SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY

Size: px
Start display at page:

Download "SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY"

Transcription

1 SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY

2 SNO+ IS LOCATED AT SNOLAB 300 km Canada Ontario Sudbury Creighton mine use existing SNO cavity 2 km or 6000 m.w.e. Artfest 2014, Christine Kraus, Laurentian University 2

3 SNO DETECTOR (INHERITED) Acrylic vessel AV, filled with 1000 tonnes of heavy water: data taking in 3 phases (different n detection methods) sunset in Sudbury DCR = Deck Clean Room 12 m acrylic vessel 1000 tonnes D2O 1700 t H2O (inner) 18 m PSUP 780 tonnes liquid org. scintillator Hold-down ropenet 5300 t H2O (outer) ~9500 PMTs 54% coverage 3

4 LIQUID SCINTILLATOR SNO+ liquid scintillator Detector to be filled with 780 tonnes of organic liquid scintillator (LS) scintillator More light yield!~100 than times Čerenkov more light, around yield than 400 Čerenkov p.e./mev, ~ lower energy enabling lower threshold energy threshold Linear alkylbenzene!linear alkylebenzene (LAB) (LAB) High light yield Long attenuation length Safe: high flash point and low toxicity!2g/l PPO fluor shifts the wavelength of the emitted light into More affordable detectable than region other scintillators Add wavelength shifter!detector to be filled with 780 tonnes of organic liquid - High light yield - Long attenuation length - Safe: high flash point and low toxicity - Cheaper than other scintillators Initial plan: 2g/L PPO fluor 27 4

5 SNO+ PHYSICS GOALS Neutrinoless double beta decay scintillator loaded with 130 Te (0.3% loading 800 kg of 130 Te) Geo- and Reactor neutrinos Supernova neutrinos Solar neutrinos (pep, CNO, low 8 B) Nucleon decay, sterile neutrinos Multi-purpose detector 5

6 NEUTRINOLESS DOUBLE BETA DECAY Loading the scintillator with isotope Can compare with and without source in the same detector Can in principle investigate several isotopes with the same detector What is the best isotope? Originally decided on 150 Nd due to it s high Q-value and phase space (away from many backgrounds), were hoping for possibility to enrich In principle SNO+ can measure different isotopes (source in/out) 6

7 DOUBLE BETA ISOTOPES 35 known isotopes Decay candidate Q- value (MeV) 48 Ca 48 Ti % natural abundance 76 Ge 76 Se Ca 82 Kr Zr 96 Mo Mo 100 Ru Pd 110 Cd Cd 116 Sn Sn 124 Te Te 130 Xe Xe 136 Ba Nd 150 Sm

8 SNO+ WITH TELLURIUM Fall 2011: Biller and Chen initiate new investigation by subgroup of collaboration Early 2012: new loading techniques for Te in liquid scintillator was developed by Yeh at al. Detailed studies of purification, optics properties, backgrounds by the collaboration followed Also independent review and verification studies were completed March 2013 collaboration decides to focus on 130 Te as the double beta isotope to pursue 8

9 ADVANTAGES OF TELLURIUM 34% natural abundance 2νββ rate is low no inherent optical absorption lines High values of loading feasible (default 0.3%) Internal U/Th background can be actively suppressed by identifying 214 Bi- 214 Po alphas 9

10 LOADING SCINTILLATOR (BNL) Conventional Loading Method Carboxylate Organometallic Complex New loading technique (BNL): Dissolve telluric acid in water and add a few percent of this mixture to LAB using a surfactant. Clear and stable has been demonstrated for more than 1 year. ICP-MS determined U/Th content of telluric acid to be 2-3 times g/g U/Th purification factors of >400 in a single pass have been achieved. 10

11 PERCENT LOADING OF TELLURIUM 0.3%, 0.5%, 1%, 3%, 5% (from left to right)

12 SNO+ EXPECTED SPECTRUM Expected sensitivity is below 100 mev for 0.3% loading (800 kg) 2 years lifetime and fiducial volume cut at 3.5 m (20%) > 99.99% efficient 214 Bi tag, 97% efficient internal 208Tl tag Factor 50 reduction 212BiPo and negligible cosmogenic isotopes m 0ν2β = 200 mev assumed for this plot 12

13 SNO+ PROJECTED SENSITIVITY 13

14 SOLAR NEUTRINOS: PEP pep solar neutrino component is favorable: - single energy (1.442 MeV) and well predicted flux (1.1%) Probes the vacuum-matter transition region Can be measured during pure liquid scintillator phase Probability vs. Energy Simulated spectrum CNO pep 8 B 14

15 CONSTRUCTION STATUS Hold-down system completed, Hold-up ropes exchanged Water fill of cavity started Cleaning the inner surface of AV completed Scintillator purification plant coming together STF completed, testing upcoming PMT repairs ongoing Calibration hardware starting to be installed Detector electronics commissioning air filled running New covergas system installed and commissioned Fiber system and camera system partially installed 15

16 HOLD-DOWN SYSTEM Feb. 2011: Install tarp Cleanliness protection May 2011: drill holes Pre-tensioning Jan 2013 Jan 2012 Install rope net May 2013: Set positions for AV and hold-down sys. Jan 2012: Replace hold-up ropes Sep 2013 Shorten hold-up ropes Completed! 16

17 JANUARY 2012 AND SEPTEMBER 2013 Jan 2012: Replace hold-up ropes Sep 2013 Shorten hold-up ropes

18 AV CLEANING COMPLETE! Suspended platform Carousel and access Cleaning ladder Cleaning entire Inner surface: Jan-Mar 2013 Inside AV, looking down Outside AV 18

19 CAVITY WITH WATER 19

20 Large column SCINTILLATOR PLANT All vessels, kettles, etc. underground and installation ongoing He-leak checking of components mostly completed Slung, arriving UG 2h fire walls Piping to do Fire protection and suppression to be completed 20

21 DETECTOR Upgrade electronics, bring everything online Repair PMTs ~300 so far DAQ tests, LED system tests, air-filled running Install UI and acrylic pipes May 2013 Getting ready for running with water

22 SNO+ DARK RUNNING DECEMBER 2013 AND FEBRUARY 2014 With about 200 PMTs under water, turned on complete detector with HV and ran for 8 days Training detector experts and commissioning system components Weekend and night shifts operated from surface Took full set of PMT calibration data: electronics and timing Data to test PMT calibration code Testing new monitoring tools

23 WATER LEVEL ABOVE PMTS

24 WATER LINE DECEMBER (out of 19) crates with HV, rates for PMTs Under water higher (as expected)

25 USING INSTALLED FIBERS FEBRUARY 2014 Timing calibration data Testing system Stress test for DAQ Optical calibration without need to Insert source into the detector, Minimize contamination risk. Water level 12 ft from cavity floor

26 FIBER DATA 11.2 million events total for timing calibration

27 MUON

28 NEW COVER GAS SYSTEM WAS INSTALLED AND TESTED

29 Cover Gas Pictures

30 SUMMARY AND OUTLOOK Water fill has begun, plan to be filled by the end of the year Remaining PSUP installations (fibers, cameras, etc.) Water phase data taking (2014) Fill with scintillator start background studies Introduction of isotope in stages: 2015 Exciting times ahead 30

31 Queen s University Laurentian University University of Alberta TRIUMF SNOLAB University of Pennsylvania University of Chicago University of Washington Armstrong Atlantic University University of North Carolina UC Berkeley and LBNL UC Davis Oxford University Sussex University Liverpool University Queen Mary University Lancaster University LIP Lisboa and Coimbra Technical University of Dresden YESTERDAY S COLLABORATION PHOTO August 2013 Collaboration meeting 31

32

33 BACKUP SLIDES

34 OPTICAL PROPERTIES Absorption vs. wavelength Triggers vs. Total Charge Te does not have absorption lines Optically clear Wavelength shifter options under investigation to further improve Average light level hits/mev 34

35 BACKGROUNDS target level ~2.5x10-15g U /g cocktail ~3x10-16g Th /g cocktail Several α and βemissions Direct backgrounds 212 Bi- 212 Po w coinc. 98% rejection 214 Bi- 214 Po w coinc. 99.8% rejection 214 Bi- 214 Po iw coinc. 98% rejection 212 Bi- 208 Tl coinc. 97% rejection Continue to investigate, improve 214 Po 164.3μs Q-value: 3.27 MeV External backgrounds from AV, rope net, PMTs, water shield Attenuated by fiducial volume, 50%time likelihood cut 212 Po 3x10-7 s Q-value: 2.25 MeV 35

36 SOLAR NEUTRINOS: CNO 36

37 SOLAR NEUTRINOS Background studies in pure scintillator will be available years before to determine strategy to achieve background goals Radon daughters have accumulated on the surface of the AV over the last few years in a significant way. If these leach into the scintillator, the purification system has the capability to remove them. However, depending on the actual leach rate, that removal might be inefficient and the 210 Bi levels in the scintillator too high for a pep/cno solar neutrino measurement without further mitigation. Mitigation should include enhancing online scintillator purification, draining the detector and sanding the AV surface to remove radon daughters, or deploying a bag Double beta decay and low energy 8 B solar neutrino measurements are not effected by these backgrounds. 37

38 GEO- AND REACTOR NEUTRINOS 38

39 NUCLEON DECAY AND SN NEUTRINOS Water phase will allow to look for invisible nucleon decay modes by observation of characteristic gammas. SN neutrinos for a SN within our galaxy. See presentation by Belina Von Krosigk on Sunday Interesting physics by combining with results from HALO (a dedicated SN detector at SNOLAB) CC and NC combinations 39

40 COSMOGENICS Short and long living isotopes can be produced by cosmogenic activation of Tellurium detailed studies by V. Lozza Isotopes with value larger than 2 MeV and with half-life longer than 20 days have been considered as potential backgrounds. Productions rates were estimated using the program ACTIVIA and the neutron and proton flux parameterization a sea level from Armstrong and Gehrels. Low energy rand (E<200 MeV) used TENDL database for cross sections where available Purification factors needed have been determined based on exposure of one year at sea level. Purification at surface will be able to reduce induced cosmogenics by a factor larger than Further purification underground and cooling times on the order of month for isotopes produced during transport will also be needed. With these measures, cosmogenic isotopes are a negligible background contribution 40

Neutrinoless double beta decay with SNO+

Neutrinoless double beta decay with SNO+ Neutrinoless double beta decay with SNO+ - 0!"" with SNO+ - Backgrounds - Schedule Freija Descamps for the SNO+ collaboration 1 SNO+ detector 6000 m.w.e Deck with DAQ SNO+ operator ~780T LAB liquid organic

More information

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration NOW 2014, Otranto, Lecce, Italy September 7-14, 2014 Intro Neutrino physics with the SNO+ detector 2 Intro What we know:! Neutrinos

More information

Neutrinoless Double Beta Decay Search with SNO+

Neutrinoless Double Beta Decay Search with SNO+ Neutrinoless Double Beta Decay Search with SNO+ Kalpana Singh for the SNO+ Collaboration University of Alberta 8th Nov. 2016 1 Location 8th Nov. 2016 2 Location, 5890 mwe 8th Nov. 2016 3 63 muons/ day

More information

Scintillator phase of the SNO+ experiment

Scintillator phase of the SNO+ experiment Mathematik und Naturwissenschaften Institut für Kern- und Teilchen Physik Scintillator phase of the experiment Valentina Lozza On behalf of Collaboration TAUP2011, 05.09.2011 Munich Outline = SNO + Liquid

More information

Leaching Studies for the SNO+ Experiment

Leaching Studies for the SNO+ Experiment Leaching Studies for the SNO+ Experiment Pouya Khaghani Laurentian University SNOLAB Users Meeting Symposium September 2 nd 2016 1 SNO+ Physics SNOLAB, Creighton Mine (2070m 6000 m. w. e) Linear Alkyl

More information

Solar Neutrinos in Large Liquid Scintillator Detectors

Solar Neutrinos in Large Liquid Scintillator Detectors Solar Neutrinos in Large Liquid Scintillator Detectors M. Chen Queen s University DOANOW March 24, 2007 Low Energy Solar Neutrinos complete our understanding of neutrinos from the Sun pep, CNO, 7 Be, pp

More information

Synthesis and Characterization of Organic Tellurium Compounds for SNO+ Liquid Scintillator

Synthesis and Characterization of Organic Tellurium Compounds for SNO+ Liquid Scintillator Synthesis and Characterization of Organic Tellurium Compounds for SNO+ Liquid Scintillator Lianpeng Tian Queen s University For SNO+ Collaboration LSC2017 Conference Large multi-purpose liquid scintillator

More information

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Results from DEAP-1 and Status of DEAP-3600 Pierre Gorel for the DEAP collaboration University of Alberta Dark matter Experiment

More information

Neutrino Masses and Mixing

Neutrino Masses and Mixing Neutrino Masses and Mixing < Why so different??? (Harrison, Perkins, Scott 1999) The Mass Puzzle Seesaw mechanism L R m m D m 2 D M m D M m D L R M Heavy Majorana Neutrino Connection with high mass scales

More information

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 International Meeting for Large Neutrino Infrastructures Ecole Architecture Paris Val de Seine, APPEC, 23-24 June, 2014 Soo-Bong

More information

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo Hyon-Suk Jo Center for Underground Physics Institute for Basic Science INPC 2016 - Adelaide Convention Centre, Australia

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

Distillation purification and radon assay of liquid xenon

Distillation purification and radon assay of liquid xenon Distillation purification and radon assay of liquid xenon Yasuo Takeuchi Kamioka Observatory, ICRR, Univ. of Tokyo, Kamioka-cho, Hida-shi, Gifu 56-125, Japan Abstract. We succeeded to reduce the Kr contamination

More information

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory Introduction Highlights of SNO Results NCD Phase Update Future Analysis Plan Keith Rielage on behalf

More information

Two Neutrino Double Beta (2νββ) Decays into Excited States

Two Neutrino Double Beta (2νββ) Decays into Excited States Two Neutrino Double Beta (2νββ) Decays into Excited States International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016 Björn Lehnert TU-Dresden,

More information

LUX-ZEPLIN (LZ) Status. Attila Dobi Lawrence Berkeley National Laboratory June 10, 2015 WIN Heidelberg

LUX-ZEPLIN (LZ) Status. Attila Dobi Lawrence Berkeley National Laboratory June 10, 2015 WIN Heidelberg LUX-ZEPLIN (LZ) Status Attila Dobi Lawrence Berkeley National Laboratory June 10, 2015 WIN-2015. Heidelberg 1 LZ = LUX + ZEPLIN 29 institutions currently About 160 people Continuing to expand internationally

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

Water-based Liquid Scintillator

Water-based Liquid Scintillator Water-based Liquid Scintillator Minfang Yeh Neutrino and Nuclear Chemistry, Brookhaven National Laboratory NNN-2014, Nov. 4-6, 2014 Liquid Scintillator Physics 0 ββ (e.g. SNO+, KamLAND-Zen) Reactor (e.g.

More information

Next Generation Scintillation Detectors: Development of Quantum Dot Doped Scintillator. Lindley Winslow University of California Los Angeles

Next Generation Scintillation Detectors: Development of Quantum Dot Doped Scintillator. Lindley Winslow University of California Los Angeles Next Generation Scintillation Detectors: Development of Quantum Dot Doped Scintillator Lindley Winslow University of California Los Angeles I am particularly interested in applications to... e - e - νi

More information

Scintillator Detectors for Neutrino Physics

Scintillator Detectors for Neutrino Physics Scintillator Detectors for Neutrino Physics Minfang Yeh Neutrino and Nuclear Chemistry, BNL Jinping Workshop, Tsinghua, June 5, 2015 BNL-Liquid Scintillator Development Facility A unique facility (since

More information

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff Solar Neutrinos: Status and Prospects Marianne Göger-Neff NIC 2014, Debrecen TU München Solar Neutrinos Objective of the first solar neutrino experiment: to see into the interior of a star and thus verify

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

Early commissioning calibration data sets for DEAP-3600

Early commissioning calibration data sets for DEAP-3600 Journal of Physics: Conference Series PAPER OPEN ACCESS Early commissioning calibration data sets for DEAP-36 To cite this article: Berta Beltrán and DEAP Collaboration 216 J. Phys.: Conf. Ser. 718 424

More information

The LZ Experiment Tom Shutt SLAC. SURF South Dakota

The LZ Experiment Tom Shutt SLAC. SURF South Dakota The LZ Experiment Tom Shutt SLAC SURF South Dakota 1 LUX - ZEPLIN 31 Institutions, ~200 people 7 ton LXe TPC ( tons LXe total) University of Alabama University at Albany SUNY Berkeley Lab (LBNL), UC Berkeley

More information

Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment

Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment Jocelyn Monroe, Royal Holloway University of London IPA2014 August 22, 2014 Outline 1. DEAP-3600 Detector 2. Experimental Technique

More information

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge Allen Caldwell Max-Planck-Institut für Physik What we know Mass Scale NORMAL INVERTED m 12 2 known m 13 2 known Mixing

More information

0νββ Physics in WbLS. Andy Mastbaum University of Pennsylvania. WbLS Workshop LBNL 17 May 2014

0νββ Physics in WbLS. Andy Mastbaum University of Pennsylvania. WbLS Workshop LBNL 17 May 2014 0νββ Physics in WbLS Andy Mastbaum University of Pennsylvania WbLS Workshop LBNL 17 May 2014 Requirements Future detectors must: Reach a sensitivity of 15 mev at the 3σ CL after years of running, according

More information

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS Eric B. Norman Dept. of Nuclear Engineering Univ. of California, Berkeley, CA U. S. A. Recent results in n physics Neutrinos

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

Dark matter search with the SABRE experiment

Dark matter search with the SABRE experiment Dark matter search with the SABRE experiment Giulia D Imperio* for the SABRE collaboration *INFN Roma 1 25-07-2017 TAUP 2017 Sudbury, Canada 1 Dark matter detection through annual modulation WIMP is one

More information

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration CANDLES Experiment Current Status and Future Plan X. Li for the CANDLES Collaboration 1 Neutrinoless Double Beta Decay (0νββ) 2νββ decay 0νββ decay (A, Z) => (A, Z+2) + 2e - process beyond Standard Model

More information

Status of the GERDA experiment

Status of the GERDA experiment Status of the GERDA experiment Hardy Simgen Max-Planck-Institute for Nuclear Physics Heidelberg The GERDA experiment Next generation 76 Ge double beta decay experiment at Gran Sasso. Basic idea: Operation

More information

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso 1 RADIOCHEMICAL Integrated in energy and time CHERENKOV Less than 0.01% of the solar neutrino flux is been measured in

More information

Liquid Scintillator Timing Property

Liquid Scintillator Timing Property Liquid Scintillator Timing Property Minfang Yeh Neutrino and Nuclear Chemistry, BNL MIT workshop, Dec 15, 2015 Main Neutrino Interactions in Scintillator + p ; KamLAND v e + 12 C e 12 B 12 C e v e v +

More information

The SNO+ experiment: status and overview. Simon JM Peeters on behalf of the SNO+ collaboration

The SNO+ experiment: status and overview. Simon JM Peeters on behalf of the SNO+ collaboration 1 The SNO+ experiment: status and overview Simon JM Peeters on behalf of the SNO+ collaboration 2 SNO+ collaboration University of Alberta A. Baliek, P. Gorel, A. Hallin, M. Hedayatipoor, C. Krauss, Z.

More information

Neutrino detectors. V. Lozza,

Neutrino detectors. V. Lozza, Neutrino detectors, 5.10.2011 Outline - Introduction to neutrinos Sources of neutrinos Detection techniques Why we need to go underground? Background components What to do? Summary A brief of history 1914:

More information

Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds

Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds by Maryam Seddighin A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity

More information

can be read by PMTs w/o wave length shifter

can be read by PMTs w/o wave length shifter Liquid-Xe Solar pp 7 Be neutrino detector Y.Suzuki Kamioka Obs. ICRR, U.Tokyo @LowNu 2000-06-15 Detector 1) Liquid Xenon with 10 ton fiducial volume 2) Scintillation detector: 42,000 photons/mev similar

More information

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor University of Bristol E-mail: dan.saunders@bristol.ac.uk The disappearance of reactor antineutrinos into a new neutral

More information

Daya Bay and joint reactor neutrino analysis

Daya Bay and joint reactor neutrino analysis Daya Bay and joint reactor neutrino analysis Logan Lebanowski (Tsinghua University) on behalf of the Daya Bay collaboration 2016/11/4 - NNN16, Beijing 1 Contents Daya Bay Reactor Neutrino Experiment Introduction

More information

Measurements of photon scattering lengths in scintillator and a test of the linearity of light yield as a function of electron energy

Measurements of photon scattering lengths in scintillator and a test of the linearity of light yield as a function of electron energy Measurements of photon scattering lengths in scintillator and a test of the linearity of light yield as a function of electron energy Alexandra Huss August 31, 2013 Abstract The SNO+ experiment in Sudbury,

More information

The XENON1T experiment

The XENON1T experiment The XENON1T experiment Ranny Budnik Weizmann Institute of Science For the XENON collaboration 1 The XENON1T experiment Direct detection with xenon The XENON project XENON1T/nT 2 Quick introduction and

More information

Neutrino Physics. Neutron Detector in the Aberdeen Tunnel Underground Laboratory. The Daya Bay Experiment. Significance of θ 13

Neutrino Physics. Neutron Detector in the Aberdeen Tunnel Underground Laboratory. The Daya Bay Experiment. Significance of θ 13 Neutrino Physics Neutron Detector in the Aberdeen Tunnel Underground Laboratory John K.C. Leung Department of Physics, HKU On behalf of CUHK, LBL & IHEP Presented to HKRPS on June 21, 2007 Neutrinos have

More information

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico Results on geoneutrinos at Borexino experiment Heavy Quarks and Leptons 2018 - Yamagata Davide Basilico Outline 1. Geoneutrinos 2. Borexino 3. Analysis and results 2 What are geoneutrinos? Distribution

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Supervisor: Kai Schweda 5/18/2009 Johannes Stiller 1 Outline The Standard (Solar) Model Detecting Neutrinos The Solar Neutrino Problem Neutrino Oscillations Neutrino Interactions

More information

The LED and fiber based calibration system for the photomultiplier array of SNO+

The LED and fiber based calibration system for the photomultiplier array of SNO+ Journal of Physics: Conference Series OPEN ACCESS The LED and fiber based calibration system for the photomultiplier array of SNO+ To cite this article: L Seabra et al 2015 J. Phys.: Conf. Ser. 587 012031

More information

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich) GERDA experiment A search for neutrinoless double beta decay Roberto Santorelli (Physik-Institut der Universität Zürich) on behalf of the GERDA collaboration ÖPG/SPS/ÖGAA meeting 04/09/09 Neutrinos mixing

More information

LARGE UNDERGROUND XENON

LARGE UNDERGROUND XENON LARGE UNDERGROUND XENON Cláudio Silva (LIP Coimbra) On behalf of the LUX Collaboration IDPASC Dark Matter Workshop 17 December 2011 1 THE LUX COLLABORATION Collaboration was formed in 2007 and fully funded

More information

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011 Background Modeling and Materials Screening for the LUX and LZ Detectors David Malling Brown University LUX Collaboration AARM Meeting February 2011 1 Summary LUX screening program limits background contributions

More information

Toward a next-generation dark matter search with the PICO-40L bubble chamber. Scott Fallows TAUP2017 Laurentian University 24 July 2017

Toward a next-generation dark matter search with the PICO-40L bubble chamber. Scott Fallows TAUP2017 Laurentian University 24 July 2017 Toward a next-generation dark matter search with the PICO-40L bubble chamber Scott Fallows TAUP2017 Laurentian University 24 July 2017 2 2 Other PICO talks at TAUP First demonstration of a scintillating

More information

The GERmanium Detector Array

The GERmanium Detector Array The GERmanium Detector Array n n ν=v p e - e - p Outline: Exp. issues of 0νββ-decay of 76 Ge Concept of GERDA Status of the experiment Summary and conclusions Kevin Kröninger (Max-Planck-Institut für Physik,

More information

Axion search with Dark Matter detector

Axion search with Dark Matter detector Axion search with Dark Matter detector Paolo Beltrame Durham IPPP, 14th March 2016 1 Direct DM search Dark matter (DM) Milky Way s halo => flux on Earth ~ 10 5 cm -2 s -1 ρχ ~ 0.3 GeV/cm 3 and 100 GeV/c

More information

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington USING NEUTRINOS TO STUDY THE EARTH Nikolai Tolich University of Washington Outline Introduction Recent results The future Structure of the Earth Seismic data splits Earth into 5 basic regions: inner core,

More information

Present and future of SNO: SNO, SNO+ and SNOLAB. Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006

Present and future of SNO: SNO, SNO+ and SNOLAB. Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006 Present and future of SNO: SNO, SNO+ and SNOLAB Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006 Sudbury Neutrino Observatory 1000 tonnes D 2 O Support Structure for

More information

Outline. Dark Matter Physics at SNOLAB: And Future Prospects. Overview of SNOLAB DarkMatter Program. Status of Current Experiments

Outline. Dark Matter Physics at SNOLAB: And Future Prospects. Overview of SNOLAB DarkMatter Program. Status of Current Experiments Outline Dark Matter Physics at SNOLAB: And Future Prospects Overview of SNOLAB DarkMatter Program Status of Current Experiments The G2 Down Select Process Crystal Ball Gazing where will we be in 2020?

More information

Der doppelte Betazerfall: Experimente und Matrix- Elemente

Der doppelte Betazerfall: Experimente und Matrix- Elemente Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ Der doppelte Betazerfall: Experimente und Matrix- Elemente DESY Zeuthen, 25.Feb.2010 How to explain everything about double beta decay

More information

arxiv: v1 [physics.ins-det] 1 Feb 2016

arxiv: v1 [physics.ins-det] 1 Feb 2016 arxiv:1602.00364v1 [physics.ins-det] 1 Feb 2016 Solar neutrino interactions with liquid scintillators used for double beta-decay experiments 1. Introduction Hiroyasu Ejiri 1 and Kai Zuber 2 1. Research

More information

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Moscow, 15/10/2005 Aldo Ianni, INFN LNGS 1 Outline Borexino: Italian-Russian cooperation

More information

Search for double electron capture on 124 Xe with the XMASS-I detector

Search for double electron capture on 124 Xe with the XMASS-I detector Search for double electron capture on 124 Xe with the XMASS-I detector KATSUKI HIRAIDE (ICRR, THE UNIVERSITY OF TOKYO) SEPTEMBER 7 TH, 2015 TAUP2015 1 124 Xe 2n double electron capture Natural xenon contains

More information

LOW RADON PERMEABLE GLOVES AND LASERBALL SIMULATIONS FOR SNO+ Zachariah Carranza-Barnard

LOW RADON PERMEABLE GLOVES AND LASERBALL SIMULATIONS FOR SNO+ Zachariah Carranza-Barnard LOW RADON PERMEABLE GLOVES AND LASERBALL SIMULATIONS FOR SNO+ by Zachariah Carranza-Barnard Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (MSc) in Physics

More information

NEMO-3 latest results

NEMO-3 latest results NEMO-3 latest results Thibaud Le Noblet LAPP On behalf of the NEMO collaboration GdR neutrino 29-30 mai 2017 - APC Outline Neutrinoless double beta decay Tracker-calorimeter technique NEMO-3 detector Latest

More information

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Observation of Reactor Antineutrinos at RENO Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012 Outline Introduction Experimental setup & detector Data-taking & data

More information

The Daya Bay Anti-neutrino Experiment

The Daya Bay Anti-neutrino Experiment The Daya Bay Anti-neutrino Experiment On behalf on the Daya Bay Collaboration Jianglai Liu Shanghai Jiao Tong University KPS-CPS joint session, KPS annual meeting, Busan, 2011-10-20 1 13 in PMNS Matrix

More information

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min S. Fiorucci Brown University UCLA Dark Matter 2014 Symposium Origins and Distributions of the Backgrounds 15 min What is a signal for LUX? Nuclear recoil Single scatter Signal Low energy, typically < 25

More information

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016 Low Background Experiments and Material Assay Tessa Johnson NSSC Summer School July 2016 Outline How do we detect particles? Some interesting questions relating to particle physics How can particle detection

More information

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab Oak Ridge National Laboratory, TN K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab Coherent elastic neutrino-nucleus scattering (CEvNS) n + A n +

More information

A Liquid Argon Scintillation Veto for the GERDA Experiment

A Liquid Argon Scintillation Veto for the GERDA Experiment A Liquid Argon Scintillation Veto for the GERDA Experiment for the GERDA Collaboration 2nd European Nuclear Physics Conference Bucharest, 18/09/2012 Institut für Kern- und Teilchenphysik GERDA - GERmanium

More information

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Review of Solar Neutrinos Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Solar Neutrinos pp chain: 4p + 2e 4 He + 2ν e + 26.7

More information

First results on neutrinoless double beta decay of 82 Se with CUPID-0

First results on neutrinoless double beta decay of 82 Se with CUPID-0 First results on neutrinoless double beta decay of 82 Se with CUPID-0 Lorenzo Pagnanini on behalf of the CUPID-0 collaboration 30 th Rencontres de Blois CUPID: a next generation experiment CUPID (CUORE

More information

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the CUORE and CUORE-0 experiments at Gran Sasso Status of the CUORE and CUORE-0 experiments at Gran Sasso S. Di Domizio INFN and University of Genova for the CUORE collaboration Weak Interactions and Neutrinos Natal, September 19 2013 Neutrinoless double

More information

Status of Cuore experiment and last results from Cuoricino

Status of Cuore experiment and last results from Cuoricino Status of Cuore experiment and last results from Cuoricino on behalf of the Cuore collaboration Istituto Nazionale di Fisica Nucleare, Genova E-mail: elena.guardincerri@ge.infn.it CUORE is a cryogenic-bolometer

More information

arxiv: v1 [physics.ins-det] 23 Oct 2007

arxiv: v1 [physics.ins-det] 23 Oct 2007 1 arxiv:0710.4279v1 [physics.ins-det] 23 Oct 2007 The SuperNEMO double beta decay experiment I. Nasteva on behalf of the SuperNEMO Collaboration School of Physics and Astronomy, University of Manchester,

More information

XMASS: a large single-phase liquid-xenon detector

XMASS: a large single-phase liquid-xenon detector XMASS: a large single-phase liquid-xenon detector Katsuki Hiraide, the university of Tokyo for the XMASS Collaboration October 3 rd, 2016 IPRD16@Siena, Italy 1 XMASS project XMASS: a multi purpose experiment

More information

Neutron background and possibility for shallow experiments

Neutron background and possibility for shallow experiments Neutron background and possibility for shallow experiments Tadao Mitsui Research Center for Neutrino Science, Tohoku University 14-16 December, 2005 Neutrino Sciences 2005, Neutrino Geophysics, Honolulu,

More information

Calibration of Single Phase Liquid Argon Detectors

Calibration of Single Phase Liquid Argon Detectors Calibration of Single Phase Liquid Argon Detectors Kimberly J. Palladino MIT MiniCLEAN Collaboration 1 Outline Single Phase Liquid Argon technique Calibration Goals Internal calibration sources External

More information

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino Muons in Borexino SFB Block Meeting Daniel Bick Universität Hamburg 24.03.2010 D. Bick (Uni HH) Muons in Borexino 24.03.2010 1 / 30 Overview 1 Motivation Physics at Borexino Neutrino Detection in Liquid

More information

Current status of LUX Dark Matter Experiment

Current status of LUX Dark Matter Experiment Current status of LUX Dark Matter Experiment by A. Lyashenko Yale University On behalf of LUX collaboration LUX Large Underground Xenon experiment LUX Collaboration: Yale, CWRU, UC Santa Barbara, Brown,

More information

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011 After LUX: The LZ Program David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011 The LZ Program LZ LUX-ZEPLIN LUX (14 U.S. institutions) + new collaborators from ZEPLIN, other

More information

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS Alex Wright Princeton University University of Chicago HEP Seminar May 10 th, 2010 Solar Neutrino Production p-p Solar

More information

The JUNO veto detector system. Haoqi Lu Institute of High Energy physics (On Behalf of the JUNO Collaboration) TIPP2017, May22-26,Beijing

The JUNO veto detector system. Haoqi Lu Institute of High Energy physics (On Behalf of the JUNO Collaboration) TIPP2017, May22-26,Beijing The JUNO veto detector system Haoqi Lu Institute of High Energy physics (On Behalf of the JUNO Collaboration) TIPP2017, May22-26,Beijing 1 The Jiangmen Underground Neutrino Observatory (JUNO) Detector

More information

KamLAND. Introduction Data Analysis First Results Implications Future

KamLAND. Introduction Data Analysis First Results Implications Future KamLAND Introduction Data Analysis First Results Implications Future Bruce Berger 1 Tohoku University, Sendai, Japan University of Alabama University of California at Berkeley/LBNL California Institute

More information

The next generation dark matter hunter: XENON1T status and perspective

The next generation dark matter hunter: XENON1T status and perspective The next generation dark matter hunter: XENON1T status and perspective A. Rizzo a on behalf of the XENON Collaboration Department of Astrophysics, Columbia University in the City of New York, USA Abstract.

More information

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 First Borexino proposal: 1991 Main goal: real time measurement of sub-mev solar neutrinos Why? To solve the Solar Neutrino Puzzle (missingsolarneutrinos)

More information

The Double Chooz reactor neutrino experiment

The Double Chooz reactor neutrino experiment The Double Chooz reactor neutrino experiment Christian Buck, MPIK Heidelberg MPIK July, 30th 2009 Overview Motivation Double Chooz concept and design Status of experiment MPIK activities Summary Neutrino

More information

The Daya Bay Reactor Neutrino Experiment

The Daya Bay Reactor Neutrino Experiment The Daya Bay Reactor Neutrino Experiment Lisa Whitehead Brookhaven National Laboratory for the Daya Bay Collaboration APS Meeting, Washington, D.C. Measuring 13 at a Reactor S jk =sin jk C jk =cos jk Neutrino

More information

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Results from Borexino on solar (and geo-neutrinos) Gemma Testera Results from Borexino on solar (and geo-neutrinos) Gemma Testera Istituto Nazionale di Fisica Nucleare (Genova) On behalf of the Borexino collaboration Scintillator: 270 t PC+PPO (1.5 g/l) in a 150 mm

More information

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory Measuring sin 2 2θ 13 with Reactor Antineutrinos at Daya Bay An Underground Laboratory for a Multi-Detector Experiment Karsten Heeger Lawrence Berkeley National Laboratory On behalf of the Daya Bay collaboration

More information

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment Physikalisches Institut Kepler Center for Astro and Particle Physics : a test facility for the characterization of BEGe detectors for the GERDA experiment Raphael Falkenstein for the GERDA collaboration

More information

Status and Perspectives of the COBRA-Experiment

Status and Perspectives of the COBRA-Experiment Status and Perspectives of the COBRA-Experiment Jan Tebrügge for the COBRA Collaboration Status and Perspectives of the COBRA-Experiment Jan Tebrügge beta decays for thedouble COBRA Collaboration CdZnTe

More information

The LENA Neutrino Observatory

The LENA Neutrino Observatory The LENA Neutrino Observatory for the LENA Collaboration 1 Consortium of European science institutions and industry partners Design studies funded by the European Community (FP7) LAGUNA: detector site,

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M.

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M. Spectrum Investigation of Scintillation and the Detection of Supernovae Relic Neutrinos January 18, 2006 Outline Spectrum 1 2 3 Spectrum 4 The Spectrum Spectrum about 50 kt of liquid scintillator, so:

More information

Recent Results and Status of EXO-200 and the nexo Experiment

Recent Results and Status of EXO-200 and the nexo Experiment Recent Results and Status of EXO-200 and the nexo Experiment, for the EXO-200 and nexo Collaborations Physics Department, Carleton University, Ottawa, ON, Canada E-mail: licciard@physics.carleton.ca The

More information

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15, DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017

More information

NEXT ELECTROLUMINESCENCE READOUT

NEXT ELECTROLUMINESCENCE READOUT IFIC - INSTITUTO DE FISICA CORPUSCULAR NEXT ELECTROLUMINESCENCE READOUT Igor Liubarsky Instituto de Fisica Corpuscular CONTENTS Why do it Neutrinoless Double Beta Decay Neutrino Experiments with Xe TPC

More information

Results from Borexino 26th Rencontres de Blois

Results from Borexino 26th Rencontres de Blois Results from Borexino 26th Rencontres de Blois - 2014 Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/

More information

Dark Matter Search With The PICASSO Experiment

Dark Matter Search With The PICASSO Experiment Dark Matter Search With The PICASSO Experiment New Limit and Plans for the Next Phase Carsten Krauss Queen s University On behalf of the PICASSO Collaboration CAP Meeting Vancouver, June 8 2005 Dark Matter

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

arxiv: v1 [physics.ins-det] 21 Nov 2014

arxiv: v1 [physics.ins-det] 21 Nov 2014 Cosmogenic activation of a natural tellurium target V. Lozza a,, J. Petzoldt a, a Institut für Kern und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 9, 069 Dresden, Germany arxiv:.97v

More information

DarkSide new results and prospects

DarkSide new results and prospects DarkSide new results and prospects Stefano Davini - INFN Genova on behalf of the DarkSide collaboration La Thuile, March 20, 2018 The DarkSide WIMP-argon program at LNGS 2011 2012 2013 2014 2015 2016 2017

More information