Propagation Society, Sponsor IEEE PRESS The Institute of Electrical and Electronics Engineers, Inc.

More information

The mathematics of scattering and absorption and emission

The mathematics of scattering and absorption and emission The mathematics of scattering and absorption and emission The transmittance of an layer depends on its optical depth, which in turn depends on how much of the substance the radiation has to pass through,

More information

Impacts of Atmospheric Corrections on Algal Bloom Detection Techniques

Impacts of Atmospheric Corrections on Algal Bloom Detection Techniques 1 Impacts of Atmospheric Corrections on Algal Bloom Detection Techniques Ruhul Amin, Alex Gilerson, Jing Zhou, Barry Gross, Fred Moshary and Sam Ahmed Optical Remote Sensing Laboratory, the City College

More information

Chapter 3. Infrared Reflectance Spectra of Tholins

Chapter 3. Infrared Reflectance Spectra of Tholins 3-1 Chapter 3. Infrared Reflectance Spectra of Tholins at Cryogenic Temperatures 3.1. Introduction Infrared spectroscopy is one of the cornerstone techniques for molecular structure determination. Because

More information

Interactive comment on Analysis of actinic flux profiles measured from an ozone sonde balloon by P. Wang et al.

Interactive comment on Analysis of actinic flux profiles measured from an ozone sonde balloon by P. Wang et al. Atmos. Chem. Phys. Discuss., 14, C10781 C10790, 2015 www.atmos-chem-phys-discuss.net/14/c10781/2015/ Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric

More information

REMOTE SENSING OF THE ATMOSPHERE AND OCEANS

REMOTE SENSING OF THE ATMOSPHERE AND OCEANS EAS 6145 SPRING 2007 REMOTE SENSING OF THE ATMOSPHERE AND OCEANS Instructor: Prof. Irina N. Sokolik office 2258, phone 404-894-6180 isokolik@eas.gatech.edu Meeting Time: Mondays: 3:05-4:25 PM Wednesdays:

More information

Melanie S. Hammer 1, Randall V. Martin 1,2, Aaron van Donkelaar 1, Virginie Buchard 3,4, Omar Torres 3, David A. Ridley 5, Robert J.D.

Melanie S. Hammer 1, Randall V. Martin 1,2, Aaron van Donkelaar 1, Virginie Buchard 3,4, Omar Torres 3, David A. Ridley 5, Robert J.D. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects Melanie

More information

THE EXOSPHERIC HEAT BUDGET

THE EXOSPHERIC HEAT BUDGET E&ES 359, 2008, p.1 THE EXOSPHERIC HEAT BUDGET What determines the temperature on earth? In this course we are interested in quantitative aspects of the fundamental processes that drive the earth machine.

More information

OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE DISTRIBUTION BASED ON THE LIGHT EXTINCTION DATA

OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE DISTRIBUTION BASED ON THE LIGHT EXTINCTION DATA THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1353-1357 1353 OPTIMAL WAVELENGTH SELECTION ALGORITHM OF NON-SPHERICAL PARTICLE SIZE ISTRIBUTION BASE ON THE LIGHT EXTINCTION ATA by Hong TANG * College

More information

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez Mid High Latitude Cirrus Precipitation Processes Jon Sauer, Dan Crocker, Yanice Benitez Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA *To whom correspondence

More information

Physical models for color prediction

Physical models for color prediction SPRAY special: Physical models for color prediction M.Theiss Hard- and Software for Optical Spectroscopy Dr.-Bernhard-Klein-Str. 110, D-52078 Aachen Phone: (49) 241 5661390 Fax: (49) 241 9529100 E-mail:

More information

Consistent estimates from satellites and models for the first aerosol indirect forcing

Consistent estimates from satellites and models for the first aerosol indirect forcing GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051870, 2012 Consistent estimates from satellites and models for the first aerosol indirect forcing Joyce E. Penner, 1 Cheng Zhou, 1 and Li Xu

More information

4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING

4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING 4.2 CHARACTERISTICS OF ATMOSPHERIC AEROSOLS USING OPTICAL REMOTE SENSING C. Russell Philbrick *, Timothy Wright, Michelle Snyder, Hans Hallen North Carolina State University, Raleigh NC Andrea M. Brown,

More information

TESTS. GRASP sensitivity. Observation Conditions. Retrieval assumptions ISTINA-WP AERO. MODELS. B. Torres, O. Dubovik and D.

TESTS. GRASP sensitivity. Observation Conditions. Retrieval assumptions ISTINA-WP AERO. MODELS. B. Torres, O. Dubovik and D. TESTS Retrieval assumptions GRASP sensitivity ISTINA-WP3380-2 Observation Conditions AERO. MODELS B. Torres, O. Dubovik and D. Fuertes Introduction Scope of ISTINA-WP3380-2 To establish fundamental limits

More information

Dust Climate Interactions

Dust Climate Interactions School of Earth and Environment INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE Dust Climate Interactions Kerstin Schepanski k. schepanski@leeds.ac.uk Dust Impacts Direct and indirect climate forcing Regional

More information

SATELLITE AEROSOL COMPOSITION RETRIEVAL

SATELLITE AEROSOL COMPOSITION RETRIEVAL SATELLITE AEROSOL COMPOSITION RETRIEVAL USING NEURAL NETWORKS τ(λ), ω(λ), g(λ), m(λ), dv/d log(r), Gabriele Curci (1,2) Del Frate, F. (3), Di Noia, A. (4), Sist, M. (3), Tirelli, C. (1) (1) CETEMPS (2)

More information

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel

New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel Slide 19 November 2016, V1.0 New capabilities with high resolution cloud micro-structure facilitated by MTG 2.3 um channel Author: Daniel Rosenfeld The Hebrew University of Jerusalem (HUJ) daniel.rosenfeld@huji.ac.il

More information

The Planck Blackbody Equation and Atmospheric Radiative Transfer

The Planck Blackbody Equation and Atmospheric Radiative Transfer The Planck Blackbody Equation and Atmospheric Radiative Transfer Roy Clark Ventura Photonics There appears to be a lot of confusion over the use of the terms blackbody absorption and equilibrium in the

More information

EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES

EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES CISBAT 2005, Proceedings, EPFL 2005, p. 441-446 EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES R. Steiner, P. Oelhafen, G. Reber and A. Romanyuk Institute

More information

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

The Scattering of Light by Small Particles. Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (4/28/09) The Scattering of Light by Small Particles Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract In this experiment we study the scattering of light from

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001 GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L02305, doi:10.1029/2004gl021651, 2005 Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001 Yingxin Gu, 1 William I. Rose, 1 David

More information

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT

Principles of Radiative Transfer Principles of Remote Sensing. Marianne König EUMETSAT - Principles of Radiative Transfer Principles of Remote Sensing Marianne König EUMETSAT marianne.koenig@eumetsat.int Remote Sensing All measurement processes which perform observations/measurements of

More information

Fundamentals of Atmospheric Radiation and its Parameterization

Fundamentals of Atmospheric Radiation and its Parameterization Source Materials Fundamentals of Atmospheric Radiation and its Parameterization The following notes draw extensively from Fundamentals of Atmospheric Physics by Murry Salby and Chapter 8 of Parameterization

More information

Remote Sensing. RAHS C Division Invitational

Remote Sensing. RAHS C Division Invitational Remote Sensing RAHS C Division Invitational 2017-18 Instructions: Answer all questions on this answer sheet. Sheets may be double sided, check both sides! If you separate the sheets of the test be sure

More information

Hefei

Hefei 2017 3rd International Conference on Computer Science and Mechanical Automation (CSMA 2017) ISBN: 978-1-60595-506-3 Experimental Study of Broadening Coefficients for the v3 Band of CO by Tunable Diode

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes

Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes 1740 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 50 Simulations of Contrail Optical Properties and Radiative Forcing for Various Crystal Shapes KRZYSZTOF M.

More information