Scintillator phase of the SNO+ experiment

Size: px
Start display at page:

Download "Scintillator phase of the SNO+ experiment"

Transcription

1 Mathematik und Naturwissenschaften Institut für Kern- und Teilchen Physik Scintillator phase of the experiment Valentina Lozza On behalf of Collaboration TAUP2011, Munich

2 Outline = SNO + Liquid Scintillator - New detector design - Liquid scintillator Phases of Operation: - Scintillator phase - Nd loaded phase Solar neutrinos - pep - CNO Geo and reactor neutrinos Summary

3 Detector 780t of liquid scintillator (LAB) Active medium PSUP = PMT Support Structure ~9500 PMT ~ 54% coverage Acrylic Vessel Φ=12 m, thickness = 5 cm Light water (H2O) shielding t internal t external Urylon Liner and Radon Seal

4 Detector 780t of liquid scintillator (LAB) Active medium PSUP = PMT Support Structure ~9500 PMT ~ 54% coverage Acrylic Vessel Φ=12 m, thickness = 5 cm Light water (H2O) shielding t internal t external Urylon Liner and Radon Seal

5 New ropes hold down system Liquid scintillator is lighter than water (ρ=0.86 g/cm3) From SNO To Hold up Hold down

6 New ropes hold down system Liquid scintillator is lighter than water (ρ=0.86 g/cm3) From SNO To Hold up Hold down

7 Liquid scintillator LAB Linear alkylbenzene (LAB) identified as the liquid scintillator solvent Chemical compatibility with acrylic High light yield ( times higher than D2O) Good optical transparency Low scattering Fast decay, different for alphas and betas High purity available Safe Low toxicity High flash point 130 C Boiling point C Environmentally safe Low solubility in water mg/l Inexpensive Petresa Plant Bécancour, QC

8 Liquid scintillator LAB Linear alkylbenzene (LAB) identified as the liquid scintillator solvent Chemical compatibility with acrylic High light yield ( times higher than D2O) Good optical transparency Low scattering Fast decay, different for alphas and betas High purity available Safe Low toxicity High flash point 130 C Boiling point C Environmentally safe Low solubility in water mg/l Inexpensive Safe scintillators Petresa Plant Bécancour, QC

9 Phases of operation Two main phases of operation: Liquid Scintillator Phase Solar Neutrinos Reactor and Geo-Neutrinos Supernovae Neutrinos Nd-Loaded phase Neutrinoless Double-Beta decay Reactor and Geo-Neutrinos Supernovae Neutrinos Other interesting studies: nucleon decay, sterile neutrinos,...

10 Nd loaded phase Neutrinoless double beta decay with liquid scintillator: Large mass, low background Poor energy resolution (3.5% at Nd endpoint) Use 150Nd : High Q-value (3371 kev) low background Successfully loaded in LAB. 0.1% loading Optimized 0.3% under study See Jeffrey Hartnell talk Double Beta Decay, Neutrino Mass W4

11 Scintillator phase: Solar neutrinos Complete our understanding of the solar neutrino fluxes (complementary to SNO) Next target measurement: pep, 7Be and 8B neutrinos Possibility to further extend into pp region (depending on 14C and 85Kr levels) Probe solar metallicity with CNO (spectrum shape very close to the 210Bi one)

12 pep neutrinos, Why? pep solar neutrino component is favorable due to: - single energy (1.442 MeV) - very well predicted flux (1.1 % uncertainty) Accurate measurements of neutrino survival probabilities in the low energy range can: - improve the precision on the oscillation parameters - provide sensitivity to alternative models of neutrino mixing pep solar neutrino as a test for MSW present data suggest MSW testing the vacuum-matter transition is sensitive to new physics Vacuum dominated Matter dominated

13 pep neutrinos, Why? pep solar neutrino component is favorable due to: - single energy (1.442 MeV) - very well predicted flux (1.1 % uncertainty) Accurate measurements of neutrino survival probabilities in the low energy range can: - improve the precision on the oscillation parameters - provide sensitivity to alternative models of neutrino mixing Friedland, Lunardini, Peña-Garay, PLB 594 (2004) Good probe for NSI pep solar neutrino as a test for MSW present data suggest MSW testing the vacuum-matter transition is sensitive to new physics Vacuum dominated oscillation solutions with NSI can fit existing solar and atmospheric neutrino data NSI not currently constrained new pep solar neutrino data would test NSI Matter dominated

14 pep neutrinos, Requirements Requirements for measuring the pep neutrino flux 1. Depth reduce the background induced by cosmogenic muons (11C) 2. Good light output from the scintillator 3. Radiopurity - 14C is not a problem since pep signal is at higher energy - U, Th not a problem if one can repeat KamLAND scintillator purity - 40K, 210Bi (Radon daughter) - 85Kr, 210Po not a problem since pep signal is at higher energy

15 pep neutrinos, 11C 11C decays are the major background in pep energy window Since they are produced by cosmic muons, the deeper the experiment the better the background KamLAND Borexino Eμ [GeV] n12c[x1031] (all C) 4.51 R data [kt 1yr 1] (1.14±0.21) 103 (403.69±64.97) 103 (102.20±1.46) 103 other expected backgrounds not shown - 1 year exposure ktons fiducial volume (50%) - detector resolution of 5%/ (E[MeV]). -11C background signal is obtained from KamLAND data extrapolation

16 pep neutrinos, 11C 11C decays are the major background in pep energy window Since they are produced by cosmic muons, the deeper the experiment the better the background KamLAND Borexino Eμ [GeV] n12c[x1031] (all C) 4.51 R data [kt 1yr 1] (1.14±0.21) 103 (403.69±64.97) 103 (102.20±1.46) 103 other expected backgrounds not shown Borexino - 1 year exposure 100 tons fiducial volume detector resolution of 5%/ (E[MeV]). data from arxiv: v1

17 pep neutrinos, Impact on osc. parameters E range: MeV, 50% FV Determine the survival probability according to the current solar best fit point: tan²θ12 := Δm21² := 6.02 x 10-5 ev² sin²θ13 := 0.01 Adding 1 resp. 2 years of data to the other solar experiments (excl. latest Borexino) Significant improvement on sin²θ13

18 CNO neutrinos Improved models (2005) suggest 30% lower metallicity broken the previous excellent agreement between solar model calculations and helioseismology Astrophysical puzzle: Are elements homogeneously distributed in the Sun? CNO neutrinos can measure the metalicity of the core. BPS08 solar model: Peña-Garay and Serenelli arxiv:

19 Geo neutrinos Anti-neutrinos from U-238, Th-232 and K-40 on Earth o 20% from mantle at o Check models of Earth heat production detection: anti-ve + p e+ + n Measured geo-neutrino flux: KamLAND2008 (25±9) ev/kt yr 1.6 Borexino ( ) ev/0.1kt yr Expected geo-neutrino flux : 29 ev/0.78kt(lab) yr - 21ev/0.78kT(LAB) yr from reactor KamLAND: 32ev/1kT(CH2) yr 218ev/1kT(CH2) yr from reactor Borexino: 3ev/0.1kT(C9H12) yr 1.5 ev/0.1kt(c9h12) yr from reactor S. Enomoto XIII International Workshop on Neutrino Telescopes, Venice, March MULTI SITE MEASUREMENT

20 Reactor neutrinos Bruce Detection rate including oscillation Pickering Darlington

21 Reactor neutrinos Flux is 5 times less than KamLAND BUT reactor spectrum, including oscillations, have sharp peaks and minima, that increase the parameter-fitting sensitivity for Δm212 Bruce Pickering Darlington

22 Current Status By the end of the year (2011) Detector upgrade Cavity work, cleaning, PMT repairs Install hold-down rope system Install new calibration hardware Electronic update Next year(2012) Detector upgrade Install purification systems Commissioning Water fill and run Start scintillator fill 2013 Physics/Commissioning Start liquid scintillator phase

23 Summary is the follow up of the SNO experiment replacing the heavy water by liquid scintillator Liquid scintillator has a higher light yield than heavy water and allows to investigate the low energy region (E < 3.5MeV) Two phases of the experiment with different physical goals are planned: A liquid scintillator phase for the search of low energy solar neutrinos (pep, CNO) A Nd loaded phase for the search of neutrinoless double beta decay Other exciting physical goals are reactor oscillation confirmation, geo-neutrinos in a geologically-interesting location, supernova neutrino watch,... The main upgrades to the detector will be completed by the end of the year will start operation with water fill in the second half of 2012

24 BACKUP SLIDES

25 Location

26 SNOLAB: existing SNO facility Over 53,000 sq.ft. of climate-controlled class-2000 cleanroom laboratory space Scintillator purification Water plant Rail-car unloading terminal Storage tanks control room detector

27 SNOLAB: existing SNO facility Over 53,000 sq.ft. of climate-controlled class-2000 cleanroom laboratory space Scintillator purification Water plant Rail-car unloading terminal Storage tanks control room detector

28 SNOlab Inside SNOlab Outside SNOlab

29 Liquid scintillator LAB Purification strategies: Multi-stage distillation Initial LAB cleanup for high radio-purity and optical clarity Dual-stream PPO distillation for scintillator recirculation Pre-purification of PPO concentrated solution Steam/N2 stripping under vacuum Water extraction (liquid-liquid extraction) Effective for ionic metals (K, Pb, Ra) and limited efficiency for Th and Po Stable for PPO-LAB solutions Functional metal scavengers (R&D) High-flow columns effective for Pb, Bi and Ra

Solar Neutrinos in Large Liquid Scintillator Detectors

Solar Neutrinos in Large Liquid Scintillator Detectors Solar Neutrinos in Large Liquid Scintillator Detectors M. Chen Queen s University DOANOW March 24, 2007 Low Energy Solar Neutrinos complete our understanding of neutrinos from the Sun pep, CNO, 7 Be, pp

More information

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration NOW 2014, Otranto, Lecce, Italy September 7-14, 2014 Intro Neutrino physics with the SNO+ detector 2 Intro What we know:! Neutrinos

More information

Neutrinoless Double Beta Decay Search with SNO+

Neutrinoless Double Beta Decay Search with SNO+ Neutrinoless Double Beta Decay Search with SNO+ Kalpana Singh for the SNO+ Collaboration University of Alberta 8th Nov. 2016 1 Location 8th Nov. 2016 2 Location, 5890 mwe 8th Nov. 2016 3 63 muons/ day

More information

Neutrinoless double beta decay with SNO+

Neutrinoless double beta decay with SNO+ Neutrinoless double beta decay with SNO+ - 0!"" with SNO+ - Backgrounds - Schedule Freija Descamps for the SNO+ collaboration 1 SNO+ detector 6000 m.w.e Deck with DAQ SNO+ operator ~780T LAB liquid organic

More information

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff Solar Neutrinos: Status and Prospects Marianne Göger-Neff NIC 2014, Debrecen TU München Solar Neutrinos Objective of the first solar neutrino experiment: to see into the interior of a star and thus verify

More information

SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY

SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY SNO+ ARTFEST, MAY 2014, KINGSTON DR. CHRISTINE KRAUS, LAURENTIAN UNIVERSITY SNO+ IS LOCATED AT SNOLAB 300 km Canada Ontario Sudbury Creighton mine use existing SNO cavity 2 km or 6000 m.w.e. Artfest 2014,

More information

Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory

Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory Solar Neutrinos with Borexino Low Background Lessons for the JinPing Laboratory Frank Calaprice and Jingke Xu Department of Physics Princeton University 4/10/2014 Solar Neutrinos at Jin Ping 1 Solar Neutrinos

More information

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration

Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration Moscow, 15/10/2005 Aldo Ianni, INFN LNGS 1 Outline Borexino: Italian-Russian cooperation

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50 International Meeting for Large Neutrino Infrastructures Ecole Architecture Paris Val de Seine, APPEC, 23-24 June, 2014 Soo-Bong

More information

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015 Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015 Signals in Borexino Solar n Anti-n from the Earth (see A. Ianni talk) Anti-n (or n) from a radioactive source (SOX,

More information

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration

192 days of Borexino. Neutrino 2008 Christchurch, New Zeland May 26, Cristiano Galbiati on behalf of Borexino Collaboration 192 days of Borexino Neutrino 2008 Christchurch, New Zeland May 26, 2008 Cristiano Galbiati on behalf of Borexino Collaboration 2 Solar Neutrinos Spectrum 3 Solar Neutrinos Spectrum SNO, SuperK 3 Solar

More information

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso 1 RADIOCHEMICAL Integrated in energy and time CHERENKOV Less than 0.01% of the solar neutrino flux is been measured in

More information

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS

BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS BOREXINO: A MULTI-PURPOSE DETECTOR FOR THE STUDY OF SOLAR AND TERRESTRIAL NEUTRINOS Alex Wright Princeton University University of Chicago HEP Seminar May 10 th, 2010 Solar Neutrino Production p-p Solar

More information

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Review of Solar Neutrinos Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory Solar Neutrinos pp chain: 4p + 2e 4 He + 2ν e + 26.7

More information

Leaching Studies for the SNO+ Experiment

Leaching Studies for the SNO+ Experiment Leaching Studies for the SNO+ Experiment Pouya Khaghani Laurentian University SNOLAB Users Meeting Symposium September 2 nd 2016 1 SNO+ Physics SNOLAB, Creighton Mine (2070m 6000 m. w. e) Linear Alkyl

More information

Andrey Formozov The University of Milan INFN Milan

Andrey Formozov The University of Milan INFN Milan T h e i nv e s t i g a t i o n of l i q u i d s c i n t i l l a t o r p ro p e r t i e s, e n e r g y a n d s p a t i a l re s o l u t i o n fo r JUNO re a c t o r n e u t r i n o e x p e r i m e n t Andrey

More information

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington USING NEUTRINOS TO STUDY THE EARTH Nikolai Tolich University of Washington Outline Introduction Recent results The future Structure of the Earth Seismic data splits Earth into 5 basic regions: inner core,

More information

Present and future of SNO: SNO, SNO+ and SNOLAB. Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006

Present and future of SNO: SNO, SNO+ and SNOLAB. Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006 Present and future of SNO: SNO, SNO+ and SNOLAB Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006 Sudbury Neutrino Observatory 1000 tonnes D 2 O Support Structure for

More information

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Results from Borexino on solar (and geo-neutrinos) Gemma Testera Results from Borexino on solar (and geo-neutrinos) Gemma Testera Istituto Nazionale di Fisica Nucleare (Genova) On behalf of the Borexino collaboration Scintillator: 270 t PC+PPO (1.5 g/l) in a 150 mm

More information

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico Results on geoneutrinos at Borexino experiment Heavy Quarks and Leptons 2018 - Yamagata Davide Basilico Outline 1. Geoneutrinos 2. Borexino 3. Analysis and results 2 What are geoneutrinos? Distribution

More information

Neutrino detectors. V. Lozza,

Neutrino detectors. V. Lozza, Neutrino detectors, 5.10.2011 Outline - Introduction to neutrinos Sources of neutrinos Detection techniques Why we need to go underground? Background components What to do? Summary A brief of history 1914:

More information

KamLAND. Studying Neutrinos from Reactor

KamLAND. Studying Neutrinos from Reactor KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KEK : High Energy Accelerator Research Organization KamLAND Collaboration Outline 1. KamLAND Overview 2. Reactor Neutrinos 3. e Detection in Liquid

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

Neutrinos from the Sun and other sources: Results from the Borexino experiment

Neutrinos from the Sun and other sources: Results from the Borexino experiment Neutrinos from the Sun and other sources: Results from the Borexino experiment Marianne Göger-Neff 23.05.2014 Neutrinos from the Sun and other sources: Results from the Borexino experiment Motivation:

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

Synthesis and Characterization of Organic Tellurium Compounds for SNO+ Liquid Scintillator

Synthesis and Characterization of Organic Tellurium Compounds for SNO+ Liquid Scintillator Synthesis and Characterization of Organic Tellurium Compounds for SNO+ Liquid Scintillator Lianpeng Tian Queen s University For SNO+ Collaboration LSC2017 Conference Large multi-purpose liquid scintillator

More information

Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities

Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities Solar Neutrinos with Borexino at LNGS Current Results/Future Opportunities Frank Calaprice Princeton University 10/15/13 U.S. - Italy Celebration, Princeton 1 Borexino Collaboration A 20 + year successful

More information

The GERmanium Detector Array

The GERmanium Detector Array The GERmanium Detector Array n n ν=v p e - e - p Outline: Exp. issues of 0νββ-decay of 76 Ge Concept of GERDA Status of the experiment Summary and conclusions Kevin Kröninger (Max-Planck-Institut für Physik,

More information

Li in a WbLS Detector

Li in a WbLS Detector 7 Li in a WbLS Detector Gabriel D. Orebi Gann JinPing Solar Workshop, LBNL June 10th, 2014 U. C. Berkeley & LBNL Probing the Transition Region: why we need 8 B Largest affect on shape of survival probability

More information

Water Purification in Borexino

Water Purification in Borexino Water Purification in Borexino Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare - Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/ On

More information

Search for Sterile Neutrinos with the Borexino Detector

Search for Sterile Neutrinos with the Borexino Detector Search for Sterile Neutrinos with the Borexino Detector PANIC 2014 Hamburg on behalf of the BOREXINO Collaboration Institut für Experimentalphysik (Universität Hamburg) Borexino Detector Site 1400 m of

More information

The LENA Neutrino Observatory

The LENA Neutrino Observatory The LENA Neutrino Observatory for the LENA Collaboration 1 Consortium of European science institutions and industry partners Design studies funded by the European Community (FP7) LAGUNA: detector site,

More information

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011

Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 Aldo Ianni, LNGS for the Borexinocollaboration Sept. 29th, 2011 First Borexino proposal: 1991 Main goal: real time measurement of sub-mev solar neutrinos Why? To solve the Solar Neutrino Puzzle (missingsolarneutrinos)

More information

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017

The SOX experiment. Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017 The SOX experiment Stefano Davini (on behalf of the Borexino-SOX collaboration) Brussels, December 1 st 2017 Beyond the Standard model with Neutrinos Neutrino masses call for physics beyond Standard model

More information

Daya Bay and joint reactor neutrino analysis

Daya Bay and joint reactor neutrino analysis Daya Bay and joint reactor neutrino analysis Logan Lebanowski (Tsinghua University) on behalf of the Daya Bay collaboration 2016/11/4 - NNN16, Beijing 1 Contents Daya Bay Reactor Neutrino Experiment Introduction

More information

Scintillator Detectors for Neutrino Physics

Scintillator Detectors for Neutrino Physics Scintillator Detectors for Neutrino Physics Minfang Yeh Neutrino and Nuclear Chemistry, BNL Jinping Workshop, Tsinghua, June 5, 2015 BNL-Liquid Scintillator Development Facility A unique facility (since

More information

0νββ Physics in WbLS. Andy Mastbaum University of Pennsylvania. WbLS Workshop LBNL 17 May 2014

0νββ Physics in WbLS. Andy Mastbaum University of Pennsylvania. WbLS Workshop LBNL 17 May 2014 0νββ Physics in WbLS Andy Mastbaum University of Pennsylvania WbLS Workshop LBNL 17 May 2014 Requirements Future detectors must: Reach a sensitivity of 15 mev at the 3σ CL after years of running, according

More information

Outline. (1) Physics motivations. (2) Project status

Outline. (1) Physics motivations. (2) Project status Yu-Feng Li Institute of High Energy Physics, Beijing On behalf of the JUNO collaboration 2014-10-10, Hsinchu/Fo-Guang-Shan 2nd International Workshop on Particle Physics and Cosmology after Higgs and Planck

More information

Results from Borexino 26th Rencontres de Blois

Results from Borexino 26th Rencontres de Blois Results from Borexino 26th Rencontres de Blois - 2014 Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 20133 Milano (Italy) marco.giammarchi@mi.infn.it http://pcgiammarchi.mi.infn.it/giammarchi/

More information

Metallicities in stars - what solar neutrinos can do

Metallicities in stars - what solar neutrinos can do - what solar neutrinos can do Institute for Nuclear and Particle Physics, Technical University Dresden, 01069 Dresden, Germany E-mail: zuber@physik.tu-dresden.de New elemental abundance determinations

More information

Proton decay and neutrino astrophysics with the future LENA detector

Proton decay and neutrino astrophysics with the future LENA detector Proton decay and neutrino astrophysics with the future LENA detector Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München Paris, 11.09.08 Outline

More information

Status of Solar Neutrino Oscillations

Status of Solar Neutrino Oscillations Status of Solar Neutrino Oscillations With many thanks to Dave Wark - RAL/ University of Sussex and Stephen Brice - Fermilab The Solar Neutrino Problem Next three plots adapted from http://www.sns.ias.edu/~jnb/

More information

Solar and atmospheric ν s

Solar and atmospheric ν s Solar and atmospheric ν s Masato SHIOZAWA Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI),

More information

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan Gianfranca De Rosa Univ. Federico II and INFN Naples On behalf of Hyper-Kamiokande Collaboration Hyper-Kamiokande:

More information

Solar Neutrino Oscillations

Solar Neutrino Oscillations Solar Neutrino Oscillations ( m 2, θ 12 ) Background (aka where we were): Radiochemical experiments Kamiokande and Super-K Where we are: Recent results SNO and KamLAND Global picture Where we are going:

More information

SNO+ and Geoneutrino Physics

SNO+ and Geoneutrino Physics SNO+ and Geoneutrino Physics by Chunlin Lan A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity with the requirements for the degree of Master of Science Queen

More information

KamLAND. Introduction Data Analysis First Results Implications Future

KamLAND. Introduction Data Analysis First Results Implications Future KamLAND Introduction Data Analysis First Results Implications Future Bruce Berger 1 Tohoku University, Sendai, Japan University of Alabama University of California at Berkeley/LBNL California Institute

More information

Neutrino oscillation experiments: Recent results and implications

Neutrino oscillation experiments: Recent results and implications Title transparency Neutrino oscillation experiments: Recent results and implications W. Hampel MPI Kernphysik Heidelberg Motivation for talk On the way from the Standard Model to String Theory: appropriate

More information

Chart of Elementary Particles

Chart of Elementary Particles Chart of Elementary Particles Chart of Elementary Particles Better Chart! Better Chart! As of today: Oscillation of 3 massive active neutrinos is clearly the dominant effect: If neutrinos have mass: For

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Results from DEAP-1 and Status of DEAP-3600 Pierre Gorel for the DEAP collaboration University of Alberta Dark matter Experiment

More information

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos 14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin The Solar Neutrinos 14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009

More information

The Double Chooz reactor neutrino experiment

The Double Chooz reactor neutrino experiment The Double Chooz reactor neutrino experiment Christian Buck, MPIK Heidelberg MPIK July, 30th 2009 Overview Motivation Double Chooz concept and design Status of experiment MPIK activities Summary Neutrino

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

1. Neutrino Oscillations

1. Neutrino Oscillations Neutrino oscillations and masses 1. Neutrino oscillations 2. Atmospheric neutrinos 3. Solar neutrinos, MSW effect 4. Reactor neutrinos 5. Accelerator neutrinos 6. Neutrino masses, double beta decay 1.

More information

Past, Present, and Future of Solar Neutrino Physics

Past, Present, and Future of Solar Neutrino Physics Past, Present, and Future of Solar Neutrino Physics A.B. Balantekin University of Wisconsin SMU ebubble Workshop January 22, 2008 ...to see into the interior of a star and thus verify directly the hypothesis

More information

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 MINOS Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15 2 Overview and Current Status Beam Detectors Analyses Neutrino Charged Current

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino

Muons in Borexino. SFB Block Meeting. Daniel Bick Universität Hamburg. D. Bick (Uni HH) Muons in Borexino Muons in Borexino SFB Block Meeting Daniel Bick Universität Hamburg 24.03.2010 D. Bick (Uni HH) Muons in Borexino 24.03.2010 1 / 30 Overview 1 Motivation Physics at Borexino Neutrino Detection in Liquid

More information

Neutrino Oscillation: Non-Accelerator Experiments

Neutrino Oscillation: Non-Accelerator Experiments Neutrino Oscillation: Non-Accelerator Experiments Yifang Wang 1 Institute of High Energy Physics Yu-Quan Road 19B, Beijing, 100049, P.R. China E-mail: yfwang@ihep.ac.cn In recent years, major advances

More information

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM Solar Neutrinos & MSW Effect Pouya Bakhti General Seminar Course Nov. 2012 - IPM Outline Introduction Neutrino Oscillation Solar Neutrinos Solar Neutrino Experiments Conclusions Summary Introduction Introduction

More information

Super-Kamiokande ~The Status of n Oscillation ~

Super-Kamiokande ~The Status of n Oscillation ~ May 26, 2006 Vulcano Workshop 2006 Super-Kamiokande ~The Status of n Oscillation ~ Yoshihisa OBAYASHI (ICRR, Univ. of Tokyo) for Super-Kamiokande Collaboration May 26, 2006 Y.Obayashi @ Vulcano 2006 1

More information

Neutrino Physics: Lecture 1

Neutrino Physics: Lecture 1 Neutrino Physics: Lecture 1 Overview: discoveries, current status, future Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research Feb 1, 2010 Plan of the course Omnipresent

More information

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology 1 The neutrino is neutral. The neutrino only interacts weakly. The neutrino has a small non-zero

More information

Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds

Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds Low Energy 8 B Solar Neutrinos in SNO+: Controlling and Constraining Radon Backgrounds by Maryam Seddighin A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

Neutrino Masses and Mixing

Neutrino Masses and Mixing Neutrino Masses and Mixing < Why so different??? (Harrison, Perkins, Scott 1999) The Mass Puzzle Seesaw mechanism L R m m D m 2 D M m D M m D L R M Heavy Majorana Neutrino Connection with high mass scales

More information

Daya Bay Neutrino Experiment

Daya Bay Neutrino Experiment Daya Bay Neutrino Experiment Jun Cao Institute of High Energy Physics, Beijing 3rd International Conference on Flavor Physics, Oct. 3-8, 2005 National Central University Chung-li, Taiwan Neutrino Oscillation

More information

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory Introduction Highlights of SNO Results NCD Phase Update Future Analysis Plan Keith Rielage on behalf

More information

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010 Neutrinos: Yesterday, Today and Tomorrow August 13, 2010 1 My Marching Orders 2 My Marching Orders...the summary talk should be visionary, rather than a dedicated summary of the SSI program. 2 My Marching

More information

( Some of the ) Lateset results from Super-Kamiokande

( Some of the ) Lateset results from Super-Kamiokande 1 ( Some of the ) Lateset results from Super-Kamiokande Yoshinari Hayato ( Kamioka, ICRR ) for the SK collaboration 1. About Super-Kamiokande 2. Solar neutrino studies in SK 3. Atmospheric neutrino studies

More information

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016 Low Background Experiments and Material Assay Tessa Johnson NSSC Summer School July 2016 Outline How do we detect particles? Some interesting questions relating to particle physics How can particle detection

More information

Sterile Neutrinos with WbLS! detector. Jelena Maricic! University of Hawaii at Manoa! May 17, 2014

Sterile Neutrinos with WbLS! detector. Jelena Maricic! University of Hawaii at Manoa! May 17, 2014 Sterile Neutrinos with WbLS detector Jelena Maricic University of Hawaii at Manoa May 17, 2014 Outline Physics motivation for the very short baseline neutrino oscillations search Concept of the antineutrino

More information

The Daya Bay Reactor Neutrino Experiment

The Daya Bay Reactor Neutrino Experiment The Daya Bay Reactor Neutrino Experiment Ming-chung Chu The Chinese University of Hong Kong, Hong Kong On behalf of the Daya Bay Collaboration Partial support: CUHK VC Discretionary Fund, RGC CUHK3/CRF/10R

More information

Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+

Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+ Purification of Liquid Scintillator and Monte Carlo Simulations of Relevant Internal Backgrounds in SNO+ by Sarah Elizabeth Quirk A thesis submitted to the Department of Physics, Engineering Physics and

More information

Low Energy Neutrino Astronomy and Results from BOREXINO

Low Energy Neutrino Astronomy and Results from BOREXINO Low Energy Neutrino Astronomy and Results from BOREXINO DESY Hamburg / DESY Zeuthen March 25 th and 26th Lothar Oberauer, Physikdepartment E15, TU München Charge 0-1 +2/3-1/3 Neutrinos as probes? Neutrinos

More information

Detection of MeV scale neutrinos and the solar energy paradigm

Detection of MeV scale neutrinos and the solar energy paradigm Journal of Physics: Conference Series PAPER OPEN ACCESS Detection of MeV scale neutrinos and the solar energy paradigm To cite this article: Aldo Ianni 2018 J. Phys.: Conf. Ser. 940 012023 View the article

More information

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration

Recent results from Borexino. Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration Recent results from Borexino Sandra Zavatarelli, INFN Genoa (Italy) on behalf of the Borexino Collaboration Borexino physics! Data-taking since May 2007 : many relevant results on solar/geo ν physics and

More information

Daya Bay Neutrino Experiment NUFACT05. Jun Cao. Institute of High Energy Physics, Beijing

Daya Bay Neutrino Experiment NUFACT05. Jun Cao. Institute of High Energy Physics, Beijing Daya Bay Neutrino Experiment Jun Cao Institute of High Energy Physics, Beijing NUFACT05 7th International Workshop on Neutrino Factories and Superbeams Laboratori Nazionali di Frascati, Frascati (Rome)

More information

FIRST RESULT FROM KamLAND-Zen Double Beta Decay with 136 Xe

FIRST RESULT FROM KamLAND-Zen Double Beta Decay with 136 Xe FIRST RESULT FROM KamLAND-Zen Double Beta Decay with Xe A. GANDO for the KamLAND-Zen Collaboration Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan We present the first result

More information

Astroparticle physics

Astroparticle physics Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 B. Lecture Contents Astroparticle physics: topics and tentative schedule high-energy

More information

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v Background rejection techniques in Germanium 0νββ-decay experiments n p ν=v n eep II. Physikalisches Institut Universität Göttingen Institutsseminar des Inst. für Kern- und Teilchenphysik, Outline Neutrinos

More information

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect Observation of Reactor Electron Antineutrino Disappearance & Future Prospect Soo-Bong Kim (KNRC, Seoul National University) at Kyungpook National Univ., November 1, 01 Birth of Neutrino Physics in trouble

More information

Search for double electron capture on 124 Xe with the XMASS-I detector

Search for double electron capture on 124 Xe with the XMASS-I detector Search for double electron capture on 124 Xe with the XMASS-I detector KATSUKI HIRAIDE (ICRR, THE UNIVERSITY OF TOKYO) SEPTEMBER 7 TH, 2015 TAUP2015 1 124 Xe 2n double electron capture Natural xenon contains

More information

The Double Chooz Project

The Double Chooz Project The Double Chooz Project Progress and Expected Sensitivity David McKee, KSU 13 17 July 2009 TeVPA @ SLAC Outline I. Neutrino mixing and θ 13 II. Existing θ 13 measurements III. This is hard with a single

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Supervisor: Kai Schweda 5/18/2009 Johannes Stiller 1 Outline The Standard (Solar) Model Detecting Neutrinos The Solar Neutrino Problem Neutrino Oscillations Neutrino Interactions

More information

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory Measuring sin 2 2θ 13 with Reactor Antineutrinos at Daya Bay An Underground Laboratory for a Multi-Detector Experiment Karsten Heeger Lawrence Berkeley National Laboratory On behalf of the Daya Bay collaboration

More information

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos Stefania Ricciardi HEP PostGraduate Lectures 2016 University of London 1 Neutrino Sources Artificial: nuclear reactors

More information

Neutrino oscillation physics potential of Hyper-Kamiokande

Neutrino oscillation physics potential of Hyper-Kamiokande Neutrino oscillation physics potential of Hyper-Kamiokande on behalf of the Hyper-Kamiokande Collaboration Queen Mary University of London E-mail: l.cremonesi@qmul.ac.uk Hyper-Kamiokande (Hyper-K) is a

More information

Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration

Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration Precision Measurement of the Low Energy Solar Neutrino Spectrum with the LENS Experiment Mark Pitt * Virginia Tech for the LENS Collaboration 2009 Meeting of the Division of Particles and Fields of the

More information

A multipurpose detector for low energy

A multipurpose detector for low energy A multipurpose detector for low energy neutrino physics: Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München DPG Teilchenphysik Heidelberg, 09.03.07

More information

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing 章飞虹 ZHANG FeiHong zhangfh@ihep.ac.cn Ph.D. student from Institute of High Energy Physics, Beijing INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS 2012 Erice, 23 June 2 July 2012 1 Before Hunting Introduction

More information

Gadolinium Doped Water Cherenkov Detectors

Gadolinium Doped Water Cherenkov Detectors Gadolinium Doped Water Cherenkov Detectors David Hadley University of Warwick NuInt-UK Workshop 20th July 2015 Water Cherenkov Detector Super-Kamiokande 22.5 kt fiducial mass 2 Physics with Large Scale

More information

arxiv: v1 [hep-ex] 22 Nov 2012

arxiv: v1 [hep-ex] 22 Nov 2012 PRAMANA journal of physics Indian Academy of Sciences Low Energy Neutrino Measurements arxiv:1211.5359v1 [hep-ex] 22 Nov 2012 DAVIDE D ANGELO a, a Università degli Studi di Milano e I.N.F.N. sez. di Milano

More information

arxiv:hep-ex/ v1 15 Aug 2006

arxiv:hep-ex/ v1 15 Aug 2006 The Double Chooz Experiment 1 Daniel M. Kaplan (for the Double Chooz Collaboration) Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois, USA arxiv:hep-ex/0608040v1 15 Aug 2006

More information

Jelena Maricic Drexel University. For Double Chooz Collaboration. Spain. France. Germany U.S.A. Japan Russia. Brazil U.K. Courtesy of T.

Jelena Maricic Drexel University. For Double Chooz Collaboration. Spain. France. Germany U.S.A. Japan Russia. Brazil U.K. Courtesy of T. Jelena Maricic Drexel University For Double Chooz Collaboration France Spain Germany U.S.A Japan Russia Brazil U.K. http://doublechooz.in2p3.fr/ J. Maricic, Drexel U 1 Courtesy of T. Lasserre ν e ν μ ν

More information

Neutrinoless Double Beta Decay for Particle Physicists

Neutrinoless Double Beta Decay for Particle Physicists Neutrinoless Double Beta Decay for Particle Physicists GK PhD Presentation Björn Lehnert Institut für Kern- und Teilchenphysik Berlin, 04/10/2011 About this talk Double beta decay: Particle physics implications

More information