DESING AND ANALYSIS OF SATELLITE SOLAR PANEL GRADUATION PROJECT. Büşra ÇATALBAŞ. Department of Astronautical Engineering

Size: px
Start display at page:

Download "DESING AND ANALYSIS OF SATELLITE SOLAR PANEL GRADUATION PROJECT. Büşra ÇATALBAŞ. Department of Astronautical Engineering"

Transcription

1 ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS DESING AND ANALYSIS OF SATELLITE SOLAR PANEL GRADUATION PROJECT Büşra ÇATALBAŞ Department of Astronautical Engineering Thesis Advisor: Prof. Dr. Zahit MECİTOĞLU JANUARY 2019 i

2 ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS DESING AND ANALYSIS OF SATELLITE SOLAR PANEL GRADUATION PROJECT Büşra ÇATALBAŞ ( ) Department of Astronautical Engineering Thesis Advisor: Prof. Dr. Zahit MECİTOĞLU JANUARY 2019 ii

3 Büşra Çatalbaş, student of ITU Faculty of Aeronautics and Astronauticsstudent , successfully defended the graduation entitled Design and Anaylsis of Satellite Solar Panel which she prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below. Thesis Advisor: Prof. Dr. Zahit MECİTOĞLU... İstanbul Technical University Jury Members: Prof. Dr. Metin O. KAYA... İstanbul Technical University Prof. Dr. A. Rüstem ASLAN... İstanbul Technical University Date of Submission: 02 January 2019 Date of Defense: 16 January 2019 iii

4 To my family, iv

5 v

6 TABLE OF CONTENTS Page FOREWORD... Error! Bookmark not defined.v TABLE OF CONTENTS... vi ABBREVIATIONS... vierror! Bookmark not defined. LIST OF TABLES... Error! Bookmark not defined. LIST OF FIGURES... Error! Bookmark not defined. SUMMARY... Error! Bookmark not defined. 1. INTRODUCTION Purpose of Thesis Literature Review... Error! Bookmark not defined. 1.3 Design Specification of the Satellite... Error! Bookmark not defined. 2. CONCEPTUAL DESIGN(spacecraft structure)... Error! Bookmark not defined. 2.1 Purpose... Error! Bookmark not defined. 2.2 Mission Requirements... Error! Bookmark not defined. 2.3 Design Requirements... Error! Bookmark not defined. 2.4 Power Requirements... Error! Bookmark not defined. 3. DETAILED DESIGN(solar panel design)... Error! Bookmark not defined. 3.1 Purpose Design and Sizing Trades... Error! Bookmark not defined Autoregressive models... Error! Bookmark not defined Process based model: SWAT... Error! Bookmark not defined Multi variable analysis... Error! Bookmark not defined. 3.2 Deployment Mechanisms and Structures Error! Bookmark not defined. 3.3 Application Data... Error! Bookmark not defined. 4. (IF NECESSARY) CHAPTER 4... Error! Bookmark not defined. 4.1 Practical Application of This Study... Error! Bookmark not defined. 4.2 Second Level Title: First Letters Capital Error! Bookmark not defined Third level title: Only first letter capital... Error! Bookmark not defined Fourth level title: Only first letter capital Error! Bookmark not defined. Fifth level title: No numbering after fourth level titles... Error! Bookmark not defined. 5. (IF NECESSARY) CHAPTER 5... Error! Bookmark not defined. 5.1 Practical Application of This Study... Error! Bookmark not defined. 5.2 Second Level Title: First Letters Capital Error! Bookmark not defined Third level title: Only first letter capital... Error! Bookmark not defined Fourth level title: Only first letter capital Error! Bookmark not defined. Fifth level title: Only first letter capital... Error! Bookmark not defined. 6. CONCLUSIONS AND RECOMMENDATIONS... Error! Bookmark not defined. 6.1 Practical Application of This Study... Error! Bookmark not defined. 6.2 Second Level Title: First Letters Capital Error! Bookmark not defined. vi

7 6.2.1 Third level title: Only first letter capital... Error! Bookmark not defined Fourth level title: Only first letter capital Error! Bookmark not defined. REFERENCES... Error! Bookmark not defined. APPENDICES... Error! Bookmark not defined. APPENDIX A.1... Error! Bookmark not defined. CURRICULUM VITAE... Error! Bookmark not defined. vii

8 viii

9 1. INTRODUCTION Satellites are used for several services and applications. They also need energy to function like other machines. On the ground, there are many ways to produce electrical power from several energy supplies. However, in the space, the problem is where to get that power from. Hence, the power generation source is one of the most sensitive issue in the satellite science. Photovoltaic solar arrays have been commonly used to electrical energy for satellites since Vanguard 1 was launched in It was the first satellite to use solar energy, used to obtain geodetic measurements through orbit analysis. Vanguard 1 is also the oldest satellite still orbiting the Earth. Single crystal silicon solar cells mounted on the body of the satellite produced a total of approximately 1 Watt at 28 C with an efficiency of 10%. [1] Power needs of spacecraft increased with the development of vehicles and space missions. Therefore, design and efficiency of solar panels have been significantly improved. Today, the largest space solar power system with 120 kw is used by The International Space Station. [7] Despite increasing efficiency of solar cells, higher power demands may lead to larger solar panel requirements. Nevertheless, there are also various design constraints with low mass and low volume to match the dimensions of launch vehicle. Additionally, reducing the size of the solar panel increases the spacecraft's maneuverability. Consequently, the high power requirement of aerospace applications, has led to innovative, high-performance materials and structures as well as the rising efficiency of solar cells. The sandwich structures have good stiffness properties and energy absorbing capacity without a significant increase in weight. Because of these crucial advantages and simplicity of production, sandwich constructions have been widely used in aerospace structures. There are three main layers of sandwich structures: core, facing sheet and adhesive bond. Each layer carries different loads and moments. Therefore, the use of this robust sandwich structure provide high power-toweight ratios for solar panels. During launch of satellite, combination of accelerations of launch vehicle and random vibrations cause axial and lateral loads on the satellite components. 9

10 1.1 Purpose of Thesis 10

11 1.2 Design Specification of Satellite Water is the key to sustain organic life on the Earth, Moon and everywhere in the known universe. The poles of the moon are noteworthy places to find water based on previous research. Objective of this mission is to determine the location and quantities of water deposits. Mission Concept Remote sensing from the orbit may be used to determine the ratio of water to regolith with the position data. However, in order to satisfy accessibility of the water inside the craters, an additional surface mission is necessary that remote sensing cannot provide a total evidence for accessibility. Consequently, remote sensing is not enough in order to provide heritage for accessibility to the water. Hence, there are a lander, a rover and an orbiter to determine the water quantity analysis on this mission. Lander and rover are designed to determine ratio of water to regolith with surface operations. Therefore, this mission uses a main lander spacecraft, a rover, which is a payload to lander and an orbiter, which is a support for the lander. Scheme of the whole operations can be seen on Figure 1.1. Figure 1.1: Concept of Operation [2] Date of launch from Earth is chosen as May A two-stage launch vehicle, Atlas V, will be used to place Lunar Aqua onto direct lunar transfer orbit. Time of flight will be 5 days from 11

12 Centaur s re-ignition, second burn, to lunar transfer orbit insertion. Orbiter and lander will travel in space in integrated to each other as shown in the Figure 2. Figure 1.2: Isometric View of the Spacecraft [2] Orbiter with the lander on top will take the spacecraft to desired Moon s orbit, which is 50 km altitude by use of two different maneuvers, which will performed by orbiter s propulsion system. Orbiter and lander after decreasing to 50 km altitude from lunar surface will separate. Orbiter will stay in circular orbit for two years. Every month it will use station-keeping maneuver with value of 11 m/s and this maneuver will consume 33.9 kg propellant totally. [2] Spacecraft Concept Orbiter s dimension is 1250X800X800 mm and structure includes solar panel, thruster, and electronic devices. Its total dry is kg and total wet is 706 kg. Orbiter will stay in circular orbit for two years. Every month it will use station-keeping maneuver with value of 11 m/s and this maneuver will consume 33.9 kg propellant totally. [2] Projects main goal is to determine lunar ice ratio to the regolith. This will be achieved by surface experiments with additional remote sensing. This mission aims to determine water mass ratio to the regolith with two ways: Remote sensing from the orbit and surface experiment with laser induced breakdown spectroscopy. Therefore, there are two scientific payloads in orbite: LEND and mini-sar. 12

13 LEND (Lunar Exploration Neutron Detector) is a neutron spectrometer that is integrated on the orbiter. It uses the neutron albedo of moon to map the hydrogen rich regions on moon. If the hydrogen is associated with water, a detection limit of 100-ppm hydrogen corresponds to ~ 0.1% weight water ice in the regolith. From a 50km orbit, the instrument has a 1-2m spatial resolution inside the surface and has a spatial resolution of 5 km on the lunar surface. [3] In addition, Mini-SAR (Miniature Synthetic Aperture Radar) is the second instrument on the orbiter. The radar uses the polarization properties of reflected radio waves to characterize surface properties. [4] Orbiter is the main tool for communicating with the Earth. It will not only communicate with DSN, but also communicate with lander. As it was stated in the lander section, communication data between orbiter and lander will be carried in X-band. High gain Helical X-band Antenna will also be used in orbiter to communicate to lander with the supporting of XTx-400 and Mitsubishi X-band receiver. DSN will be used as main communication architecture. Image data rover gathered will be received from lander by cabled communication. Ka-band will be used for sending image and communication data to DSN. In all other operations, X-band will be used. [2] Orbiter need precise attitude control and determination systems due to detailed mission requirements. ADS system of the orbiter includes two star trackers and one inertial measurement unit. Four reaction wheel and four thruster combination is used for the ADC system. ADC system has attitude sensing requirements and should counterbalance the disturbance torques for the 50 km Moon orbit. Power Requirement of Satellite Solar panels are the primary source of power of our orbiter. Orbiter will be in daylight region for the most of time. In daylight operations mode, power is distributed to all systems from the solar panels. In addition, charging of the batteries takes place in this mode. In eclipse operations mode, power to subsystems is supplied from the batteries. The batteries are capable of supplying the maximum power draw of the subsystems for the whole eclipse duration. 13

14 Table 1.1: Subsystem Power Allocation for the Orbiter Spacecraft [2] Maximum Eclipse Time As shown in Table 1.1, requirement power of subsystems is 386 W per one hour. For design calculation of solar array size and battery systems, the maximum eclipse time must be calculated from below formulas; Figure 1.3: Maximum Eclipse Period, Circular orbit [5] Figure 1.3 shows the maximum eclipse period condition, which occurs when the sun is in the orbit plane. As shown in Figure 1.3, is the shadow region half-angle, in terms of degree. R is the radius of the central body, in other words it is Moon radius. h is the orbit altitude. From Figure 1.3: 14

15 = sin 1 ( R R + h ) (1.1) h = 50 km R = 1737 km With calculation of Eq 1.1, the shadow region was found as: = deg For circular orbit, Τ n is the maximum eclipse perio and Ρ is the orbit period. Τ n = 2 Ρ 360 (1.2) Ρ = 113 min With calculation of Eq 1.2, the maximum eclipse perios was found as: Τ n = min In 48-minute-long maximum eclipse region, solar panels should both generate enough power to charge the batteries for the next eclipse region and to meet the power requirement of the subsystems Bateries The orbiter will experience eclipse periods as much as 48 minutes per orbit. Therefore, the battery system on the orbiter should be able to supply the total power requirement for 48 minutes. Eagle-Picher Technologies 43Ah Space grade battery cells will be used on the orbiter to provide the necessary amount of energy in the eclipse regions. To have a low DOD value, eight of these batteries will be used in parallel. They have a long life over 40,000, LEO DOD over 10 years of operation. [6] Taking into account filling of the batteries, 600 W energy must be obtained from the solar arrays during daylight mode. On eclipse mode, power management unit minimizes the use of energy, because the batteries must meet the energy needs. In the Figure 1.4 can be seen power management system. 15

16 Figure 1.4: Sapcecraft Power Diagram [2] 16

17 2. DESIGN 2.1 Conceptual Design The solar array technology started to improve with Vanguard's 10% efficient single-crystalline silicon solar cells. This oldest solar panels had limited space because they were made up of solar cells mounted on the body of a spacecraft. Thereafter, both solar cell technology and sequence structure have made significant development in power capacity, mass and cost efficiency. Today there are various solar cell and array types with different materials and sizes with 30% efficiency. Therefore, trade-off study is required for the selection of the optimum solar array and cell technology for the design of spacecraft solar panel. Selection of Solar Cells There are many criteria to choose the most suitable solar cell such as power per unit mass ( W kg ), power per unit mass ( W m 2 ) (it is also known as efficiency (percentage)), cost per unit power ( $ W ), radiation and atomic oxygen resistance, and reliability. Cell efficiencies can be reported at different time interval. For example beginning of life, (BOL) refers to the efficiency of the cell at the time it was first used, and End of life (EOL) shows efficiency at end of the mission. The efficiency of solar cells is based on standard assumptions like air mass zero (AMO) environment that is outside of the Earth s atmosphere at 1 AU from the sun where the temperature is 28 C and the solar intensity is 1367 W m 2. [8] A smaller solar panel area is easier to integrate into the spacecraft, easier to place and steer in space, and with less mass. Therefore, the highest efficiency value must be priority preference. Primarily, silicon solar cells are used since the beginning of solar cells technology; however, silicon solar cells are very sensitive to space radiation and experience significant loss of 17

18 productivity over time. By contrast, multi-junction solar cells advantage is the multiple layers of light-absorbing materials, GaInP2 and GaInAs, and a germanium substrate with an active 18

19 junction, each of which efficiently convert specific wavelength regions of the solar spectrum into energy. Figure 2.1: Illustration of a Triple-Junction Solar Cell and Solar Irradiance Spectrum [7] As shown in the Figure 2.1, the widest bandgap material GalnP2 with wavelength region from 300 nm to 1800 nm, is the top junction and each another subcell has a lower bandgap material. Thus, photons of many different wavelengths are transformed into energy. [7] Figure 2.2: Efficiency of Solar Cells[9] 19

20 In Figure 2.2, there are 26 different categories with distinctive color. Cell efficiencies are shown with different semiconductor families such as multijunction, single-junction gallium arsenide and crystalline silicon cells. As shown in Figure 2.2, multi-junction GaAs-based cell technology are more efficient than silicon solar cells. Solar cell efficiency is the most significant parameter to optimize in order to achieve minimum mass and volume of the solar cell power system. Therefore, triple junction GaAs based solar cells was preferred for using on this mission because of high efficiency gains and high environment tolerance. As a consequence, selected multijunction cells are the XTJ-Prime Solar Cells are produced by Spectrolab, its efficiency is 30.7% beginning of life in AM0 conditions. [10] Selection of Solar Arrays There are some criteria to make a comparison when choosing solar panels: one of the most important is the Technology Readiness Levels (TRL). It is a type of measurement system used to assess the matureness of a particular technology. There are nine technology readiness levels. TRL 1 is the lowest value; TRL 9 is the highest value. If a technology has been "flight proven" during a successful mission, it can be called TRL 9. [11] As shown in Table 2.1, the reliability of the arrays is quite high with TRL 9. Table 2.1: Efficiency of Solar Arrays [7] Flexible arrays are not considered because they are mainly used to larger power needs. As shown Table2.2, deployable rigid solar array is the best option for orbiter power supply. Main reason is the high efficiency with 330 W m 2 and deployable arrays are more suitable for the spacecraft. Selection of Deployment Mechanisms 20

21 Configuration of Solar Array 2.2 Detailed Design Selection of Core Material Selection of Face Material Selection of Adhesieve and Coating Material Material Orientations 3. ANALYSIS 3.1 Purpose 21

22 22

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation

Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam 31 A Very Low Altitude Constellation For Earth Observation Andrea Sainati, Anupam Parihar, Stephen Kwan Seklam MSc students, Department of Aerospace

More information

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION

SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION SELENE TRANSLUNAR TRAJECTORY AND LUNAR ORBIT INJECTION Yasuihiro Kawakatsu (*1) Ken Nakajima (*2), Masahiro Ogasawara (*3), Yutaka Kaneko (*1), Yoshisada Takizawa (*1) (*1) National Space Development Agency

More information

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence Space Missions DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence International Lunar Conference 2005 Toronto, Canada Paul Fulford 1, Karen

More information

NASA: BACK TO THE MOON

NASA: BACK TO THE MOON NASA: BACK TO THE MOON Don Campbell Cornell University "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

Spacecraft Bus / Platform

Spacecraft Bus / Platform Spacecraft Bus / Platform Propulsion Thrusters ADCS: Attitude Determination and Control Subsystem Shield CDH: Command and Data Handling Subsystem Payload Communication Thermal Power Structure and Mechanisms

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

Lunette: Satellite to Satellite Gravity Mapping of the Moon

Lunette: Satellite to Satellite Gravity Mapping of the Moon Lunette: Satellite to Satellite Gravity Mapping of the Moon Maria Short 9th ILEWG International Conference on Exploration and Utilisation n of the Moon Authors: M. Short, C. Short, A. Philip, J. Gryzmisch,

More information

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key

StellarXplorers IV Qualifying Round 2 (QR2) Quiz Answer Key 1. Which of these Electromagnetic radiation bands has the longest wavelength (λ)? [Section 12.1] a. X-Ray b. Visible Light c. Infrared d. Radio 2. How is energy in Electromagnetic (EM) radiation related

More information

ESSE Payload Design. 1.2 Introduction to Space Missions

ESSE Payload Design. 1.2 Introduction to Space Missions ESSE4360 - Payload Design 1.2 Introduction to Space Missions Earth, Moon, Mars, and Beyond Department of Earth and Space Science and Engineering Room 255, Petrie Science and Engineering Building Tel: 416-736

More information

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo

New Worlds Observer Final Report Appendix E. Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Section E: Starshades Subsection E.6: Starshade Spacecraft Lead Author: Amy Lo Introduction Starshade Spacecraft Functional Requirements The main function of the starshade spacecraft is to: 1) support

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites 1/25 Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites Igal Kronhaus, Mathias Pietzka, Klaus Schilling, Jochen Schein Department of Computer

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors SSC14-VIII-3 Attitude Determination using Infrared Earth Horizon Sensors Tam Nguyen Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge,

More information

Human Spaceflight Value Study Was the Shuttle a Good Deal?

Human Spaceflight Value Study Was the Shuttle a Good Deal? Human Spaceflight Value Study Was the Shuttle a Good Deal? Andy Prince Billy Carson MSFC Engineering Cost Office/CS50 20 October 2016 Purpose Examine the Space Shuttle Program Relative to its Goals and

More information

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost)

Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Make Your Cubesat Overnight and Put it in Any Orbit (Well almost) Jim White, Walter Holemans, Planetary Systems Inc. Dr. Adam Huang, University of Arkansas RAMPART Summary Main Components The Promise of

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration

Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration National Aeronautics and Space Administration Lunar Flashlight & NEA Scout A NanoSat Architecture for Deep Space Exploration Payam Banazadeh (JPL/Caltech) Andreas Frick (JPL/Caltech) EM-1 Secondary Payload

More information

Learning Lab Seeing the World through Satellites Eyes

Learning Lab Seeing the World through Satellites Eyes Learning Lab Seeing the World through Satellites Eyes ESSENTIAL QUESTION What is a satellite? Lesson Overview: Engage students will share their prior knowledge about satellites and explore what satellites

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY OPTIMAL ORBITAL COVERAGE OF THEATER OPERATIONS AND TARGETS THESIS Kimberly A. Sugrue, Captain, USAF AFIT/GA/ENY/07-M17 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson

More information

Mission Overview. EAGLE: Study Goals. EAGLE: Science Goals. Mission Architecture Overview

Mission Overview. EAGLE: Study Goals. EAGLE: Science Goals. Mission Architecture Overview Mission Overview OPAG Meeting November 8 th, 2006 Ryan Anderson & Daniel Calvo EAGLE: Study Goals Develop a set of science goals for a flagship mission to Enceladus Investigate mission architectures that

More information

Overview of the Current Baseline of the Solar-C Spacecraft System

Overview of the Current Baseline of the Solar-C Spacecraft System Overview of the Current Baseline of the Solar-C Spacecraft System Keisuke YOSHIHARA (JAXA) 11 November, 2013 Solar-C Science Meeting Hida Earth Wisdom Center, Takayama, Japan Solar-C Spacecraft System

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document

Lunar Reconnaissance Orbiter Project. Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface Control Document Revision B DraftA Effective Date: July 17, 2006 Expiration Date: July 17, 2011 Lunar Reconnaissance Orbiter Project Cosmic Ray Telescope for the Effects of Radiation to Spacecraft Mechanical Interface

More information

A Concept Study of the All-Electric Satellite s Attitude and Orbit Control System in Orbit Raising

A Concept Study of the All-Electric Satellite s Attitude and Orbit Control System in Orbit Raising Journal of Automation and Control Engineering Vol., No., December A Concept Study of the All-Electric Satellite s Attitude and Orbit Control System in Orbit Raising Yoshinobu Sasaki Japan Aerospace Exploration

More information

Lunar Exploration Requirements and Data Acquisition Architectures

Lunar Exploration Requirements and Data Acquisition Architectures Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference The Vision and

More information

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team Team X Study Summary for ASMCS Theia Jet Propulsion Laboratory, California Institute of Technology with contributions from the Theia Team P. Douglas Lisman, NASA Jet Propulsion Laboratory David Spergel,

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Technical Proposal: Self-Assembling Space Structures

Technical Proposal: Self-Assembling Space Structures Excerpt For Public Release: Technical Proposal: 2018 Marcus van Bavel All rights Reserved Part 1: Table of Contents Part 1: Table of Contents... 1 Part 2: Significance of...1 Theory of Operation...3 Example

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

Germany s Option for a Moon Satellite

Germany s Option for a Moon Satellite Germany s Option for a Moon Satellite 38th COSPAR B01-0016-10 Quantius, D. (1), Päsler, H. (2), Gülzow, P. (2), Braukhane, A. (1), Vollhardt, A. (2), Bauer, W. (1), Romberg, O. (1), Scheibe, K. (1), Hoffmann,

More information

Payload Concept Proposal. Galileo s Explorers of the Abyss The fotia of Auahituroas, the pagos of Europa, Dawn of life.

Payload Concept Proposal. Galileo s Explorers of the Abyss The fotia of Auahituroas, the pagos of Europa, Dawn of life. Payload Concept Proposal Galileo s Explorers of the Abyss The fotia of Auahituroas, the pagos of Europa, Dawn of life. Da Vinci Team 2 1.0 Introduction Europa is Jupiter s sixth closest moon as well as

More information

LOW-COST LUNAR COMMUNICATION AND NAVIGATION

LOW-COST LUNAR COMMUNICATION AND NAVIGATION LOW-COST LUNAR COMMUNICATION AND NAVIGATION Keric Hill, Jeffrey Parker, George H. Born, and Martin W. Lo Introduction Spacecraft in halo orbits near the Moon could relay communications for lunar missions

More information

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control

Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Preliminary Development of an Experimental Lightweight Pulsed Plasma Thruster for Solar Sail Attitude Control Kevin Pryor, Bong Wie, and Pavlos Mikellides Arizona State University 18 th Annual AIAA/USU

More information

Science planning and operations for Mars Express

Science planning and operations for Mars Express Science planning and operations for Mars Express René Pischel and Tanja Zegers ESA/ESTEC, Research and Scientific Support Department, Postbus 299, 2200 AG Noordwijk, The Netherlands I. Introduction The

More information

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO)

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO) DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter (LRO) Comic Ray Telescope for the Effects of Radiation (CRaTER) to Spacecraft Mechanical Interface Control Document Date: July 13, 2005

More information

Attitude Determination and Control

Attitude Determination and Control Attitude Determination and Control Dan Hegel Director, Advanced Development hegel@bluecanyontech.com 1 Dan Hegel - Intro Director of Advanced Development at Blue Canyon Technologies Advanced mission concepts

More information

Mechanical Engineering Research Journal

Mechanical Engineering Research Journal Dept of Mech Eng CUET Published Online March 215 (http://wwwcuetacbd/merj/indexhtml) Mechanical Engineering Research Journal Vol 9, pp 79 85, 213 M E R J ISSN: 199-5491 THERMAL ANALYSES OF NANO- AND MICRO-

More information

mission status & ISRU related activity in Japan

mission status & ISRU related activity in Japan SELENE mission status & ISRU related activity in Japan JAXA SELENE project Oct. 2, 2007 SELENE Kaguya overview Plasma Energy Angle and Composition Experiment (PACE) Upper Atmosphere and Plasma Imager (UPI)

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

Ball Aerospace & Technologies Corp. & L Garde Inc.

Ball Aerospace & Technologies Corp. & L Garde Inc. Ball Aerospace & Technologies Corp. & L Garde Inc. Rapid De-Orbit of LEO Space Vehicles Using Towed owed Rigidizable Inflatable nflatable Structure tructure (TRIS) Technology: Concept and Feasibility Assessment

More information

What is scan? Answer key. Space Communications and Navigation Program. Entering the Decade of Light.

What is scan? Answer key. Space Communications and Navigation Program. Entering the Decade of Light. National Aeronautics and Space Administration SCaN Fun Pad www.nasa.gov NP-2018-02-047-GRC 30 1 What is scan? Answer key Page 22 Find the Mars Rover: Space Communications and Navigation Program The Space

More information

Paper Session III-B - Mars Global Surveyor: Cruising to Mars

Paper Session III-B - Mars Global Surveyor: Cruising to Mars The Space Congress Proceedings 1997 (34th) Our Space Future - Uniting For Success May 1st, 1:00 PM Paper Session III-B - Mars Global Surveyor: Cruising to Mars Glenn E. Cunningham Project Manager Mars

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

SHAPE OPTIMIZATION IN SUPERSONIC FLOW GRADUATION PROJECT. Mustafa Suphi Deniz KARANFIL. Department of Aeronautical Engineering

SHAPE OPTIMIZATION IN SUPERSONIC FLOW GRADUATION PROJECT. Mustafa Suphi Deniz KARANFIL. Department of Aeronautical Engineering ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS SHAPE OPTIMIZATION IN SUPERSONIC FLOW GRADUATION PROJECT Mustafa Suphi Deniz KARANFIL Department of Aeronautical Engineering Thesis

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details that

More information

Lunar Satellite Attitude Determination System

Lunar Satellite Attitude Determination System Lunar Satellite Attitude Determination System SENIOR DESIGN PROPOSAL PRESENTATION TEAM EPOCH KUPOLUYI, TOLULOPE (LEAD DEVELOPER) SONOIKI, OLUWAYEMISI (LEAD RESEARCHER) WARREN, DANAH (PROJECT MANAGER) NOVEMBER

More information

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005

DRAFT. Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter 431-ICD Date: September 15, 2005 DRAFT Robotic Lunar Exploration Program Lunar Reconnaissance Orbiter Lunar Reconnaissance Orbiter to Comic Ray Telescope for the Effects of Radiation Mechanical Interface Control Document Date: September

More information

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission

System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission System engineering approach toward the problem of required level of in-orbit autonomousoperation of a LEO microsatellite mission H.Bonyan Amirkabir University of Technology (AUT) H.Bonyan@dena.aut.ac.ir

More information

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Mission to Mars MAE 598: Design Optimization Final Project By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Motivation Manned missions beyond low Earth orbit have not occurred since Apollo

More information

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D.

On-Orbit Performance of KOMPSAT-2 AOCS Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. SSC07-VII-9 On-Orbit Performance of AOCS 2007. 8. Korea Aerospace Research Institute Seung-Wu Rhee, Ph. D. 1 Program - is Low Earth Orbit Satellite - Mission : Cartographic Mission of Korean Peninsula

More information

PSI AP Physics 1 Gravitation

PSI AP Physics 1 Gravitation PSI AP Physics 1 Gravitation Multiple Choice 1. Two objects attract each other gravitationally. If the distance between their centers is cut in half, the gravitational force A) is cut to one fourth. B)

More information

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory

Mini-RF: An Imaging Radar for the Moon. Ben Bussey The Johns Hopkins University Applied Physics Laboratory Mini-RF: An Imaging Radar for the Moon Ben Bussey The Johns Hopkins University Applied Physics Laboratory Paul D. Spudis President s Commission on Implementation of United States Space Exploration Policy

More information

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory Ethiraj Venkatapathy / Robin Beck

More information

The Lunar polar Hydrogen Mapper (LunaH-Map) CubeSat Mission. Hannah Kerner Flight Software Lead

The Lunar polar Hydrogen Mapper (LunaH-Map) CubeSat Mission. Hannah Kerner Flight Software Lead The Lunar polar Hydrogen Mapper (LunaH-Map) CubeSat Mission Hannah Kerner Flight Software Lead Mission overview Selected by NASA for SIMPLEx program in November 2015 to fly a 6U cubesat carrying a planetary

More information

A Concept of Nanosatellite Small Fleet for Earth Observation

A Concept of Nanosatellite Small Fleet for Earth Observation A Concept of Nanosatellite Small Fleet for Earth Observation Prof. Janusz Narkiewicz jnark@meil.pw.edu.pl Sebastian Topczewski stopczewski@meil.pw.edu.pl Mateusz Sochacki msochacki@meil.pw.edu.pl 10-11

More information

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS SSC17-P1-17 Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS Masayuki Katayama, Yuta Suzaki Mitsubishi Precision Company Limited 345 Kamikmachiya, Kamakura

More information

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415)

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion

More information

Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications

Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications Boom-Membrane Integrated Deployable Structures for De-orbiting Satellites and Future Applications Hiroshi Furuya furuya@enveng.titech.ac.jp Tokyo Institute of Technology, ORIGAMI Project (ORganizatIon

More information

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

LOFAR on the Moon: Mission Configuration and Orbit Design

LOFAR on the Moon: Mission Configuration and Orbit Design LOFAR on the Moon: Mission Configuration and Orbit Design Maximizing the Payload Mass Using Chemical or Electrical Propulsion May 12, 2015 Aerospace Engineering - Space Exploration LOFAR on the Moon:

More information

Creating Large Space Platforms From Small Satellites

Creating Large Space Platforms From Small Satellites SSC99-VI-6 Creating Large Space Platforms From Small Satellites Andrew W. Lewin Principal Systems Engineer Orbital Sciences Corporation Dulles, VA 20166 (703) 406-5000 lewin.andy@orbital.com Abstract.

More information

ASPECT Spectral Imager CubeSat Mission to Didymos

ASPECT Spectral Imager CubeSat Mission to Didymos ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki

More information

Solar Thermal Propulsion

Solar Thermal Propulsion AM A A A01-414 AIAA 2001-77 Solar Thermal Propulsion SOLAR THERMAL PROPULSION FOR AN INTERSTELLAR PROBE Ronald W. Lyman, Mark E. Ewing, Ramesh S. Krishnan, Dean M. Lester, Thiokol Propulsion Brigham City,

More information

Mars Sample Return (MSR) Mission BY: ABHISHEK KUMAR SINHA

Mars Sample Return (MSR) Mission BY: ABHISHEK KUMAR SINHA Mars Sample Return (MSR) Mission BY: ABHISHEK KUMAR SINHA Samples returned to terrestrial laboratories by MSR Mission would be analyzed with state-of the-art instrumentation providing unprecedented insight

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon The two NWO spacecraft will orbit about the libration point created by the Sun and Earth/Moon barycenter at the far side

More information

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A presentation for the New Trends in Astrodynamics conference Michael Reardon 1, Jun Yu 2, and Carl Brandon 3 1 PhD

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

FORMOSAT-3 Satellite Thermal Control Design and Analysis *

FORMOSAT-3 Satellite Thermal Control Design and Analysis * Journal of Aeronautics, Astronautics and Aviation, Series A, Vol.39, No.4, pp.287-292 (27) 287 Technical Note FORMOSAT-3 Satellite Thermal Control Design and Analysis * Ming-Shong Chang **, Chia-Ray Chen,

More information

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-4435 Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations Christian

More information

SPACE DEBRIS REMOVAL

SPACE DEBRIS REMOVAL M.K. Yangel Yuzhnoye State Design Office Ukraine SPACE DEBRIS REMOVAL The Fiftieth Session of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space Vienna International

More information

Section 2: The Science of Solar Energy

Section 2: The Science of Solar Energy Section 2: The Science of Solar Energy SECTION 2: THE SCIENCE OF SOLAR ENERGY Solar Radiation 9 Solar radiation outside the earth s atmosphere is called extraterrestrial radiation. On average the extraterrestrial

More information

Report of the Venera-D Joint Science Definition Team: "Together to Venus"

Report of the Venera-D Joint Science Definition Team: Together to Venus Report of the Venera-D Joint Science Definition Team: "Together to Venus" L. Zasova1, D. Senske2, T. Economou3, N. Eismont1, L. Esposito4, M. Gerasimov1, N. Ignatiev1, M. Ivanov5, I. Khatuntsev1, O. Korablev1,

More information

Low Thrust Mission Trajectories to Near Earth Asteroids

Low Thrust Mission Trajectories to Near Earth Asteroids Low Thrust Mission Trajectories to Near Earth Asteroids Pratik Saripalli Graduate Research Assistant, College Park, Maryland, 20740, USA Eric Cardiff NASA Goddard Space Flight Center, Greenbelt, Maryland,

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

Traveling Into Space. Use Target Reading Skills. How Do Rockets Work? Building Vocabulary

Traveling Into Space. Use Target Reading Skills. How Do Rockets Work? Building Vocabulary Traveling Into Space This section explains how rockets work. It also describes the history of space exploration and explains how space shuttles, space stations, and space probes are used in exploring space

More information

Exercise 1: Earth s Moon

Exercise 1: Earth s Moon PHYS1014 Physical Science Summer 2013 Professor Kenny L. Tapp Exercise 1: Earth s Moon Complete and submit this packet, securely stapled, at the beginning of Exam 1. PART I --- Online Video Lecture from

More information

Power, Propulsion and Thermal Design Project ENAE483 Fall 2012

Power, Propulsion and Thermal Design Project ENAE483 Fall 2012 Power, Propulsion and Thermal Design Project ENAE483 Fall 2012 Team B8: Josh Sloane Matt Rich Rajesh Yalamanchili Kiran Patel Introduction This project is an extension of Team A2's Crew Systems Project

More information

Propulsion means for CubeSats

Propulsion means for CubeSats Propulsion means for CubeSats C. Scharlemann and D. Krejci 2009 CubeSat Developers Workshop, San Louis Obispo, CA Welcome to the Austrian Research Centers Space Propulsion & Advanced Concepts Staff: 11

More information

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL Anthony Paris Kevin Anderson Jet Propulsion Laboratory Prasanna Chandrasekhar, Brian Zay, Terrance McQueeney Ashwin-Ushas Corporation, Inc.,

More information

Satellite communications and the environment of space

Satellite communications and the environment of space Satellite communications and the environment of space The first artificial satellite was launched in 1957. Now, satellites explore the solar system, search for planets orbiting distant stars and chase

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Presentation Outline Mission Overview Mission Relevance

More information

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT

INCA. Ionospheric Neutron Content Analyzer. New Mexico State University University NanoSat-8. CubeSat Workshop Presentation August 2, 2014; Logan, UT INCA Ionospheric Neutron Content Analyzer New Mexico State University University NanoSat-8 CubeSat Workshop Presentation August 2, 2014; Logan, UT Mission Overview Mission Relevance ConOps INCA Payload

More information

Proba-3 mission and the ASPIICS coronagraph

Proba-3 mission and the ASPIICS coronagraph Proba-3 mission and the ASPIICS coronagraph Marek Stęślicki 1 and the Proba-3 SWT 1 Space Research Centre Polish Academy of Sciences General objectives The Proba-3 project aims: To develop and demonstrate

More information

Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions Small Satellite Conference 2015 Sara Spangelo, NASA Jet Propulsion Laboratory

More information

A420U20-1 S17-A420U20-1. PHYSICS A level component 2 Electricity and the Universe

A420U20-1 S17-A420U20-1. PHYSICS A level component 2 Electricity and the Universe Surname Centre Number Candidate Number Other Names 2 GCE A LEVEL NEW A420U20-1 S17-A420U20-1 PHYSICS A level component 2 Electricity and the Universe WEDNESDAY, 21 JUNE 2017 MORNING 2 hours For s use Question

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

Robotic Site Survey for ISRU

Robotic Site Survey for ISRU NASA Ames Research Center Maria Bualat Intelligent Robotics Group Maria.Bualat@nasa.gov Outline Site Survey Overview GPR Survey Hydrogen Prospecting 2 Human-Robot Site Survey Project Systematic survey

More information

Overview of China Chang'e-3 Mission and Development of Follow-on Mission

Overview of China Chang'e-3 Mission and Development of Follow-on Mission Overview of China Chang'e-3 Mission and Development of Follow-on Mission Ming Li, Zezhou Sun, He Zhang, Xueying Wu, Fei Li, Leyang Zou, Ke Wu liming@cast.cn China Academy of Space Technology (CAST), Beijing

More information

BepiColombo MPO Science Operations Planning Drivers IWPSS-2013

BepiColombo MPO Science Operations Planning Drivers IWPSS-2013 BepiColombo MPO Science Operations Planning Drivers IWPSS-2013 Sara de la Fuente sfuente@sciops.esa.int BepiColombo MPO Science Ground Segment ESA, ESAC, Villanueva de la Cañada, Madrid, 28691, Spain Summary

More information

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission

Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Exploring the Mysteries of the Cosmos on the MOST Microsatellite Mission Dr. Simon Grocott Dr. Robert E Zee Dr. Jaymie Matthews Dynacon Inc UTIAS SFL UBC 13 August 2003 Outline MOST (Microvariability and

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3A performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

Precision Attitude and Translation Control Design and Optimization

Precision Attitude and Translation Control Design and Optimization Precision Attitude and Translation Control Design and Optimization John Mester and Saps Buchman Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. Abstract Future

More information

H. Minamino, H. Hoshino, M. Kato, S. Sasaki and Y. Takizawa Japan Aerospace Exploration Agency (JAXA) SELENE Project Team

H. Minamino, H. Hoshino, M. Kato, S. Sasaki and Y. Takizawa Japan Aerospace Exploration Agency (JAXA) SELENE Project Team SELENE Project Status H. Minamino, H. Hoshino, M. Kato, S. Sasaki and Y. Takizawa Japan Aerospace Exploration Agency (JAXA) SELENE Project Team Contents of the presentation : SELENE Project Status SELENE

More information