Calibration of Single Phase Liquid Argon Detectors

Size: px
Start display at page:

Download "Calibration of Single Phase Liquid Argon Detectors"

Transcription

1 Calibration of Single Phase Liquid Argon Detectors Kimberly J. Palladino MIT MiniCLEAN Collaboration 1

2 Outline Single Phase Liquid Argon technique Calibration Goals Internal calibration sources External gamma sources External neutron sources Optical calibration 2

3 Single Phase Liquid Argon Scintillation in LAr at 128 nm, requires wavelength shifter, TPB, to allow PMT detection Pulse shape discrimination (PSD) based on triplet lifetime of 1.6 us and singlet lifetime of 6 ns Fprompt, PSD variable, low (~0.3) for electronic recoils, and high (~0.8) for nuclear recoils Position reconstruction based on charge distribution and timing in larger detectors 3

4 Calibration goals Single PE Energy Scale Energy Resolution Position Recon. PSD Surface Events 39 Ar/PSD Leakage Neutrons Internal Sources Gamma Sources Neutron Sources Light Injection Electronic recoils Nuclear recoils 4

5 39 Ar Naturally occurring 39 Ar in atmospheric argon with activity of 1 Bq/kg First forbidden beta decay with analytically defined spectral shape Spectrum known to 1% down to 10 kev Endpoint at 565 kev Half-life of 269 years Uniform distribution in detector Continuous calibration 5

6 39 Ar: Energy Scale Triplet tail from 39 Ar allows constant monitoring of the single photoelectron spectrum and every individual PMT s gain Continuous detector health, including triplet lifetime MiniCLEAN will see ~800 khz of 39 Ar Light-yield measured in going from PE to kevee 1 day gives a statistical LY measurement to better than 1% 6

7 39 Ar: Position Reconstruction Uniformity gives r 2 relation in differential rates Allows daily studies of radial bias and position reconstruction Large datasets outside WIMP ROI Energy dependent studies 7

8 39 Ar: Pulse Shape Discrimination Probe of the electronic recoil rejecting pulse shape discrimination variable (F prompt ) with all events outside the fiducial volume But surface alpha and neutron events will have to be taken into account MiniCLEAN planning an 39 Ar Spike, 5-10x natural abundance after Dark Matter run to demonstrate PSD in larger detectors and investigate potential backgrounds UV ablated NM Geochronology Research Laboratory Fast reactor irradiation of KF/KCl utilizing 39 K(n,p) 39 Ar as is done in radiometric dating 8

9 83 Kr m 83 Rb (trapped in charcoal) decays with a half-life of 86.2 days to 83 Kr m 75% of the time, which, as a Noble gas flows into the detector 83 Kr m energy spectrum after background subtraction in MicroCLEAN 83 Kr m subsequently emits two conversion electrons with a total energy of 41.5 kev and a half-life of 1.83 hours Calibrates energy as a function of position -> no sign of freeze out in MicroCLEAN Lippincott et al. Phys.Rev.C81: arxiv: Planned calibration for KATRIN arxiv.org: v1 and also studied for LXe detectors Kastens et al. JINST 5(2010) P05006 and Manalaysay et al. Rev. Sci.Instrum 81 (2010)

10 External Gamma Sources DEAP-3600 Additional energy and position calibration, especially for high radius events Tagged sources allow reduction of the 39 Ar background during calibration DEAP-3600 can study neck region events MiniCLEAN Isotopes 22 Na: e + and MeV γ used by both MicroCLEAN and DEAP-1, MiniCLEAN tagged source 60 Co: 1.17 and 1.33 MeV γ DEAP-3600 tagged source Also considered: 137 Cs: 662 kev γ 57 Co: 122, 136, 692 kev γ 10

11 Neutrons: D-D generator Nuclear recoil PSD and energy calibration, test neutron tagging and verify simulation physics Primary calibration through dd-interaction Using Schlumberger MiniTron allowing pulsed and DC mode operation At 40kV, the neutron yield is 10 3 n/uc resulting in 10 5 n/s at 50 uc 11

12 D-D Neutron Simulations MiniCLEAN studies show 1.1% of generated neutrons in fiducial volume and energy ROI, lower for larger, acrylic shielded DEAP-3600 J. Walding kevee, r<295 mm kevee, r>295 mm Liskien & Paulsen (1973) 12

13 D-D System Power supplies and control electronics operating since 2010 Moving from prototype canister (shown) to final canister Deployment system under construction at RHUL. Moveable with size of 1.0m x 0.8m x 2.8m 13

14 Neutrons: Hot PMT MiniCLEAN pursuing a Hot PMT calibration source to reproduce most dangerous neutron background Will mix 5.3 g of 238 U and 16g of 232 Th in melted PMT glass to produce 1 n/s M. Akashi-Ronquest Tagged source with scintillator to see alpha, n de-excitation gammas Currently prototyping with 2 lbs of uranium borosilicate with 16 g (1.8%) 238 U pre WW-II with more daughters, but expected rate of 3 n/s 14

15 Optical Calibration: DEAP-3600 Optics before and after TPB deposition LEDball in diffuser, lowered through neck: 425 nm before TPB deposition, 250 nm after Optics stability, timing Distributed light by fibers to PMTs,light will reflect into the detector Light leakage from neck: laser light injection 15

16 Optical Calibration: MiniCLEAN Probe visible and UV optics, and surface event position reconstruction 6 UV (254 nm) and 6 Blue (465 nm) LEDs, in the LAr with fibers running to face of pentagonal lightguides Kapustinsky pulser allows fast pulses as expected from prompt argon scintillation Kapustinsky trigger pulse 20 ns trigger pulse 16

17 Calibrators DEAP-3600 MiniCLEAN RHUL: dd-neutrons, LANL: 39Ar, gammas, Hot PMTs, 83Krm light injecton RAL: gammas, 83Krm MIT: dd-neutrons, 83Krm Sussex: light injection RHUL: dd-neutrons Queen s: 39Ar UNM: light injection SNOLab: 39Ar, gammas 17

18 Conclusion Both DEAP-3600 and MiniCLEAN have developed calibration plans with multiple handles on each experimental parameter 39Ar, though a background, is an excellent calibration source too! Both experiments will have exciting year s as they build, and calibrate, the detectors! 18

19 Collaborations 19

20 20

Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment

Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment Jocelyn Monroe, Royal Holloway University of London IPA2014 August 22, 2014 Outline 1. DEAP-3600 Detector 2. Experimental Technique

More information

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination

Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Search for Dark Matter with Liquid Argon and Pulse Shape Discrimination Results from DEAP-1 and Status of DEAP-3600 Pierre Gorel for the DEAP collaboration University of Alberta Dark matter Experiment

More information

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016 Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration Dark Matter 2016 UCLA 17th - 19th February 2016 The DarkSide program 2 Double Phase Liquid Argon TPC, a staged approach:

More information

Neutron Calibration System for the MiniCLEAN Experiment. Lu Feng for the MiniCLEAN collaboration APS April Meeting May 2, 2011

Neutron Calibration System for the MiniCLEAN Experiment. Lu Feng for the MiniCLEAN collaboration APS April Meeting May 2, 2011 Neutron Calibration System for the MiniCLEAN Experiment Lu Feng for the MiniCLEAN collaboration APS April Meeting May 2, 2011 The MiniCLEAN Experiment Mini Cryogenic Low Energy Astrophysics with Noble

More information

Oddities of light production in the noble elements. James Nikkel

Oddities of light production in the noble elements. James Nikkel Oddities of light production in the noble elements James Nikkel 1 2 What is a scintillator? Particle with Energy Photons Stuff 3 What is a scintillator? We would like: Nphotons = Y Eincoming With Y as

More information

Low Energy Neutron Verification in GEANT4: to 4.9.5

Low Energy Neutron Verification in GEANT4: to 4.9.5 Low Energy Neutron Verification in GEANT4: 4.9.3 to 4.9.5 Kimberly J. Palladino MiniCLEAN Collaboration Presenting the work of Katie Harrington, Peder Bruusgaard, Will Yashar What we've studied Neutron

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Direct dark matter search using liquid noble gases Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Physik Institut Universität Zürich Texas Symposium 2010, Heidelberg, 09.11.2010 Teresa Marrodán Undagoitia

More information

XMASS: a large single-phase liquid-xenon detector

XMASS: a large single-phase liquid-xenon detector XMASS: a large single-phase liquid-xenon detector Katsuki Hiraide, the university of Tokyo for the XMASS Collaboration October 3 rd, 2016 IPRD16@Siena, Italy 1 XMASS project XMASS: a multi purpose experiment

More information

Direct dark matter search using liquid noble gases

Direct dark matter search using liquid noble gases Universität Zürich E-mail: marrodan@physik.uzh.ch Liquid noble gases have proven a great potential as detector medium for dark matter searches. Particles interacting in these media produce ionized and

More information

The MiniCLEAN Dark Matter Experiment

The MiniCLEAN Dark Matter Experiment Proceedings of the DPF-2011 Conference, Providence, RI, August 8-13, 2011; arxiv:1110.1005v1 1 The MiniCLEAN Dark Matter Experiment A. Hime for the MiniCLEAN Collaboration Physics Division, MS H803, Los

More information

DarkSide-50: performance and results from the first atmospheric argon run

DarkSide-50: performance and results from the first atmospheric argon run DarkSide-50: performance and results from the first atmospheric argon run Yann Guardincerri on behalf of the DarkSide Collaboration August 27th, 2014 1 / 21 DarkSide Direct detection search for WIMP dark

More information

DarkSide new results and prospects

DarkSide new results and prospects DarkSide new results and prospects Stefano Davini - INFN Genova on behalf of the DarkSide collaboration La Thuile, March 20, 2018 The DarkSide WIMP-argon program at LNGS 2011 2012 2013 2014 2015 2016 2017

More information

Outline. Dark Matter Physics at SNOLAB: And Future Prospects. Overview of SNOLAB DarkMatter Program. Status of Current Experiments

Outline. Dark Matter Physics at SNOLAB: And Future Prospects. Overview of SNOLAB DarkMatter Program. Status of Current Experiments Outline Dark Matter Physics at SNOLAB: And Future Prospects Overview of SNOLAB DarkMatter Program Status of Current Experiments The G2 Down Select Process Crystal Ball Gazing where will we be in 2020?

More information

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University

PoS(EPS-HEP2017)074. Darkside Status and Prospects. Charles Jeff Martoff Temple University Temple University E-mail: cmartoff@gmail.com The DarkSide Dark Matter Search Program is a direct-detection search for dark matter using a Liquid Argon Time Projection Chamber. The detector is designed

More information

DEAP-3600 Dark Matter Search at SNOLAB

DEAP-3600 Dark Matter Search at SNOLAB DEAP-3600 Dark Matter Search at SNOLAB Marcin Kuźniak Queen's University, Kingston, Canada (for the DEAP collaboration) ICHEP 2014, 4 July 2014, Valencia DEAP-3600 Collaboration University of Alberta D.

More information

Liquefied noble gases as targets for light dark matter

Liquefied noble gases as targets for light dark matter Liquefied noble gases as targets for light dark matter Dan McKinsey Yale University Physics Department May 1, 2010 HEFTI Workshop on Light Dark Matter UC Davis The Noble Liquid Revolution Noble liquids

More information

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th,

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th, XENON100 Marc Schumann Physik Institut, Universität Zürich IDM 2010, Montpellier, July 26 th, 2010 www.physik.uzh.ch/groups/groupbaudis/xenon/ Why WIMP search with Xenon? efficient, fast scintillator (178nm)

More information

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DarkSide Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1 DARKSIDE MAIN FEATURES Dark Matter direct detection WIMP induced nuclear recoils Double

More information

DEAP & CLEAN Detectors for the Direct Detection of Dark Matter

DEAP & CLEAN Detectors for the Direct Detection of Dark Matter DEAP & CLEAN Detectors for the Direct Detection of Dark Matter Andrew Hime Physics Division, MS H803, Los Alamos National Laboratory Los Alamos, NM 87545, USA ahime@lanl.gov INPAC Meeting Berkeley, CA,

More information

Hands on DarkSide-50: Low Energy Calibration

Hands on DarkSide-50: Low Energy Calibration Hands on DarkSide-50: Low Energy Calibration Kyungwon Kim Seoul National University IBS Center for Underground Physics E-mail: kwkim@hep1.snu.ac.kr University of North Carolina Chapel Hill Triangle Universities

More information

Low Energy Particles in Noble Liquids

Low Energy Particles in Noble Liquids Low Energy Particles in Noble Liquids Antonio J. Melgarejo Fernandez Columbia University Invisibles School, July 14th 2013, Durham Explaining the title I Noble gases are a group of elements found at the

More information

arxiv: v1 [physics.ins-det] 31 Oct 2015 Alden Fan 1

arxiv: v1 [physics.ins-det] 31 Oct 2015 Alden Fan 1 DPF2015-240 November 4, 2015 Status and Results from DarkSide-50 arxiv:1511.00676v1 [physics.ins-det] 31 Oct 2015 Alden Fan 1 Physics and Astronomy Department University of California, Los Angeles, CA

More information

Direct Dark Matter searches with DEAP. Simon JM Peeters

Direct Dark Matter searches with DEAP. Simon JM Peeters Direct Dark Matter searches with DEAP Simon JM Peeters Outline The case for Dark Matter Direct Dark Matter detection Current experiments DEAP-3600 Overview & future experiment (DEAP/CLEAN) 2 The case for

More information

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London

TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON. Henrique Araújo Imperial College London TWO-PHASE DETECTORS USING THE NOBLE LIQUID XENON Henrique Araújo Imperial College London Oxford University 18 th October 2016 OUTLINE Two-phase xenon for (dark) radiation detection Instrumenting a liquid

More information

Early commissioning calibration data sets for DEAP-3600

Early commissioning calibration data sets for DEAP-3600 Journal of Physics: Conference Series PAPER OPEN ACCESS Early commissioning calibration data sets for DEAP-36 To cite this article: Berta Beltrán and DEAP Collaboration 216 J. Phys.: Conf. Ser. 718 424

More information

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University Light Dark Matter and XENON100 For the XENON100 Collaboration Rafael F. Lang Columbia University rafael.lang@astro.columbia.edu The XENON Collaboration ~60 scientists from 12 institutions: University of

More information

Understanding the response of LXe to electronic and nuclear recoils at low energies

Understanding the response of LXe to electronic and nuclear recoils at low energies Understanding the response of LXe to electronic and nuclear recoils at low energies Christopher W. Geis Johannes-Gutenberg Universität Mainz 2015/01/09 geisch@uni-mainz.de http://xenon.uni-mainz.de 1 /

More information

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon

Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon Nuclear Recoil Scintillation and Ionization Yields in Liquid Xenon Dan McKinsey Yale University Physics Department February, 011 Indirect and Direct Detection of Dark Matter Aspen Center of Physics Energy

More information

Direct Dark Matter Search with Noble Liquids

Direct Dark Matter Search with Noble Liquids Direct Dark Matter Search with Noble Liquids Marc Schumann Physik Institut, Universität Zürich Recontres de Moriond 2012, Cosmology Session, La Thuile, March 2012 marc.schumann@physik.uzh.ch www.physik.uzh.ch/groups/groupbaudis/xenon/

More information

Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping Christopher G. Wahl, a,b Ethan P. Bernard, a W. Hugh Lippincott, a,c James A. Nikkel, a,d Yunchang Shin,

More information

The DarkSide-50 Outer Detectors

The DarkSide-50 Outer Detectors The DarkSide-50 Outer Detectors Shawn Westerdale Princeton University (for the DarkSide Collaboration) TAUP 2015 Torino Thursday, Sept 10, 2015 The DarkSide-50 Experiment Located in Hall C of Laboratori

More information

New Physics Results from DarkSide-50. Masayuki Wada Princeton University on behalf of the DarkSide-50 Collaboration Feb

New Physics Results from DarkSide-50. Masayuki Wada Princeton University on behalf of the DarkSide-50 Collaboration Feb New Physics Results from DarkSide5 Masayuki Wada Princeton University on behalf of the DarkSide5 Collaboration Feb. 8 Lake Louise Winter Institute 8 DETECTOR DARKSIDE 5 Radonfree (Rn levels < 5 mbq/m )

More information

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012 Background Characterization and Rejection in the LZ Detector David Malling Brown University IDM 2012 July 25, 2012 LZ Construction 2 Background Sources Ti cryostats 1500 kg

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

Direct detection: results from liquid noble-gas experiments

Direct detection: results from liquid noble-gas experiments Direct detection: results from liquid noble-gas experiments Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de DM@LHC Heidelberg, April 5th, 2018 Teresa Marrodán Undagoitia (MPIK) Liquid noble gases Heidelberg,

More information

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Measurement of 39 Ar in Underground Argon for Dark Matter Experiments Jingke Xu Princeton University June 7 th, 2013 1 Evidences for Dark Matter Rotation Curve Gravitational Lensing CMB Power Spectrum

More information

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO Lea Di Noto on behalf of the Borexino collaboration Vulcano Workshop 20 th -26 th May 2018 [cm -2 s -1 MeV -1 ] SOLAR NEUTRINOS Electrons neutrinos are produced

More information

Current status of LUX Dark Matter Experiment

Current status of LUX Dark Matter Experiment Current status of LUX Dark Matter Experiment by A. Lyashenko Yale University On behalf of LUX collaboration LUX Large Underground Xenon experiment LUX Collaboration: Yale, CWRU, UC Santa Barbara, Brown,

More information

DarkSide-20k and the future Liquid Argon Dark Matter program. Giuliana Fiorillo Università degli Studi di Napoli Federico II & INFN Napoli

DarkSide-20k and the future Liquid Argon Dark Matter program. Giuliana Fiorillo Università degli Studi di Napoli Federico II & INFN Napoli DarkSide-20k and the future Liquid Argon Dark Matter program Giuliana Fiorillo Università degli Studi di Napoli Federico II & INFN Napoli UCLA DM Conference Los Angeles February 23, 2018 The case for DarkSide-20k

More information

Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping Christopher G. Wahl, a,b Ethan P. Bernard, a W. Hugh Lippincott, a,c James A. Nikkel, a,d Yunchang Shin,

More information

Investigation and development of the suppression methods of the 42 K background in LArGe

Investigation and development of the suppression methods of the 42 K background in LArGe bb G E R D A Investigation and development of the suppression methods of the 42 K background in LArGe A.V. Lubashevskiy on behalf of GERDA collaboration, Max-Planck-Institut für Kernphysik, Heidelberg.

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

arxiv:astro-ph/ v1 15 Feb 2005

arxiv:astro-ph/ v1 15 Feb 2005 The XENON Dark Matter Experiment Elena Aprile (on behalf of the XENON collaboration) Physics Department and Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027 age@astro.columbia.edu

More information

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction Dark Matter Detection and the XENON Experiment Elena Aprile Physics Department and Columbia Astrophysics Laboratory Columbia University New York, New York 10027 1 Abstract Observations on all fronts strongly

More information

DARK MATTER SEARCH AT BOULBY MINE

DARK MATTER SEARCH AT BOULBY MINE DARK MATTER SEARCH AT BOULBY MINE R. LUSCHER on behalf of the Boulby Dark Matter Collaboration (RAL, Imperial College, Sheffield, UCLA, Texas A&M, Pisa, ITEP, Coimbra, Temple and Occidental) Rutherford

More information

A Demonstration of Light Guides for Light Detection in Liquid Argon TPCs

A Demonstration of Light Guides for Light Detection in Liquid Argon TPCs A Demonstration of Light Guides for Light Detection in Liquid Argon TPCs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Prospects for kev-dm searches with the GERDA experiment

Prospects for kev-dm searches with the GERDA experiment Physik-Institut Prospects for kev-dm searches with the GERDA experiment Roman Hiller for the GERDA collaboration 29/03/2017 Page 1 GERDA concept Cleanroom Lock systen Enriched 76 Ge detectors Cryostat

More information

Laboratori Nazionali del GranSasso Alfredo G. Cocco Istituto Nazionale di Fisica Nucleare Sezione di Napoli

Laboratori Nazionali del GranSasso Alfredo G. Cocco Istituto Nazionale di Fisica Nucleare Sezione di Napoli Laboratori Nazionali del GranSasso 21-03-2009 Alfredo G. Cocco Istituto Nazionale di Fisica Nucleare Sezione di Napoli La Collaborazione WARP R.Acciarri, M.Antonello, N.Canci, F.Cavanna, F.Di Pompeo

More information

DEAP-3600 Dark Matter Search at SNOLAB

DEAP-3600 Dark Matter Search at SNOLAB DEAP-3600 Dark Matter Search at SNOLAB @ DEAP-3600 H 2 O shield tank in SNOLAB Cube Hall Mark Boulay Queen s University, Kingston, Canada mark.boulay@queensu.ca IDM 2012 July 24, 2012 Chicago KICP DEAP

More information

Astroparticle Physics

Astroparticle Physics Astroparticle Physics 65 (2015) 40 54 Contents lists available at ScienceDirect Astroparticle Physics journal homepage: www.elsevier.com/locate/astropart Improving photoelectron counting and particle identification

More information

PandaX detector calibration and response. 报告人 : 肖梦姣 Shanghai Jiao Tong University (On behalf of the Panda-X Collaboration)

PandaX detector calibration and response. 报告人 : 肖梦姣 Shanghai Jiao Tong University (On behalf of the Panda-X Collaboration) PandaX detector calibration and response 报告人 : 肖梦姣 Shanghai Jiao Tong University (On behalf of the Panda-X Collaboration) 1 Outline 1. Detector running conditions 2. LED calibration Setup of the optical

More information

Effects of Nitrogen and Oxygen contamination in Liquid Argon

Effects of Nitrogen and Oxygen contamination in Liquid Argon Effects of Nitrogen and Oxygen contamination in Liquid Argon Roberto Acciarri Università degli Studi dell Aquila, Italy INFN-Laboratori Nazionali del Gran Sasso, Italy on behalf of WArP Collaboration 11th

More information

arxiv: v1 [physics.ins-det] 24 Jan 2010

arxiv: v1 [physics.ins-det] 24 Jan 2010 A Study of the Fluorescence Response of Tetraphenyl-butadiene R. Jerry arxiv:1001.4214v1 [physics.ins-det] 24 Jan 2010 Abstract Physics Dept., Howard University, Washington, DC 20059 L. Winslow, L. Bugel

More information

Scin/lla/on of liquid neon Photon Detec/on at 27 K

Scin/lla/on of liquid neon Photon Detec/on at 27 K Scin/lla/on of liquid neon Photon Detec/on at 27 K Hugh Lippinco, Fermilab Jin Ping Solar Neutrino Workshop June 9, 2014 1 Why neon? Scin?llates efficiently (of order 20 photons/kev or more) No long lived

More information

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Jingke Xu, Princeton (now @LLNL) Sept 24, 2015 2015 LowECal Workshop, Chicago, IL Outline 1. Overview

More information

A Liquid Argon Scintillation Veto for the GERDA Experiment

A Liquid Argon Scintillation Veto for the GERDA Experiment A Liquid Argon Scintillation Veto for the GERDA Experiment for the GERDA Collaboration 2nd European Nuclear Physics Conference Bucharest, 18/09/2012 Institut für Kern- und Teilchenphysik GERDA - GERmanium

More information

Search for double electron capture on 124 Xe with the XMASS-I detector

Search for double electron capture on 124 Xe with the XMASS-I detector Search for double electron capture on 124 Xe with the XMASS-I detector KATSUKI HIRAIDE (ICRR, THE UNIVERSITY OF TOKYO) SEPTEMBER 7 TH, 2015 TAUP2015 1 124 Xe 2n double electron capture Natural xenon contains

More information

Liquid Xenon Scintillator for Dark Matter Detection

Liquid Xenon Scintillator for Dark Matter Detection Liquid Xenon Scintillator for Dark Matter Detection Recent Results from the XENON10 Experiment Kaixuan Ni (Yale) IEEE - 9th International Conference on Inorganic Scintillators and their Applications Winston-Salem,

More information

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA Birgit Schneider Technische Universität Dresden Institut für Kern- und Teilchenphysik DPG-Frühjahrstagung Mainz 25th

More information

Down-to-earth searches for cosmological dark matter

Down-to-earth searches for cosmological dark matter Down-to-earth searches for cosmological dark matter Carter Hall, University of Maryland October 19, 2016 Astrophysical evidence for dark matter Galaxy cluster collisions Rotation curves Ω 380,000 years

More information

Studies of the XENON100 Electromagnetic Background

Studies of the XENON100 Electromagnetic Background Studies of the XENON100 Electromagnetic Background Daniel Mayani Physik-Institut University of Zurich PhD Seminar PSI, August 26-27, 2015 Searching for elusive particles The main challenge for experiments

More information

Direct WIMP Detection in Double-Phase Xenon TPCs

Direct WIMP Detection in Double-Phase Xenon TPCs Outline PMTs in the XENON dark matter experiment XENON100 and the weekly gain calibration XENON1T and candidates for the light sensors Tests of Hamamatsu R11410 2 Direct WIMP Detection in Double-Phase

More information

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search

Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Measurement of nuclear recoil responses of NaI(Tl) crystal for dark matter search Hanwool Joo on behalf of the KIMS-NaI collaboration Department of Physics and Astronomy, 1 Gwanak-ro, Gwanak-gu, Seoul

More information

Neutrinoless Double Beta Decay Search with SNO+

Neutrinoless Double Beta Decay Search with SNO+ Neutrinoless Double Beta Decay Search with SNO+ Kalpana Singh for the SNO+ Collaboration University of Alberta 8th Nov. 2016 1 Location 8th Nov. 2016 2 Location, 5890 mwe 8th Nov. 2016 3 63 muons/ day

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011

After LUX: The LZ Program. David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011 After LUX: The LZ Program David Malling, Simon Fiorucci Brown University APS DPF Conference August 10, 2011 The LZ Program LZ LUX-ZEPLIN LUX (14 U.S. institutions) + new collaborators from ZEPLIN, other

More information

Detectors for the COHERENT neutrino experiment R. Tayloe Indiana U. for the COHERENT collaboration

Detectors for the COHERENT neutrino experiment R. Tayloe Indiana U. for the COHERENT collaboration Detectors for the COHERENT neutrino experiment R. Tayloe Indiana U. for the COHERENT collaboration Outline Physics motivation Experimental overview detectors: CsI NaI LAr Ge LAr CsI Coherent Elastic n-nucleus

More information

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15, DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017

More information

DarkSide-20k and the Darkside Program for Dark Matter Searches

DarkSide-20k and the Darkside Program for Dark Matter Searches DarkSide-20k and the Darkside Program for Dark Matter Searches Cristiano Galbiati Princeton University APC Paris Diderot GDR Neutrinos LPSC Grenoble June 6, 2016 DarkSide-20k Institutions [cm 2 ] σ 41

More information

The XENON1T experiment

The XENON1T experiment The XENON1T experiment Ranny Budnik Weizmann Institute of Science For the XENON collaboration 1 The XENON1T experiment Direct detection with xenon The XENON project XENON1T/nT 2 Quick introduction and

More information

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19, DARWIN Marc Schumann U Freiburg PATRAS 2017 Thessaloniki, May 19, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Dark Matter Searches: Status spin-independent WIMP-nucleon interactions

More information

arxiv: v1 [physics.ins-det] 29 Jun 2011

arxiv: v1 [physics.ins-det] 29 Jun 2011 Investigation of Large LGB Detectors for Antineutrino Detection P. Nelson a,, N. S. Bowden b, a Department of Physics, Naval Postgraduate School, Monterey, CA 99, USA b Lawrence Livermore National Laboratory,

More information

XMASS 1.5, the next step of the XMASS experiment

XMASS 1.5, the next step of the XMASS experiment 1,2 for the XMASS collaboration 1 Kamioka Observatory, Institute for Cosmic Ray Research, the University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205, Japan, 2 Kavli Institute for Physics and

More information

The XENON Project. M. Selvi The XENON project

The XENON Project. M. Selvi The XENON project The XENON Project M. Selvi Assemblea di Sezione 2011 Dark matter in the Universe Dark matter properties: what we know Direct WIMP search Direct WIMP search Direct WIMP detection Why Xenon? A double-phase

More information

Scintillation Efficiency of Nuclear Recoils in Liquid Xenon. T. Wongjirad, L. Kastens, A. Manzur, K. Ni, and D.N. McKinsey Yale University

Scintillation Efficiency of Nuclear Recoils in Liquid Xenon. T. Wongjirad, L. Kastens, A. Manzur, K. Ni, and D.N. McKinsey Yale University Scintillation Efficiency of Nuclear Recoils in Liquid Xenon T. Wongjirad, L. Kastens, A. Manzur, K. Ni, and D.N. McKinsey Yale University Scintillation Efficiency! By Definition: Ratio of light produced

More information

Sensitivity and Backgrounds of the LUX Dark Matter Search

Sensitivity and Backgrounds of the LUX Dark Matter Search Sensitivity and Backgrounds of the LUX Dark Matter Search 1 LUX Goal: Direct Detection of Dark Matter WMAP 5-year data (2008) gives matter densities (Ω) based on best fit to Λ-CDM cosmological model: Ω

More information

SLAC - Advanced Instrumentation Seminars

SLAC - Advanced Instrumentation Seminars Samuele Sangiorgio LLNL Advanced Detector Group SLAC - Advanced Instrumentation Seminars Feb 20, 2013 LLNL-PRES-622432 This work was performed under the auspices of the U.S. Department of Energy by under

More information

Pulse Shape Discrimination Studies in Liquid Argon for the DEAP-1 Detector

Pulse Shape Discrimination Studies in Liquid Argon for the DEAP-1 Detector Pulse Shape Discrimination Studies in Liquid Argon for the DEAP-1 Detector By Jeffrey Jack Lidgard A thesis submitted to the Department of Physics, Engineering Physics and Astronomy in conformity with

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos

The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos Andi S. Cucoanes1 for the Nucifer Collaboration* * V.M.Bui2, M.Cribier1, A.S.Cucoanes1, M.Fallot2, M.Fechner1, J.Gaffiot1, L.Giot2,

More information

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007 LUX: A Large Underground Xenon detector WIMP Search Mani Tripathi INPAC Meeting Berkeley, New Collaboration Groups formerly in XENON10: Case Western, Brown, Livermore Natl. Lab (major fraction of the US

More information

Results from DarkSide-50 with underground argon

Results from DarkSide-50 with underground argon Dark Matter 2016 Los Angeles, CA 17-19 February 2016 Results from DarkSide-50 with underground argon Alden Fan UCLA for the DarkSide collaboration 1 DarkSide WIMP dark matter search using direct detection

More information

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO G. Gerbier 1 for the NEWS collaboration 2, 1 Queen s University, Physics Department, Kingston, Canada 2 New Experiments With Spheres

More information

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration Direct dark matter search with XMASS K. Abe for the XMASS collaboration Outline XMASS experiment. Single phase liquid xenon detector Many targets were searched with XMASS. WIMP search fiducialized volume.

More information

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS D. Markoff (NC Central University, Triangle Universities Nuclear Laboratory) For the COHERENT Collaboration

More information

SuperCDMS: Recent Results for low-mass WIMPS

SuperCDMS: Recent Results for low-mass WIMPS SuperCDMS: Recent Results for low-mass WIMPS David G. Cerdeño Institute for Theoretical Physics Universidad Autónoma de Madrid for the SuperCDMS Collaboration Hints for low-mass WIMPs in direct detection

More information

can be read by PMTs w/o wave length shifter

can be read by PMTs w/o wave length shifter Liquid-Xe Solar pp 7 Be neutrino detector Y.Suzuki Kamioka Obs. ICRR, U.Tokyo @LowNu 2000-06-15 Detector 1) Liquid Xenon with 10 ton fiducial volume 2) Scintillation detector: 42,000 photons/mev similar

More information

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min

UCLA Dark Matter 2014 Symposium. Origins and Distributions of the Backgrounds. 15 min S. Fiorucci Brown University UCLA Dark Matter 2014 Symposium Origins and Distributions of the Backgrounds 15 min What is a signal for LUX? Nuclear recoil Single scatter Signal Low energy, typically < 25

More information

The Neutron/WIMP Acceptance In XENON100

The Neutron/WIMP Acceptance In XENON100 The Neutron/WIMP Acceptance In XENON100 Symmetries and Fundamental Interactions 01 05 September 2014 Chiemsee Fraueninsel Boris Bauermeister on behalf of the XENON collaboration Boris.Bauermeister@uni-mainz.de

More information

Waveform Analysis for DM-Ice17. Zachary Pierpoint University of Wisconsin - Madison October 21, 2013 Yale Weak Interactions Discussions Group

Waveform Analysis for DM-Ice17. Zachary Pierpoint University of Wisconsin - Madison October 21, 2013 Yale Weak Interactions Discussions Group Waveform Analysis for DM-Ice17 Zachary Pierpoint University of Wisconsin - Madison October 21, 213 Yale Weak Interactions Discussions Group DM-Ice17 Energy Spectrum counts / day / kev / kg 1 28 Tl+ 214

More information

The ArDM project: A Liquid Argon TPC for Dark Matter Detection

The ArDM project: A Liquid Argon TPC for Dark Matter Detection The ArDM project: A Liquid Argon TPC for Dark Matter Detection V. Boccone 1, on behalf of the ArDM collaboration 1 Physik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

More information

The LZ Experiment Tom Shutt SLAC. SURF South Dakota

The LZ Experiment Tom Shutt SLAC. SURF South Dakota The LZ Experiment Tom Shutt SLAC SURF South Dakota 1 LUX - ZEPLIN 31 Institutions, ~200 people 7 ton LXe TPC ( tons LXe total) University of Alabama University at Albany SUNY Berkeley Lab (LBNL), UC Berkeley

More information

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor

PoS(ICHEP2016)474. SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor SoLid: Search for Oscillations with a Lithium-6 Detector at the SCK CEN BR2 reactor University of Bristol E-mail: dan.saunders@bristol.ac.uk The disappearance of reactor antineutrinos into a new neutral

More information

Beta Screening Options

Beta Screening Options Beta Screening Options in an Underground Low-Background Counting Facility Case Western Reserve University Based on work with or by Dan Akerib, Eric Dahl, Raul Hennings-Yeoman, Tom Shutt (Case), Luis DeViveiros

More information

Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector

Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector Joshua Spitz, Yale University DAEdALUS Workshop 2/4/2010 1 Outline What is coherent neutrino-nucleus scattering?

More information

Scintillators General Characteristics

Scintillators General Characteristics Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ] Main Features: Sensitivity to energy Fast time response

More information

LZ and Direct Dark Matter Detection

LZ and Direct Dark Matter Detection LZ and Direct Dark Matter Detection Kimberly J. Palladino February 14, 2017 What is the universe made of? Abell 2218 Reconciling what we measure on Earth with what we see in the cosmos 2 Outline Dark Matter

More information

DARWIN. Marc Schumann Physik Institut, Universität Zürich. Aspera Technology Forum 2010, October 21-22, 2010

DARWIN. Marc Schumann Physik Institut, Universität Zürich. Aspera Technology Forum 2010, October 21-22, 2010 21-22 DARWIN Marc Schumann Physik Institut, Universität Zürich Aspera Technology Forum 2010, October 21-22, 2010 www.physik.uzh.ch/groups/groupbaudis/xenon/ Dark Matter: Evidence & Detection NASA/WMAP

More information

Recent results from PandaX- II and status of PandaX-4T

Recent results from PandaX- II and status of PandaX-4T Recent results from PandaX- II and status of PandaX-4T Jingkai Xia (Shanghai Jiao Tong University) On behalf of PandaX Collaboration August 2-5, Mini-Workshop@SJTU 2018/8/4 1 Outline Dark Matter direct

More information

Neutrinoless double beta decay with SNO+

Neutrinoless double beta decay with SNO+ Neutrinoless double beta decay with SNO+ - 0!"" with SNO+ - Backgrounds - Schedule Freija Descamps for the SNO+ collaboration 1 SNO+ detector 6000 m.w.e Deck with DAQ SNO+ operator ~780T LAB liquid organic

More information