Standard Deviation and z Scores

Size: px
Start display at page:

Download "Standard Deviation and z Scores"

Transcription

1 6.1 I am learning to use technology to calculate the variance and standard deviation of a data set calculate and understand the significance of a z score relate the positive or negative scores to their locations in a histogram develop significant conclusions about a data set Success Criteria I will know I'm successful when I can calculate the variance or standard deviation of a set of data describe what the standard deviation or variance represents about a set of data explain what a z score represents Slide down to reveal calculate a z score for a particular data value and describe its significance use standard deviation, variance, and z score to draw conclusions about a data set What are some other success criteria? The ozone layer protects Earth's surface from much of the Sun's destructive radiation. Unfortunately, the ozone layer is being destroyed, in part by chlorofluorocarbons such as coolants in old refrigerators. The ozone layer's thickness can vary significantly over periods as short as a week. What other parts of our environment are changing due to pollutants? Answer 1

2 Invesgate Standard Deviaon The table shows the thickness of the ozone layer on each day of a given week. Definition 1. Calculate the mean thickness,. 2. a) Calculate the deviation from the mean for each day. Enter the results in the third column. b) Enter the sum at the bottom of the column. c) Explain the resulting sum. 3. a) Calculate the squares of the deviations from the mean. Enter the results in the fourth column. b) Enter the sum at the bottom of the column. 4. Divide the sum of the squares by 7. This is called the variance. 5. Take the square root of the variance. This is called the standard deviation. connued on next page... Click here for the solution. Investigate Standard Deviation (continued) 6. Reflect The standard deviation is the average difference of all the measurements from the mean. What other formula does this resemble? 7. Extend Your Understanding For the previous week, the mean thickness was DU, with a standard deviation of 4.8 DU. Compare these two weeks' measurements. Click here for the solution. 2

3 Variance and Standard Deviation Formulas The variance and standard deviation of a data set allow you to determine how close the values in a distribution are to the middle of the distribution. You can calculate the variance and standard deviation of a data set using the following formulas. Click to Reveal Samples rarely contain extreme values, when compared to entire populations. As a result, the variance and standard deviation are less than would be expected. To use the sample variance and standard deviation to model a population, divide by n 1 instead of n. This slightly increases their values. Example 1 Visualizing the Spread of Heights The heights of the players on two different soccer teams are graphed in the histograms below. Both teams have a mean height of 170 cm. Team A Team B a) Which team's heights would have a greater standard deviation? Why? b) The variance of the heights on team A is What is the standard deviation? c) What would the histogram for Team A look like if the standard deviation were 6? d) What would the histogram look like if the standard deviation were 0? Click here for solution. 3

4 Example 2 Calculating Variance and Standard Deviation Slugs R Us manufactures metal slugs. Quality control technicians measure the mass of a small sample of the slugs from each run. Below are the measurements (in grams) from one such run. Use technology to answer the questions. a) Plot a histogram of the data. b) Calculate the mean and standard deviation. c) Which slugs are more than 1 standard deviation from the mean? d) What would happen to the standard deviation if every slug below a mass of 59.9 g was rejected? Click here for the Nspire solution. Click here for TI 83/84 solution. Click here for Fathom solution. Population and Sample z Score A z score indicates how many standard deviations a data value lies from the mean. Click to Reveal The formulas given earlier for standard deviation are not the most efficient way to calculate the standard deviation. More efficient formulas are given below. Click to Reveal 4

5 Example 3 Analysing z Scores The mass of each baby born in a week at Grace hospital are recorded in grams below: a) These births are a sample of the population, or a sample of the births at this hospital. Determine the sample mean and sample standard deviation. b) What is the z score of the baby with a mass of 4403 g? c) Any baby which has a mass of less than 3 kg is put on special observation. What z score corresponds to a mass of 3 kg? Click here for TI 83/84 solution. Click here for the Nspire solution. Click here for Paper/Pencil solution. Click here for the Spreadsheet solution. Invesgate Standard Deviaon The table shows the thickness of the ozone layer on each day of a given week Calculate the mean thickness, = = = = = = = The mean thickness is. 2. a) Calculate the deviation from the mean for each day. Enter the results in the third column. b) Enter the sum at the bottom of the column. c) Explain the resulting sum. The measures are evenly spread about the mean, so the sum of their deviaons is 0. Rounding errors account for the approximate value. 3. a) Calculate the squares of the deviations from the mean. Enter the results in the fourth column. b) Enter the sum at the bottom of the column. 4. Divide the sum of the squares by 7. This is called the variance. 5. Take the square root of the variance. This is called the standard deviation. connued on next page... 5

6 Invesgate Standard Deviaon (connued) 6. Reflect The standard deviation is the average difference of all the measurements from the mean. What other formula does this resemble? The standard deviaon formula is a lile bit like the formula for distance between two points, which also involves the square root of the sum of the squares of differences. 7. Extend Your Understanding For the previous week, the mean thickness was DU, with a standard deviation of 4.8 DU. Compare these two weeks' measurements. In the previous week, the mean thickness of the ozone layer was 3.5 DU thicker, and the readings were more spread out, with a standard deviaon 1.61 DU higher. Example 1 Visualizing the Spread of Heights a) Which team's heights would have a greater standard deviation? Why? Team B would have a greater standard deviaon since the data are more spread out. b) The variance of the heights on team A is What is the standard deviation? The standard deviaon is the square root of the variance. c) What would the histogram for Team A look like if the standard deviation were 6? Since 6 > 3.581, the histogram would be more spread out (like Team B). d) What would the histogram look like if the standard deviation were 0? If the standard deviaon were 0, none of the data values would deviate from the mean, so the histogram would consist of a single bar at the mean. This would happen if every player on the team was exactly the same height. 6

7 Example 2 Calculang Variance and Standard Deviaon (TI 83/84 Soluon) a) Plot a histogram of the data. Press STAT, then select 1:Edit... to enter the data. Press 2ND, STAT PLOT, then select 1: Plot 1 to set up the histogram plot. Use the arrows keys and press ENTER to select the histogram for L1 (or whatever the name of the list is) Press ZOOM, then select 9:ZoomStat to graph the histogram. b) Calculate the mean and standard deviation. Press STAT. Use the arrow keys to choose CALC, then 1:1 Var Stats. Press ENTER. The mean is and the sample standard deviaon is s = c) Which slugs are more than 1 standard deviation from the mean? Any slugs which are less than or more than are more than 1 standard deviaon from the mean. These values are indicated below: d) What would happen to the standard deviation if every slug below a mass of 59.9 was rejected? The data values and are both below the 59.9 g threshold. If these values were rejected, the standard deviaon of the remaining values would be smaller (since we removed two outliers). The new standard deviaon would be Example 2 Calculang Variance and Standard Deviaon (TI Nspire Soluon) The data are already entered in the file slug mass sample data.tns a) Plot a histogram of the data. To add a page for the histogram, press ctrl i, then select 5:Add Data & Stascs. To choose the variable to plot, press menu, then select 2:Plot Properes, 5:Add X Variable, then press enter. To change the dot plot to a histogram, press menu, then select 1:Plot Type, 3:Histogram. To adjust the interval size, press menu, then select 2:Plot Properes, 2:Histogram Properes, 2: Bin Sengs, 1:Equal Bin Width. Select the width and alignment of the first bin. b) Calculate the mean and standard deviation. Press ctrl, le arrow to change to the spreadsheet page. Select a blank formula cell, then press menu, 4:Stascs, 1:Stat Calculaons, 1:One Variable Stascs..., then press enter. Select 'slug_mass in the X1 List: field, then press enter. The mean is about g and the sample standard deviaon is about g. c) Which slugs are more than 1 standard deviation from the mean? Any slugs which are less than or more than are more than 1 standard deviaon from the mean. These values are indicated below: d) What would happen to the standard deviation if every slug below a mass of 59.9 was rejected? The data values and are both below the 59.9 g threshold. If these values were rejected, the standard deviaon of the remaining values would be smaller (since we removed two outliers). The new standard deviaon would be

8 Example 2 Calculang Variance and Standard Deviaon (Fathom Soluon) The data are already entered in the file slug mass sample data.m a) Plot a histogram of the data. Drag a New Graph onto the desktop. Drag the aribute slug_mass from the case table onto the x axis of the graph. Select Histogram from the dropdown menu in the top right corner of the graph. To adjust the intervals, double click in a blank area of the graph. Adjust the binalignment and binwidth in the Graph Inspector. b) Calculate the mean and standard deviation. Double click on the collecon box to open the inspector. Select the Measures tab. The measures have already been calculated: Hint The mean is and the sample standard deviaon is s = c) Which slugs are more than 1 standard deviation from the mean? Any slugs which are less than or more than are more than 1 standard deviaon from the mean. These values are indicated below: d) What would happen to the standard deviation if every slug below a mass of 59.9 was rejected? The data values and are both below the 59.9 g threshold. If these values were rejected, the standard deviaon of the remaining values would be smaller (since we removed two outliers). The new standard deviaon would be Example 3 Analysing z Scores (Paper and Pencil Soluon) The mass of each baby born in a week at Grace hospital are recorded in grams below: a) These births are a sample of the population (or a sample of the births at this hospital). Determine the sample mean and sample standard deviation. sample mean: sample standard deviaon: First add the squares of the measurements Then use the efficient standard deviaon formula: The mean mass is 3478 g and the sample standard deviaon is about 413 g b)what is the z score of the baby with a mass of 4403 g? c) Any baby which has a mass less than 3 kg is put on special observation. What z score corresponds to a mass of 3 kg? 8

9 Example 3 Analysing z Scores (TI 83 TM /TI 84 TM Soluon) The mass of each baby born in a week at Grace hospital are recorded in grams below: a) These births are a sample of the population (or a sample of the births at this hospital). Determine the sample mean and sample standard deviation. Press STAT, then select 1:Edit... to enter the data. Press STAT. Use the arrow keys to choose CALC, then 1:1 Var Stats. Press ENTER. The mean mass is 3478 g and the sample standard deviaon is about 413 g b) What is the z score of the baby with a mass of 4403 g. c) Any baby which has a mass less than 3 kg is put on special observation. What z score corresponds to a mass of 3 kg? Example 3 Analysing z Scores (TI Nspire TM Soluon) The data are already entered in the file Newborn Masses.tns a) These births are a sample of the population (or a sample of the births at this hospital). Determine the sample mean and sample standard deviation. Select a blank formula cell, then press menu, 4:Stascs, 1:Stat Calculaons, 1:One Variable Stascs..., press enter. then Select 'newborn_mass in the X1 List: field, then press enter. The mean mass is 3478 g and the sample standard deviaon is about 413 g b) What is the z score of the baby with a mass of 4403 g. c) Any baby which has a mass less than 3 kg is put on special observation. What z score corresponds to a mass of 3 kg? 9

10 Example 3 Analysing z Scores (Spreadsheet Soluon) The data are already entered in the file Newborn Masses.csv a) These births are a sample of the population (or a sample of the births at this hospital). Determine the sample mean and sample standard deviation. Click on an empty cell and enter the formula =AVERAGE(A2:I3) ClIck on another empty cell and enter the formula =STDEV.S(A2:I3). The mean mass is 3478 g, and the sample standard deviaon is about 413 g. b) What is the z score of the baby with a mass of 4403 g. Click on an empty cell and enter the formula =(4403 AVERAGE(A2:I3))/STDEV.S(A2:I3) The z score is c) Any baby which has a mass less than 3 kg is put on special observation. What z score corresponds to a mass of 3 kg? Click on an empty cell and enter the formula =(3000 AVERAGE(A2:I3))/STDEV.S(A2:I3) The z score is

11 Attachments slug mass sample data.ftm slug mass sample data answers.ftm marks.xls slug mass sample data.tns Newborn Masses.csv Newborn Masses answers.csv Newborn Masses.tns

Using Tables and Graphing Calculators in Math 11

Using Tables and Graphing Calculators in Math 11 Using Tables and Graphing Calculators in Math 11 Graphing calculators are not required for Math 11, but they are likely to be helpful, primarily because they allow you to avoid the use of tables in some

More information

Boyle s Law and Charles Law Activity

Boyle s Law and Charles Law Activity Boyle s Law and Charles Law Activity Introduction: This simulation helps you to help you fully understand 2 Gas Laws: Boyle s Law and Charles Law. These laws are very simple to understand, but are also

More information

Homework Example Chapter 1 Similar to Problem #14

Homework Example Chapter 1 Similar to Problem #14 Chapter 1 Similar to Problem #14 Given a sample of n = 129 observations of shower-flow-rate, do this: a.) Construct a stem-and-leaf display of the data. b.) What is a typical, or representative flow rate?

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 183 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation!. These measurements should have the following properties:

More information

Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set?

Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set? Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set? 5-1-17 Homework: handout Do Now: Using the graph below answer the following

More information

A Magnetic Attraction

A Magnetic Attraction Science Objectives Students will map and describe the magnetic field around a permanent magnet or electromagnet. Students will determine the direction and strength of the force a magnet exerts on a current-carrying

More information

STAB22 Statistics I. Lecture 7

STAB22 Statistics I. Lecture 7 STAB22 Statistics I Lecture 7 1 Example Newborn babies weight follows Normal distr. w/ mean 3500 grams & SD 500 grams. A baby is defined as high birth weight if it is in the top 2% of birth weights. What

More information

6.1.1 How can I make predictions?

6.1.1 How can I make predictions? CCA Ch 6: Modeling Two-Variable Data Name: Team: 6.1.1 How can I make predictions? Line of Best Fit 6-1. a. Length of tube: Diameter of tube: Distance from the wall (in) Width of field of view (in) b.

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 3: Inferences About Means Sample of Means: number of observations in one sample the population mean (theoretical mean) sample mean (observed mean) is the theoretical standard deviation of the population

More information

1.3: Describing Quantitative Data with Numbers

1.3: Describing Quantitative Data with Numbers 1.3: Describing Quantitative Data with Numbers Section 1.3 Describing Quantitative Data with Numbers After this section, you should be able to MEASURE center with the mean and median MEASURE spread with

More information

Math 52 Linear Regression Instructions TI-83

Math 52 Linear Regression Instructions TI-83 Math 5 Linear Regression Instructions TI-83 Use the following data to study the relationship between average hours spent per week studying and overall QPA. The idea behind linear regression is to determine

More information

Bivariate Data Summary

Bivariate Data Summary Bivariate Data Summary Bivariate data data that examines the relationship between two variables What individuals to the data describe? What are the variables and how are they measured Are the variables

More information

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation y = a + bx y = dependent variable a = intercept b = slope x = independent variable Section 12.1 Inference for Linear

More information

Unit: Planetary Science

Unit: Planetary Science Orbital Motion Kepler s Laws GETTING AN ACCOUNT: 1) go to www.explorelearning.com 2) click on Enroll in a class (top right hand area of screen). 3) Where it says Enter class Code enter the number: MLTWD2YAZH

More information

3.1 Measure of Center

3.1 Measure of Center 3.1 Measure of Center Calculate the mean for a given data set Find the median, and describe why the median is sometimes preferable to the mean Find the mode of a data set Describe how skewness affects

More information

M&M Exponentials Exponential Function

M&M Exponentials Exponential Function M&M Exponentials Exponential Function Teacher Guide Activity Overview In M&M Exponentials students will experiment with growth and decay functions. Students will also graph their experimental data and

More information

Contents. 13. Graphs of Trigonometric Functions 2 Example Example

Contents. 13. Graphs of Trigonometric Functions 2 Example Example Contents 13. Graphs of Trigonometric Functions 2 Example 13.19............................... 2 Example 13.22............................... 5 1 Peterson, Technical Mathematics, 3rd edition 2 Example 13.19

More information

Regression Using an Excel Spreadsheet Using Technology to Determine Regression

Regression Using an Excel Spreadsheet Using Technology to Determine Regression Regression Using an Excel Spreadsheet Enter your data in columns A and B for the x and y variable respectively Highlight the entire data series by selecting it with the mouse From the Insert menu select

More information

Name Student Activity

Name Student Activity Open the TI-Nspire document Mechanical_Advantage.tns. In this activity, you will experiment with the incline plane and lever to discover the relationship between resistance and force. Then, you will derive

More information

through any three given points if and only if these points are not collinear.

through any three given points if and only if these points are not collinear. Discover Parabola Time required 45 minutes Teaching Goals: 1. Students verify that a unique parabola with the equation y = ax + bx+ c, a 0, exists through any three given points if and only if these points

More information

4.1 Introduction. 4.2 The Scatter Diagram. Chapter 4 Linear Correlation and Regression Analysis

4.1 Introduction. 4.2 The Scatter Diagram. Chapter 4 Linear Correlation and Regression Analysis 4.1 Introduction Correlation is a technique that measures the strength (or the degree) of the relationship between two variables. For example, we could measure how strong the relationship is between people

More information

Sampling Distributions of the Sample Mean Pocket Pennies

Sampling Distributions of the Sample Mean Pocket Pennies You will need 25 pennies collected from recent day-today change Some of the distributions of data that you have studied have had a roughly normal shape, but many others were not normal at all. What kind

More information

a. Length of tube: Diameter of tube:

a. Length of tube: Diameter of tube: CCA Ch 6: Modeling Two-Variable Data Name: 6.1.1 How can I make predictions? Line of Best Fit 6-1. a. Length of tube: Diameter of tube: Distance from the wall (in) Width of field of view (in) b. Make a

More information

Shape, Outliers, Center, Spread Frequency and Relative Histograms Related to other types of graphical displays

Shape, Outliers, Center, Spread Frequency and Relative Histograms Related to other types of graphical displays Histograms: Shape, Outliers, Center, Spread Frequency and Relative Histograms Related to other types of graphical displays Sep 9 1:13 PM Shape: Skewed left Bell shaped Symmetric Bi modal Symmetric Skewed

More information

Talking feet: Scatterplots and lines of best fit

Talking feet: Scatterplots and lines of best fit Talking feet: Scatterplots and lines of best fit Student worksheet What does your foot say about your height? Can you predict people s height by how long their feet are? If a Grade 10 student s foot is

More information

TIphysics.com. Physics. Bell Ringer: Determining the Relationship Between Displacement, Velocity, and Acceleration ID: 13308

TIphysics.com. Physics. Bell Ringer: Determining the Relationship Between Displacement, Velocity, and Acceleration ID: 13308 Bell Ringer: Determining the Relationship Between Displacement, Velocity, and Acceleration ID: 13308 Time required 15 minutes Topic: Kinematics Construct and interpret graphs of displacement, velocity,

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency The word average: is very ambiguous and can actually refer to the mean, median, mode or midrange. Notation:

More information

Experiment: Oscillations of a Mass on a Spring

Experiment: Oscillations of a Mass on a Spring Physics NYC F17 Objective: Theory: Experiment: Oscillations of a Mass on a Spring A: to verify Hooke s law for a spring and measure its elasticity constant. B: to check the relationship between the period

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials OBJECTIVE Electric Fields and Equipotentials To study and describe the two-dimensional electric field. To map the location of the equipotential surfaces around charged electrodes. To study the relationship

More information

This module focuses on the logic of ANOVA with special attention given to variance components and the relationship between ANOVA and regression.

This module focuses on the logic of ANOVA with special attention given to variance components and the relationship between ANOVA and regression. WISE ANOVA and Regression Lab Introduction to the WISE Correlation/Regression and ANOVA Applet This module focuses on the logic of ANOVA with special attention given to variance components and the relationship

More information

AST101: Our Corner of the Universe Lab 4: Planetary Orbits

AST101: Our Corner of the Universe Lab 4: Planetary Orbits AST101: Our Corner of the Universe Lab 4: Planetary Orbits Name: Partners: Student number (SUID): Lab section number: 1 Introduction Objectives The Planetary Orbits Lab reviews used the Planetary Orbit

More information

Infinity Unit 2: Chaos! Dynamical Systems

Infinity Unit 2: Chaos! Dynamical Systems Infinity Unit 2: Chaos! Dynamical Systems Iterating Linear Functions These questions are about iterating f(x) = mx + b. Seed: x 1. Orbit: x 1, x 2, x 3, For each question, give examples and a symbolic

More information

Figure 2.1 The Inclined Plane

Figure 2.1 The Inclined Plane PHYS-101 LAB-02 One and Two Dimensional Motion 1. Objectives The objectives of this experiment are: to measure the acceleration due to gravity using one-dimensional motion, i.e. the motion of an object

More information

Measuring Momentum: Using distance moved after impact to estimate velocity

Measuring Momentum: Using distance moved after impact to estimate velocity Case File 6 Measuring Momentum: Using distance moved after impact to estimate velocity Explore how the speed of an impacting vehicle causes a stationary object to move. Police Report Last Tuesday night,

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

AP/Honors Lab 18.1 Coulomb s Law

AP/Honors Lab 18.1 Coulomb s Law Name School Date AP/Honors Lab 18.1 Coulomb s Law Purpose To observe the effect of the electrostatic force on light-weight charged objects. To experimentally determine the charge on a sphere small sphere

More information

Reminders. Homework due tomorrow Quiz tomorrow

Reminders. Homework due tomorrow Quiz tomorrow Reminders Homework due tomorrow Quiz tomorrow 1 Warm Up - ACT Math Scores Distribution of ACT Math Scores Density 0 5 10 15 20 25 30 35 scores What percent of scores are between 12 and 24? Options: 38%,

More information

MINI LESSON. Lesson 2a Linear Functions and Applications

MINI LESSON. Lesson 2a Linear Functions and Applications MINI LESSON Lesson 2a Linear Functions and Applications Lesson Objectives: 1. Compute AVERAGE RATE OF CHANGE 2. Explain the meaning of AVERAGE RATE OF CHANGE as it relates to a given situation 3. Interpret

More information

A1 Further Worksheet 1

A1 Further Worksheet 1 Cambridge Essentials Mathematics Extension 7 A1 Further Worksheet 1 A1 Further Worksheet 1 1 Here is a puzzle. Each symbol stands for a number. The column on the right shows the total of each row. For

More information

UNIT 2 QUADRATIC FUNCTIONS AND MODELING Lesson 2: Interpreting Quadratic Functions Instruction

UNIT 2 QUADRATIC FUNCTIONS AND MODELING Lesson 2: Interpreting Quadratic Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: knowing the standard form of quadratic functions using graphing technolog to model quadratic functions Introduction The tourism

More information

Chapter 6 Group Activity - SOLUTIONS

Chapter 6 Group Activity - SOLUTIONS Chapter 6 Group Activity - SOLUTIONS Group Activity Summarizing a Distribution 1. The following data are the number of credit hours taken by Math 105 students during a summer term. You will be analyzing

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 382 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation σ. These measurements should have the following properties:

More information

b. What is the force of red team on right side of the rope? c. Is it the same as the blue team? d. What is the Sum of the Forces?

b. What is the force of red team on right side of the rope? c. Is it the same as the blue team? d. What is the Sum of the Forces? Force, Mass, and Acceleration PhET Simulation 1. Click on the following link PhET Force and Motion Basics and click Net Force a. If you cannot access the link then type the following web address into your

More information

From Rumor to Chaos TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

From Rumor to Chaos TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System Math Objectives Students will model the spread of a rumor using a recursive sequence. Students will understand that variations in the recursive sequence modeling the spread of a rumor or a disease can

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will understand how various data transformations can be used to achieve a linear relationship and, consequently, how to use the methods of linear regression to obtain a line of

More information

Mathematical Modeling

Mathematical Modeling Mathematical Modeling Sample Problem: The chart below gives the profit for a company for the years 1990 to 1999, where 0 corresponds to 1990 and the profit is in millions of dollars. Year 0 1 2 3 4 5 6

More information

WISE Regression/Correlation Interactive Lab. Introduction to the WISE Correlation/Regression Applet

WISE Regression/Correlation Interactive Lab. Introduction to the WISE Correlation/Regression Applet WISE Regression/Correlation Interactive Lab Introduction to the WISE Correlation/Regression Applet This tutorial focuses on the logic of regression analysis with special attention given to variance components.

More information

Session 4 2:40 3:30. If neither the first nor second differences repeat, we need to try another

Session 4 2:40 3:30. If neither the first nor second differences repeat, we need to try another Linear Quadratics & Exponentials using Tables We can classify a table of values as belonging to a particular family of functions based on the math operations found on any calculator. First differences

More information

appstats8.notebook October 11, 2016

appstats8.notebook October 11, 2016 Chapter 8 Linear Regression Objective: Students will construct and analyze a linear model for a given set of data. Fat Versus Protein: An Example pg 168 The following is a scatterplot of total fat versus

More information

How to Run the Analysis: To run a principal components factor analysis, from the menus choose: Analyze Dimension Reduction Factor...

How to Run the Analysis: To run a principal components factor analysis, from the menus choose: Analyze Dimension Reduction Factor... The principal components method of extraction begins by finding a linear combination of variables that accounts for as much variation in the original variables as possible. This method is most often used

More information

Unit 2: Lesson 10 Measures of Spread Name:

Unit 2: Lesson 10 Measures of Spread Name: Unit 2: Lesson 10 Measures of Spread Name: Part 1: Mean Absolute Deviation (nice, but not the measure of spread we ll use ) The heights, in inches, of the players on a basketball team are given below.

More information

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement Experiment 0 ~ Introduction to Statistics and Excel Tutorial Many of you already went through the introduction to laboratory practice and excel tutorial in Physics 1011. For that reason, we aren t going

More information

Algebra 2. Outliers. Measures of Central Tendency (Mean, Median, Mode) Standard Deviation Normal Distribution (Bell Curves)

Algebra 2. Outliers. Measures of Central Tendency (Mean, Median, Mode) Standard Deviation Normal Distribution (Bell Curves) Algebra 2 Outliers Measures of Central Tendency (Mean, Median, Mode) Standard Deviation Normal Distribution (Bell Curves) Algebra 2 Notes #1 Chp 12 Outliers In a set of numbers, sometimes there will be

More information

EXPLORING THE RELATIONSHIP BETWEEN LIGHT INTENSITY AND DISTANCE

EXPLORING THE RELATIONSHIP BETWEEN LIGHT INTENSITY AND DISTANCE Name Partner(s) Section Date EXPLORING THE RELATIONSHIP BETWEEN LIGHT INTENSITY AND DISTANCE We commonly refer to light intensity as brightness. More precisely, intensity is defined as the rate at which

More information

GRAPHS AND STATISTICS Central Tendency and Dispersion Common Core Standards

GRAPHS AND STATISTICS Central Tendency and Dispersion Common Core Standards B Graphs and Statistics, Lesson 2, Central Tendency and Dispersion (r. 2018) GRAPHS AND STATISTICS Central Tendency and Dispersion Common Core Standards Next Generation Standards S-ID.A.2 Use statistics

More information

It s Just a Lunar Phase

It s Just a Lunar Phase Science Objectives Students will identify patterns in data associated with the lunar phases. Students will describe how the relative positions of the Earth, the Moon, and the Sun cause lunar phases. Students

More information

Measures of. U4 C 1.2 Dot plot and Histogram 2 January 15 16, 2015

Measures of. U4 C 1.2 Dot plot and Histogram 2 January 15 16, 2015 U4 C 1. Dot plot and Histogram January 15 16, 015 U 4 : C 1.1 CCSS. 9 1.S ID.1 Dot Plots and Histograms Objective: We will be able to represent data with plots on the real number line, using: Dot Plots

More information

Fibonacci Sequence. January 19, 2014

Fibonacci Sequence. January 19, 2014 Fibonacci Sequence January 19, 2014 Today we will learn about the Fibonacci sequence, one of the most famous sequences of numbers in mathematics. To construct it, we will look at the pattern of growth

More information

Irrational Thoughts. Aim. Equipment. Irrational Investigation: Teacher Notes

Irrational Thoughts. Aim. Equipment. Irrational Investigation: Teacher Notes Teacher Notes 7 8 9 10 11 12 Aim Identify strategies and techniques to express irrational numbers in surd form. Equipment For this activity you will need: TI-Nspire CAS TI-Nspire CAS Investigation Student

More information

CHAPTER 1 Exploring Data

CHAPTER 1 Exploring Data CHAPTER 1 Exploring Data 1.2 Displaying Quantitative Data with Graphs The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Displaying Quantitative Data

More information

Visual and Mathematical Representations of the Electric Field

Visual and Mathematical Representations of the Electric Field Visual and Mathematical Representations of the Electric Field 1.1 Represent and reason. For each situation pictured in the table that follows, represent gravitational force or the electric force that the

More information

Linear Regression 3.2

Linear Regression 3.2 3.2 Linear Regression Regression is an analytic technique for determining the relationship between a dependent variable and an independent variable. When the two variables have a linear correlation, you

More information

Determining the Conductivity of Standard Solutions

Determining the Conductivity of Standard Solutions Determining the Conductivity of Standard Solutions by Anna Cole and Shannon Clement Louisiana Curriculum Framework Content Strand: Science as Inquiry, Physical Science Grade Level 11-12 Objectives: 1.

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

How spread out is the data? Are all the numbers fairly close to General Education Statistics

How spread out is the data? Are all the numbers fairly close to General Education Statistics How spread out is the data? Are all the numbers fairly close to General Education Statistics each other or not? So what? Class Notes Measures of Dispersion: Range, Standard Deviation, and Variance (Section

More information

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System

Outline. Introduction to SpaceStat and ESTDA. ESTDA & SpaceStat. Learning Objectives. Space-Time Intelligence System. Space-Time Intelligence System Outline I Data Preparation Introduction to SpaceStat and ESTDA II Introduction to ESTDA and SpaceStat III Introduction to time-dynamic regression ESTDA ESTDA & SpaceStat Learning Objectives Activities

More information

Expressions and Formulas 1.1. Please Excuse My Dear Aunt Sally

Expressions and Formulas 1.1. Please Excuse My Dear Aunt Sally Expressions and Formulas 1.1 Order of Operations (PEMDAS) 1. Parenthesis 2. Exponents 3. Multiply or Divide from left to right 4. Add of Subtract from left to right Please Excuse My Dear Aunt Sally Example

More information

PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole

PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole Print Your Name PHY222 Lab 2 - Electric Fields Mapping the Potential Curves and Field Lines of an Electric Dipole Print Your Partners' Names Instructions January 23, 2015 Before lab, read the Introduction,

More information

Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section and

Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section and Math 243 OpenStax Chapter 12 Scatterplots and Linear Regression OpenIntro Section 2.1.1 and 8.1-8.2.6 Overview Scatterplots Explanatory and Response Variables Describing Association The Regression Equation

More information

Investigating Factors that Influence Climate

Investigating Factors that Influence Climate Investigating Factors that Influence Climate Description In this lesson* students investigate the climate of a particular latitude and longitude in North America by collecting real data from My NASA Data

More information

1. Double-click the ArcMap icon on your computer s desktop. 2. When the ArcMap start-up dialog box appears, click An existing map and click OK.

1. Double-click the ArcMap icon on your computer s desktop. 2. When the ArcMap start-up dialog box appears, click An existing map and click OK. Module 2, Lesson 1 The earth moves In this activity, you will observe worldwide patterns of seismic activity (earthquakes) and volcanic activity (volcanoes). You will analyze the relationships of those

More information

Stoichiometric Reactor Simulation Robert P. Hesketh and Concetta LaMarca Chemical Engineering, Rowan University (Revised 4/8/09)

Stoichiometric Reactor Simulation Robert P. Hesketh and Concetta LaMarca Chemical Engineering, Rowan University (Revised 4/8/09) Stoichiometric Reactor Simulation Robert P. Hesketh and Concetta LaMarca Chemical Engineering, Rowan University (Revised 4/8/09) In this session you will learn how to create a stoichiometric reactor model

More information

The purpose of this lab is to investigate phases of matter, temperature, and heat energy.

The purpose of this lab is to investigate phases of matter, temperature, and heat energy. 9460218_CH07_p081-090.qxd 1/20/10 9:46 PM Page 81 7 TEMPERATURE AND HEAT PURPOSE The purpose of this lab is to investigate phases of matter, temperature, and heat energy. SIMULATIONS States of Matter Figure

More information

Name Class Date. Residuals and Linear Regression Going Deeper

Name Class Date. Residuals and Linear Regression Going Deeper Name Class Date 4-8 and Linear Regression Going Deeper Essential question: How can you use residuals and linear regression to fit a line to data? You can evaluate a linear model s goodness of fit using

More information

Name Student Activity

Name Student Activity Open the TI-Nspire document Treasure_Trove.tns. Imagine digging for buried treasure and finding thousands of. This amount of treasure might weigh much more than you could carry! In this activity, you will

More information

Using Microsoft Excel

Using Microsoft Excel Using Microsoft Excel Objective: Students will gain familiarity with using Excel to record data, display data properly, use built-in formulae to do calculations, and plot and fit data with linear functions.

More information

Mnova Software for Analyzing Reaction Monitoring NMR Spectra

Mnova Software for Analyzing Reaction Monitoring NMR Spectra Mnova Software for Analyzing Reaction Monitoring NMR Spectra Version 10 Chen Peng, PhD, VP of Business Development, US & China Mestrelab Research SL San Diego, CA, USA chen.peng@mestrelab.com 858.736.4563

More information

(a) (i) Use StatCrunch to simulate 1000 random samples of size n = 10 from this population.

(a) (i) Use StatCrunch to simulate 1000 random samples of size n = 10 from this population. Chapter 8 Sampling Distribution Ch 8.1 Distribution of Sample Mean Objective A : Shape, Center, and Spread of the Distributions of A1. Sampling Distributions of Mean A1.1 Sampling Distribution of the Sample

More information

Harmonic Motion. Mass on a Spring. Physics 231: General Physics I Lab 6 Mar. 11, Goals:

Harmonic Motion. Mass on a Spring. Physics 231: General Physics I Lab 6 Mar. 11, Goals: Physics 231: General Physics I Lab 6 Mar. 11, 2004 Names: Harmonic Motion Goals: 1. To learn about the basic characteristics of periodic motion period, frequency, and amplitude 2. To study what affects

More information

Connecticut Common Core Algebra 1 Curriculum. Professional Development Materials. Unit 8 Quadratic Functions

Connecticut Common Core Algebra 1 Curriculum. Professional Development Materials. Unit 8 Quadratic Functions Connecticut Common Core Algebra 1 Curriculum Professional Development Materials Unit 8 Quadratic Functions Contents Activity 8.1.3 Rolling Ball CBR Activity 8.1.7 Galileo in Dubai Activity 8.2.3 Exploring

More information

UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004

UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004 UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 50W - Introduction to Biostatistics Fall 00 Exercises with Solutions Topic Summarizing Data Due: Monday September 7, 00 READINGS.

More information

H.Algebra 2 Summer Review Packet

H.Algebra 2 Summer Review Packet H.Algebra Summer Review Packet 1 Correlation of Algebra Summer Packet with Algebra 1 Objectives A. Simplifing Polnomial Epressions Objectives: The student will be able to: Use the commutative, associative,

More information

OHS Algebra 2 Summer Packet

OHS Algebra 2 Summer Packet OHS Algebra 2 Summer Packet Good Luck to: Date Started: (please print student name here) Geometry Teacher s Name: Complete each of the following exercises in this formative assessment. To receive full

More information

2. LECTURE 2. Objectives

2. LECTURE 2. Objectives 2. LECTURE 2 Objectives I understand the distinction between independent variable(s) and the corresponding dependent variable as well as why that distinction was chosen for the situation. I can define

More information

Summarising numerical data

Summarising numerical data 2 Core: Data analysis Chapter 2 Summarising numerical data 42 Core Chapter 2 Summarising numerical data 2A Dot plots and stem plots Even when we have constructed a frequency table, or a histogram to display

More information

Reminder: Univariate Data. Bivariate Data. Example: Puppy Weights. You weigh the pups and get these results: 2.5, 3.5, 3.3, 3.1, 2.6, 3.6, 2.

Reminder: Univariate Data. Bivariate Data. Example: Puppy Weights. You weigh the pups and get these results: 2.5, 3.5, 3.3, 3.1, 2.6, 3.6, 2. TP: To review Standard Deviation, Residual Plots, and Correlation Coefficients HW: Do a journal entry on each of the calculator tricks in this lesson. Lesson slides will be posted with notes. Do Now: Write

More information

Teaching Statistics in the new A level using graphing technology. Cath Moore

Teaching Statistics in the new A level using graphing technology. Cath Moore Teaching Statistics in the new A level using graphing technology Cath Moore cath.moore@mei.org.uk Overarching themes and use of technology Paragraph 8 of the Content Document states that 8.The use of technology,

More information

Interactive Chalkboard

Interactive Chalkboard 1 Interactive Chalkboard 1 Table of Contents Unit 1: Energy and Motion Chapter 1: The Nature of Science 1.1: The Methods of Science 1.2: Standards of Measurement 1.3: Communicating with Graphs 1.1 The

More information

Probable Factors. Problem Statement: Equipment. Introduction Setting up the simulation. Student Activity

Probable Factors. Problem Statement: Equipment. Introduction Setting up the simulation. Student Activity Student Activity 7 8 9 10 11 1 TI-Nspire CAS Investigation Student 10min Problem Statement: What is the probability that a randomly generated quadratic can be factorised? This investigation looks at a

More information

Typical kinetics Time. 1. What happens to the concentration of A over time? a. Increases b. Decreases c.

Typical kinetics Time. 1. What happens to the concentration of A over time? a. Increases b. Decreases c. Cheryl Coolidge Guided Inquiry Activity Enzyme Kinetics, Part One Why? Understanding the rate behavior of enzyme catalyzed reactions can help to explain how these biologically important reactions are controlled

More information

Curvature of the Universe from Cosmic Microwave Background Fluctuations

Curvature of the Universe from Cosmic Microwave Background Fluctuations Curvature of the Universe from Cosmic Microwave Background Fluctuations Introduction Daniel M. Smith, Jr., South Carolina State University, dsmith@scsu.edu The Big Bang Theory that explains the creation,

More information

SAT RELEASED TEST ADMINISTERED ON APRIL 10, 2018 CLASSROOM SAT SESSION #6

SAT RELEASED TEST ADMINISTERED ON APRIL 10, 2018 CLASSROOM SAT SESSION #6 SAT RELEASED TEST ADMINISTERED ON APRIL 10, 2018 CLASSROOM SAT SESSION #6 Calculator Portion Released Test: 18.) The velocity v, in meters per second, of a falling object on Earth after t seconds, ignoring

More information

Newton's 2 nd Law. . Your end results should only be interms of m

Newton's 2 nd Law. . Your end results should only be interms of m Newton's nd Law Introduction: In today's lab you will demonstrate the validity of Newton's Laws in predicting the motion of a simple mechanical system. The system that you will investigate consists of

More information

Name Student Activity

Name Student Activity Open the TI-Nspire document From_Rumor_to_Chaos.tns. In this investigation, you will model the spread of a rumor using a recursive sequence to see how some variations of this model can lead to chaos. Terry

More information

First Derivative Test TEACHER NOTES

First Derivative Test TEACHER NOTES Math Objectives Students will relate the first derivative of a function to its critical s and identify which of these critical s are local extrema. Students will visualize why the first derivative test

More information

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Chapter 2: Summarising numerical data Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Extract from Study Design Key knowledge Types of data: categorical (nominal and ordinal)

More information

STAT 200 Chapter 1 Looking at Data - Distributions

STAT 200 Chapter 1 Looking at Data - Distributions STAT 200 Chapter 1 Looking at Data - Distributions What is Statistics? Statistics is a science that involves the design of studies, data collection, summarizing and analyzing the data, interpreting the

More information

IB Questionbank Mathematical Studies 3rd edition. Grouped discrete. 184 min 183 marks

IB Questionbank Mathematical Studies 3rd edition. Grouped discrete. 184 min 183 marks IB Questionbank Mathematical Studies 3rd edition Grouped discrete 184 min 183 marks 1. The weights in kg, of 80 adult males, were collected and are summarized in the box and whisker plot shown below. Write

More information

Algebra I Calculator Activities

Algebra I Calculator Activities First Nine Weeks SOL Objectives Calculating Measures of Central Tendency SOL A.17 Organize a set of data Calculate the mean, median, mode, and range of a set of data Describe the relationships between

More information

Lesson 4 Linear Functions and Applications

Lesson 4 Linear Functions and Applications In this lesson, we take a close look at Linear Functions and how real world situations can be modeled using Linear Functions. We study the relationship between Average Rate of Change and Slope and how

More information