THE NATURE OF THE TYPICAL LUNAR MOUNTAIN WALLED PLAINS. Dinsmore Alter Griffith Observatory, Los Angeles, California

Size: px
Start display at page:

Download "THE NATURE OF THE TYPICAL LUNAR MOUNTAIN WALLED PLAINS. Dinsmore Alter Griffith Observatory, Los Angeles, California"

Transcription

1 THE NATURE OF THE TYPICAL LUNAR MOUNTAIN WALLED PLAINS Dinsmore Alter Griffith Observatory, Los Angeles, California This is the third of a series of papers concerning the evolution of the present surface of the moon. 1 In a study of this nature, it is necessary to refer to many features by the proper names used by selenographers. Unfortunately, however, these names often are mystifying to a reader. In the second paper of the series, published in the February 1956 issue of these Publications, two pages were devoted to a photographic map of the moon from which x and y coordinates can be read easily. Table I lists the names and coordinates from that map of all the objects mentioned in this paper. In Table II are listed the lunar photographs reproduced in the present paper. TABLE I Coordinates of Features Mentioned in This Paper Object x y Albategnius Aliacensis Archimedes Blancanus Catharina Clavius Gassendi Grimaldi Gruemberger Hell Plain Hipparchus Janssen Longomontanus Maginus Mare Crisium Object x y Mare Nubium Mare Serenitatis Pitatus Plato Posidonius Ptolemaeus Purbach Regiomontanus Rutherford Scheiner Schickard Schiller Walter Wilhelm I Plates I, II, and III were taken by the writer with the 60-inch reflector of the Mount Wilson Observatory. All were on Kodak I-N plates with a Pyrex 7-69 infrared filter. Plates IV and V are from the Moore-Chappell series, taken with the 36-inch re- 437

2 438 DINSMORE ALTER fractor of the Lick Observatory. Foreshortening has been partially eliminated. TABLE II Lunar Photographs Plate Date I Nov. 7, 1955 II May 24, 1954 III Aug. 10, 1955 IV Oct. 26, 1937 V Same as Plate IV P.S.T. 3 h 38 m Phase 22 d 16 h 06 n Colongitude 18L The craterlike formations of the moon have for a long time been classified as mountain walled plains, ringed plains, crater rings, craters, craterlets, and crater pits. Probably a better classi- fication could be devised today but new nomenclature would result in much confusion. Furthermore, it appears best to wait intil the present disagreements concerning their nature have been recon- ciled before a change is made. Neison describes mountain walled plains as follows : Walled-plains extend from 40 to 150 miles in diameter, and are seldom surrounded by a single wall, but usually by an intricate system of mountain ranges, separated by valleys, crossed by ravines, and united to one another at various points by cross walls and buttresses ; all usually, however, subordinate to one or two principal ranges, forming a massive crest to the rest. Towards the exterior and interior extend numerous projections and arms, at times rising even above the wall, and at others low, short, and insignificant. Occasionally, as in Schiller and Posidonius, these arms extend throughout the greater portion of the interior, or even divide it into two portions. Towards the exterior, these branching arms and projecting buttresses occasionally unite two or more walled-plains together, and at times these rise into considerable ridges, often enclosing long valleys. The interiors of the walled-plains are as a rule comparatively level, sometimes, as in Plato and Archimedes, only broken by a few mounds, or perhaps by a crater cone or so ; but more usually the interior is interrupted by a number of small irregularities, as ridges, mounds, or crater-

3 THE NATURE OF THE LUNAR PLAINS 439 pits, as in Maginus and Ptolemy ; whilst at times these irregularities assume considerable dimensions, as in Posidonius, Gassendi, and Catharina. Though many are roughly circular in shape, others possess very irregular outlines, appearing more like several confluent plains, or like a space enclosed by intersecting mountain chains rather than as true independent formations. Though commonly classed under the crateriform formations of the moon, the true walled-plains would appear to be related rather to the Mares or plains, more especially to those Mares bordered by great highlands and mountains like the Mares Crisium and Serenitatis, to which certain of the great walled-plains, as Clavius, Maginus, Ptolemaeus, Hipparchus, and Schickhardt, bear a considerable resemblance, though on a smaller scale a circumstance that did not escape Mädler. A close examination of such examples of the walled-plain as these would suggest their being low-lying bright plains surrounded by mountain ranges and extensive highlands, rather than actual independent formations bearing any relation to true volcanoes, and, as Mädler remarks, had Clavius possessed a dark interior, and been nearer the centre, Riccioli would have probably classed it as a Mare, and the same holds good with some of the others. 2 There are certain data which either must be explained or, at least, not contradicted by any satisfactory hypothesis concerning the nature of the typical mountain walled plains. These are : 1. They are very shallow in respect to their diameter. 2. They have little or no external walls. 3. They seldom have central peaks. 4. The walls are not circular. There are rectangles, squares, and especially hexagons. 5. Many small craters are found on their rims. 6. The floors tend toward smoothness. 7. They become inconspicuous under a high sun. 8. They have diameters from approximately 50 to 150 miles. 9. They are found only in mountainous areas. 10. They resemble the maria. 11. Scarps and lines of small craters sometimes are common boundaries to adjoining plains. 12. The walls are not continuous ; gaps are common.

4 440 DINSMORE ALTER 13. They have no ray systems. 14. Some (Ptolemaeus, Plate I, best example) exhibit numerous "ghosts on their floors. 15. In general, if a piece of paper be laid over a photograph so as to just touch the inner edge of the scarp, nothing is seen to indicate that any unusual depression has been covered. The accompanying diagram, Figure 1, attempts to show vertical sections of several of the largest walled plains at a true scale. Heights of the ridges are not known accurately. Usually the wall contains some mountains which are much higher than the average. Often gaps occur in the walls. Plate I, showing Ptolemaeus (74, 82) at sunset, exhibits both of these features. Probably the average heights are even less than those used in the diagrams. This statement applies especially to Longomontanus (83, 118), for which the old measurements appear to be especially excessive. In contrast to those craterlike formations that have considerable external slopes, there is little tendency for the typical walled plains to be circular. Plate II shows Ptolemaeus, which is an almost perfect hexagon, with Albategnius (65, 84), another hexagon, to the west of it. Hipparchus (65, 78), just north of Albategnius, has almost lost its northern wall, but the still remaining southern boundary of the plain is more nearly part of a square than anything else. Directly east of the southern side of Ptolemaeus is an unnamed plain (78, 83), which is nearly a perfect rectangle. Farther south (Plate III) is the string Purbach (71, 98), Regiomontanus (70, 102), and Walter (68, 106). Regiomontanus is a rather good square, except for the fact that Purbach has cut off its northeast corner. Walter also shows somewhat the same tendency. To the east of these three is a very large, very shallow old plain (74, 106) which has not been named. It also roughly approximates a square. Grimaldi (125, 74), near the eastern limb, is one of the largest of the walled plains. Foreshortening disguises its form, but the globe projection method, described in these Publications 3 and in more detail elsewhere, 4 shows it in nearly its true shape. It is revealed as a hexagon with a mutilated northern wall where a

5 Vertical sections of some typical walled plains.

6 PLATE I Sunset on Ptolemaeus.

7 PLATE II Ptclemaeus, Alphonsus, Arzachel, Albategnius, and Hipparchus,

8 PLATE III Rough area from Mare Nubium south to limb

9 PLATE IV Clavius and surroundings corrected for foreshortening.

10 PLATE V Grimaldi corrected for foreshortening

11 THE NATURE OF THE LUNAR PLAINS 441 pass leads to Oceanus Procellarum. Such a photograph is Plate V. Grimaldi is truly a connecting link between the maria and the typical walled plains. At its eastern shoreline can be seen the remains of several craters whose seaward»walls sank in the formation of Grimaldi. Clavius (75, 124), the second largest of the typical walled plains, is found near the top of Plate III. At a glance one observes the many craters on and near the rim, the lack of external wall, the general smoothness of the floor, and the beautiful arc of craters on the floor, starting with Rutherford (72, 125) on the southern wall. A second look reveals that it is a polygon and that there is something peculiar about the southern side. Its true form is more difficult to distinguish because it is near the southern limb of the moon. In Plate IV one of the Lick photographs has been projected on a globe. The floor is observable as a somewhat irregular hexagon. The east and west walls are seen to continue southward with rough ground, which is higher than the floor, between them. The inner east wall of Clavius then becomes an outer west wall for Blancanus (77, 126), and the inner west wall an outer east wall for Gruemberger (70, 127). Each of these is a walled plain more than 50 miles in diameter. These examples of shapes could be multiplied. If the walled plains were due to explosions, either internal or external, we would not expect to find these polygons. If, however, the typical walled plains are somewhat similar to what geologists call a graben, we would expect them to be polygons of varying types. A graben is a sunken area between faults. The geologist Spurr did some excellent research in his investigation of lunar faults and their effects, 5 although it would appear that he attempted to extend the process to too wide a category of features. The evidence favoring a grabenlike explanation of the walled plains is emphasized by a study of the lines along which the sides lie. In Plate II an examination of the northern wall of Ptolemaeus shows it continuing eastward as a line of small craters. Following the line of craters westward from Ptolemaeus, it merges with the northern wall of Albategnius. The coincidence is too great to be accidental. This is perhaps the most striking example of many

12 442 DINSMORE ALTER which show such a relationship between large neighboring walled plains. The western wall of Walter can be observed on Plate III continuing southward#in a conspicuous manner beyond the floor for a distance equal to the diameter of the plain, and can be picked up at intervals for a much greater distance southward. Under a morning lighting Walter appears as the heel of a giant s footprint. Walter s northern wall continues eastward and westward to form a line with the southern walls of Regiomontanus and Aliacensis (65, 105). This line contains somewhat of an excess of crater density. Plate III shows a large area of the rough section of the moon south of Mare Nubium (85, 94). In it there are several places where the rim of a craterlike formation continues conspicuously beyond the depressed area either as a scarp or as a row of craters. The small craters at, or close to, the rims of these plains are too numerous relative to those in the surrounding areas to be accidental. This fact may well be observed by examination of Plate III. The second largest of the walled plains, Clavius, exhibits them near the top of the picture. To the east of Clavius, Scheiner (80, 124) has a nice ring of them. Below and slightly to the left of Clavius, Maginus (72, 119) shows perhaps more of this characteristic than does any other plain. Directly across from Maginus, Longomontanus shows a similar formation. North of Longomontanus, Wilhelm I (84, 114) has a rather delicate ring of small craters. Near the bottom of the picture, the partially ruined Pitatus (83, 103) continues the story. This excess of small craters indicates very definitely weakness in the rock at these loci. Although the discussion of the nature of the small craters belongs in a later paper, it may be noted here that in many cases lines of them appear somewhat to resemble our terrestrial blowhole craters. A line of them must lie along a fracture of the rock. These data indicate strongly that typical mountain walled plains, examples of which are listed below, are not due primarily to explosions either from internal or from external causes. Albategnius (65, 84) Maginus (72, 119) Clavius (75, 124) Ptolemaeus (74, 82)

13 THE NATURE OF THE LUNAR PLAINS 443 Hell Plain (74, 106) Hipparchus (65, 78) Janssen (38, 114) Longomontanus (83, 118) Purbach (71, 98) Scheiner (80, 124) Walter (68, 106) Wilhelm I (84, 114) In searching for a cause, one is tempted to accept the hypothe- sis of collapse of great domes. Such have been postulated on the earth as, for example, the great central plain in California. Their terrestrial existence is, however, controversial. If large domes existed, they were formed probably by great pressure of gas or steam beneath large areas of the surface. Their collapse could be due either to rock fracturing as they were lifted too high or to trigger action by large meteorites. Meteoritic explosions, how- ever, cannot account for the form in which we now observe the great mountain walled plains. At present I can neither accept nor reject the dome hypothesis. The areas appear to be too small to make a lack of isostasy a satisfactory hypothesis for their origin, as it may be in the case of the largest maria. The origins of the craterlike formations that exhibit consider- able external slopes must be entirely different from that of the walled plains. For them some type or types of explosions are indicated. They will be considered in a later paper. The following conclusions are definite concerning the typical mountain walled plains. 1. They are closely related in nature to the maria. 2. Only trigger explosions, if any, occurred in their formation. 3. They are large sunken surfaces in mountainous areas of the moon, and are usually of polygonal form. 4. Often they show definite relationships to their neighbors. 5. Small craters at or near their rims indicate sinkings along fault lines. 1 The first two papers appeared in Pub. A.S.P., 67, 237, 1955 and 68,38, E. Neison, The Moon (London: Longmans, Green and Co., 1876), pp D. Alter and P. E. Roques, Pub. A.S.P., 67, 246, D. Alter and P. E. Roques, Griffith Observer, 20, 50, J. E. Spurr, Geology Applied to Selenology, Vol. II (Lancaster, Pa. : Science Press Printing Co., 1945), p. 80 ff.

A SUSPECTED PARTIAL OBSCURATION OF THE FLOOR OF ALPHONSUS. Dinsmore Alter Griffith Observatory, Los Angeles, California

A SUSPECTED PARTIAL OBSCURATION OF THE FLOOR OF ALPHONSUS. Dinsmore Alter Griffith Observatory, Los Angeles, California A SUSPECTED PARTIAL OBSCURATION OF THE FLOOR OF ALPHONSUS Dinsmore Alter Griffith Observatory, Los Angeles, California Visual observations of the moon have been reported from time to time in which an area

More information

Record of Observation for Explore the Universe Observing Certificate RASC

Record of Observation for Explore the Universe Observing Certificate RASC Observing the Moon As the closest major celestial object to the earth, the moon reveals more detail to observers than any other object. So much so, in fact, that a large number of lunar features can be

More information

Photographic Album of Lunar Features

Photographic Album of Lunar Features Photographic Album of Lunar Features used as objectives in the RASC Explore the Moon observing program images by Robert Reeves (San Antonio, TX, reeves10@satx.rr.com) selected and labelled by Dave Chapman

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

MARINER VENUS / MERCURY 1973 STATUS BULLETIN

MARINER VENUS / MERCURY 1973 STATUS BULLETIN MARINER VENUS / MERCURY 1973 STATUS BULLETIN MARINER 10 PICTURES OF MERCURY; SECOND ENCOUNTER PLANNED Fig. 1. (a) Photomosaic of Mercury made from nine computer-enhanced pictures taken at 234,000 km, 6

More information

Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels.

Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels. Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels. Rugged Terra Rugged terra are mountainous regions of the moon. Wrinkle Ridges Wrinkle Ridges are created through

More information

Lunar Study and Observing Certificate Program

Lunar Study and Observing Certificate Program [ American Lunar Society Lunar Study and Observing Certificate Program Cosponsored by the Moon Society This project was designed for those who want to move beyond the simple observing stages. In completing

More information

Project Moonwalkers. European Association. for Astronomy Education

Project Moonwalkers. European Association. for Astronomy Education Project Moonwalkers Fig. 1. The Moon Images by students Javier Casado(Spain) and Vergil Iotov(Bulgaria) from International Astronomical Summer School 2009, 50/70 Schmidtteleskop +CCD, National Astronomical

More information

The Crater Plato as viewed by an

The Crater Plato as viewed by an 56 CRATER PLATO VIEWED ON THE MOON. [I., 2. Kodai Kanal. The slides just shown, like those they had recently of Halley's Comet, were very fine specimens of what wa.s turned out, and he thought members

More information

COSMORPHOLOGY - May 2009

COSMORPHOLOGY - May 2009 Name COSMORPHOLOGY - May 2009 Geologic landforms Purpose: By studying aerial photographs you will learn to identify different kinds of geologic features based on their different morphologies and learn

More information

1781: Uranus Discovered. The Outer Worlds. 1846: Neptune Discovered. Distance Comparison. Uranus Rotates Sideways. Exaggerated Seasons On Uranus

1781: Uranus Discovered. The Outer Worlds. 1846: Neptune Discovered. Distance Comparison. Uranus Rotates Sideways. Exaggerated Seasons On Uranus The Outer Worlds 1781: Discovered (accidentally!) by William Herschel using a 6 inch telescope [he thought it was a comet!] 2 Draft 12/03/2006 Updated May 05, 2011 1846: Discovered Le Verrier: proposed

More information

COSMORPHOLOGY - May 2012

COSMORPHOLOGY - May 2012 Name COSMORPHOLOGY - May 2012 Geologic mapping Goals: To recognize the similarities and differences in the processes affecting the outer planet satellites, and in the resulting landforms. To demonstrate

More information

Moon 101. By: Seacrest School Moon Crew Blake Werab David Prue

Moon 101. By: Seacrest School Moon Crew Blake Werab David Prue Moon 101 By: Seacrest School Moon Crew Blake Werab David Prue The 101 images The smooth Mare surfaces common on the nearside of the Moon Mare Surfaces from Late heavy Bombardment We find that the 3 images

More information

UNIVERSITY COLLEGE LONDON. PHAS : Palomar Sky Survey Prints: Virgo and Hercules Clusters

UNIVERSITY COLLEGE LONDON. PHAS : Palomar Sky Survey Prints: Virgo and Hercules Clusters UNIVERSITY COLLEGE LONDON University Of London Observatory PHAS1510 Certificate in Astronomy, 1213.01 PHAS1510-04: Palomar Sky Survey Prints: Virgo and Hercules Clusters Name: An experienced student should

More information

Fall 2006 Page 11. Toolkit Vertical Displacement (m) none Gassendi Phi none

Fall 2006 Page 11. Toolkit Vertical Displacement (m) none Gassendi Phi none Page 8 Selenology Vol. 25 No. 3 LTVT Evaluated at gassendi by Steve Boint Recently, I ve become aware of new FREE software for the lunar enthusiast: Jim s Lunar Terminator Visualization Tool. While capable

More information

Lunar Geology of Apollo 11 Landing Site. Chenango Forks High School Sharon Hartzell Sarah Maximowicz Benjamin Daniels Sarah Andrus Jackson Haskell

Lunar Geology of Apollo 11 Landing Site. Chenango Forks High School Sharon Hartzell Sarah Maximowicz Benjamin Daniels Sarah Andrus Jackson Haskell Lunar Geology of Apollo 11 Landing Site Chenango Forks High School Sharon Hartzell Sarah Maximowicz Benjamin Daniels Sarah Andrus Jackson Haskell Lunar Maria Lunar Maria Lunar Maria Low albedo Volcanic

More information

1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation

1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation Loulousis 1 Describe the structure of the moon 2. Describe its surface features 3. Summarize the hypothesis of moon formation moon -a body that revolves around a planet and that has less mass than the

More information

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. GEOLOGY Geologists scientists who study the forces that make and shape the Earth Geologists

More information

Lunar Observing Log. Part 1: Background

Lunar Observing Log. Part 1: Background Lunar Observing Log Part 1: Background This is an evening observation, please plan ahead this observation requires four look-sees of the Moon over the next 7 days. There is no excuse for not doing it,

More information

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria?

Q. Some rays cross maria. What does this imply about the relative age of the rays and the maria? Page 184 7.1 The Surface of the Moon Surface Features To the naked eye, the Moon is a world of grays. Some patches are darker than others, creating a vague impression of what some see as a face ( the man

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Photogeologic Mapping of Mars

Photogeologic Mapping of Mars Exercise Two and Fifteen are suggested as introductory exercises. 2.0 hours Exercise Seventeen Photogeologic Mapping of Mars Instructor Notes Suggested Correlation of Topics Deductive reasoning, geologic

More information

Section 3 Deforming Earth s Crust

Section 3 Deforming Earth s Crust Section 3 Deforming Earth s Crust Key Concept Tectonic plate motions deform Earth s crust. Deformation causes rock layers to bend and break and causes mountains to form. What You Will Learn Stress is placed

More information

Around the Moon in 28 Days: Lunar Observing for Beginners

Around the Moon in 28 Days: Lunar Observing for Beginners Lunar Object List E=unaided eye; B=binoculars;T=telescope Moon - E, B, T Earthshine - E, B, T Mare Crisium Mare 2 E, B, T Agarum Promontorium Promontory 2 T Langrenus Crater 2 B, T Lohse Crater 2 T Acosta

More information

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain

From Punchbowl to Panum: Long Valley Volcanism and the Mono-Inyo Crater Chain From Punchbowl to Panum: Leslie Schaffer E105 2002 Final Paper Long Valley Volcanism and the Mono-Inyo Crater Chain Figure 1. After a sequence of earthquakes during the late 1970 s to the early 1980 s

More information

Mercury Data (Table 11-1) 11a. Sun-Scorched Mercury. Mercury Data: Numbers

Mercury Data (Table 11-1) 11a. Sun-Scorched Mercury. Mercury Data: Numbers 11a. Sun-Scorched Mercury Earth-based observations of Mercury Mercury s rotation & year Mariner 10 s images of Mercury Mercury s interior Mercury Data (Table 11-1) Mercury Data: Numbers Diameter: 4,878.km

More information

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from

More information

LUNAR OBSERVING. What will you learn in this lab?

LUNAR OBSERVING. What will you learn in this lab? LUNAR OBSERVING What will you learn in this lab? The Moon is the second most noticeable object in the sky. This lab will first introduce you to observing the Moon with a telescope. You will be looking

More information

by Gerard P. Kuiper July 2, 1965

by Gerard P. Kuiper July 2, 1965 No. 49 VOLCANIC SUBLIMATES ON EARTH AND MOON by Gerard P. Kuiper July 2, 1965 ABSTRACT Two groups of photographs of Laimana Volcano, Hawaii, are reproduced for their relevance to lunar studies: (1) two

More information

Camden Fairview NASA Lunar Research Team PowerPoint. October 27, 2011

Camden Fairview NASA Lunar Research Team PowerPoint. October 27, 2011 Camden Fairview NASA Lunar Research Team PowerPoint October 27, 2011 Introduction to the Moon The Moon is the only natural satellite of the Earth and was formed about the same time, over 4.5 billion years

More information

ASTRONOMY. Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow

ASTRONOMY. Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow ASTRONOMY Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow FIGURE 9.1 Apollo 11 Astronaut Edwin Buzz Aldrin on the Surface of the Moon. Because there is no atmosphere, ocean, or geological activity

More information

22.4 Plate Tectonics. Africa

22.4 Plate Tectonics. Africa The Red Sea between Africa and the Arabian peninsula in Asia marks a region where two pieces of the lithosphere are slowly moving apart. Over the next 100 million years, the Red Sea could become an ocean.

More information

Explore the Moon. with binoculars. an RASC observing program with certificate for beginning observers

Explore the Moon. with binoculars. an RASC observing program with certificate for beginning observers THE ROYAL ASTRONOMICAL SOCIETY OF CANADA presents: Explore the Moon with binoculars photo by Ian Corbett, Liverpool, Nova Scotia an RASC observing program with certificate for beginning observers Royal

More information

Impact Craters Teacher Page Purpose

Impact Craters Teacher Page Purpose 1 of 5 2008-05-01 12:15 PM Hawai'i Space Grant College, Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, 1996 Background Impact Craters Teacher Page Purpose To determine the factors

More information

Impact Scars at Kilauea l

Impact Scars at Kilauea l Impact Scars at Kilauea l CHESTER K. WENTWORTH 2 KILAUEA CALDERA is an ellipsoidal area about two by three miles in extent, whose floor around its eastern, northern, and northwestern margins stands 200

More information

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet Part II: Solar System The Moon Audio update: 2014Feb23 The Moon A. Orbital Stuff B. The Surface C. Composition and Interior D. Formation E. Notes 2 A. Orbital Motion 3 Earth-Moon is a Binary Planet 4 1.

More information

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons ESCI 110: Planetary Surfaces Page 3-1 Introduction Exercise 3 Surfaces of the Planets and Moons Our knowledge of the solar system has exploded with the space exploration programs of the last 40 years.

More information

discussion of North America s physical features, including its landforms and bodies of

discussion of North America s physical features, including its landforms and bodies of Chapter 7 Natural Environments of North America Chapter 7 focuses on the natural environments of North America. The chapter opens with a discussion of North America s physical features, including its landforms

More information

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH UNIT 3.2 An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. USE THESE NOTES: OUR HOME PLANET EARTH: What do you know about our planet? SO.HOW

More information

Lunar Crater Activity - Teacher Pages

Lunar Crater Activity - Teacher Pages Adapted from: http://www.nasa.gov/pdf/180572main_etm.impact.craters.pdf I took the activity and simplified it so that there was just one independent variable: the drop height, and one dependent variable:

More information

Lunar Explorations: 1. Between craters Walther and Gauricus. Lunar Explorations: 2. Gassendi. Oceanus Procellarum. Walther

Lunar Explorations: 1. Between craters Walther and Gauricus. Lunar Explorations: 2. Gassendi. Oceanus Procellarum. Walther 1. Between craters Walther and Gauricus Oceanus Procellarum Best seen: April 16 and 17; April 28 and 29 Walther 1671. Several times, Giovanni Domenico Cassini thought he saw a misty formation, perhaps

More information

Geology 300, Physical Geology Spring 2019 Quiz Ch 19, Plate Tectonics Name

Geology 300, Physical Geology Spring 2019 Quiz Ch 19, Plate Tectonics Name Geology 300, Physical Geology Spring 2019 Quiz Ch 19, Plate Tectonics Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The portion of a fracture

More information

Definition: Plate tectonics: the theory that the earth s surface consists of a mosaic of internally rigid plates that move relative to each other

Definition: Plate tectonics: the theory that the earth s surface consists of a mosaic of internally rigid plates that move relative to each other Chapter 2 Plate tectonics Definition: Plate tectonics: the theory that the earth s surface consists of a mosaic of internally rigid plates that move relative to each other Plate boundaries: zones of faulting

More information

The Moon s radius is about 1100 miles. The mass of the Moon is 7.3x10 22 kg

The Moon s radius is about 1100 miles. The mass of the Moon is 7.3x10 22 kg The Moon Orbit Parallax methods can provide us with quite accurate measurements of the distance to the Moon Earth s diameter is used as a baseline Radar and laser ranging yield more accurate distances

More information

Interpreting the Solar Eclipse Data

Interpreting the Solar Eclipse Data Interpreting the Solar Eclipse Data Joachim Köppen, DF3GJ, Inst.f.Theoret.Physik u.astrophysik, Univ.Kiel in collaboration with Jean-Jacques Maintoux, F1EHN, Observatoire d'orsay, France April 2015 Introduction

More information

Directed Reading. Section: How Mountains Form MOUNTAIN RANGES AND SYSTEMS. Skills Worksheet

Directed Reading. Section: How Mountains Form MOUNTAIN RANGES AND SYSTEMS. Skills Worksheet Skills Worksheet Directed Reading Section: How Mountains Form 1. How high is Mount Everest? a. about 1980 km above sea level b. more than 8 km below sea level c. more than 8 km above sea level d. more

More information

Earth, the Lively* Planet. * not counting the life on the planet!

Earth, the Lively* Planet. * not counting the life on the planet! Earth, the Lively* Planet * not counting the life on the planet! What We Will Learn Today What are planet Earth s features? What processes shape planetary surfaces? How does Earth s surface move? How did

More information

Extraterrestrial Volcanism

Extraterrestrial Volcanism Extraterrestrial Volcanism What does it take to create volcanic activity? How do different planetary conditions influence volcanism? Venus Volcanism in our solar system. Io Europa Mercury Venus Earth/Moon

More information

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy

LESSON 2 THE EARTH-SUN-MOON SYSTEM. Chapter 8 Astronomy LESSON 2 THE EARTH-SUN-MOON SYSTEM Chapter 8 Astronomy OBJECTIVES Investigate how the interaction of Earth, the Moon, and the Sun causes lunar phases. Describe conditions that produce lunar and solar eclipses.

More information

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe.

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe. Astronomy, PART 2 Vocabulary Aphelion Asteroid Astronomical Unit Comet Constellation Crater Eccentricity Eclipse Equinox Geocentric model Gravitation Heliocentric model Inertia Jovian Perihelion Revolution

More information

Chapter 17: Mercury, Venus and Mars

Chapter 17: Mercury, Venus and Mars Chapter 17: Mercury, Venus and Mars Mercury Very similar to Earth s moon in several ways: Small; no atmosphere lowlands flooded by ancient lava flows heavily cratered surfaces Most of our knowledge based

More information

UNIT 6 PLATE TECTONICS

UNIT 6 PLATE TECTONICS UNIT 6 PLATE TECTONICS CONTINENTAL DRIFT Alfred Wegner proposed the theory that the crustal plates are moving over the mantle. He argued that today s continents once formed a single landmass, called Pangaea

More information

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth

What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth The Moon What is the Moon? A natural satellite One of more than 96 moons in our Solar System The only moon of the planet Earth Location, location, location! About 384,000 km (240,000 miles) from Earth

More information

Today in Astronomy 111: Earth s moon

Today in Astronomy 111: Earth s moon Today in Astronomy 111: Earth s moon Introduction to the Moon Physical aspects of the Lunar surface Cratering and the history of the Lunar surface The Moon s temperature Rocks and minerals Homework #1

More information

THE MAMMOTH "EARTHQUAKE FAULT" AND RELATED FEATURES IN MON0 COUNTY, CALIFORNIA* By H. BENIOFF and B. GUTENBERG

THE MAMMOTH EARTHQUAKE FAULT AND RELATED FEATURES IN MON0 COUNTY, CALIFORNIA* By H. BENIOFF and B. GUTENBERG THE MAMMOTH "EARTHQUAKE FAULT" AND RELATED FEATURES IN MON0 COUNTY, CALIFORNIA* By H. BENIOFF and B. GUTENBERG IN UNDERTAKING this work it was our intention to investigate the well-known "Earthquake Fault"

More information

Venus Earth s Sister Planet

Venus Earth s Sister Planet Venus Earth s Sister Planet 9 9.1 Orbital Properties 3rd brightest object in the sky, after Sun and Moon. Can even be seen in broad daylight Often called the morning star or the evening star, as it is

More information

By Helen and Mark Warner

By Helen and Mark Warner By Helen and Mark Warner Teaching Packs - Space - Page 1 In this section, you will learn about... 1. About the objects in the Solar System. 2. How the Solar System formed. 3. About the Asteroid Belt, Kuiper

More information

A User s Guide to the Sky

A User s Guide to the Sky A User s Guide to the Sky Constellations Betelgeuse Rigel Stars are named by a Greek letter ( ) according to their relative brightness within a given constellation plus the possessive form of the name

More information

ANALYSIS OF MERCURIAN CRATERS BY MEANS OF CARTOGRAFIC METHOD.

ANALYSIS OF MERCURIAN CRATERS BY MEANS OF CARTOGRAFIC METHOD. ANALYSIS OF MERCURIAN CRATERS BY MEANS OF CARTOGRAFIC METHOD. Kozlova E.A. 1, Sitnikov B.D 1., Rodionova J.F. 1, Shevchenko V.V. 1 1. Sternberg State Astronomical Institute, Universitetskiy prospect 13,

More information

Moon 101 Presentation. Mike Delmonaco Trevor Rosenlicht Nicole La Reddola

Moon 101 Presentation. Mike Delmonaco Trevor Rosenlicht Nicole La Reddola Moon 101 Presentation Mike Delmonaco Trevor Rosenlicht Nicole La Reddola Feature 1: Dome Feature 2: Cone Feature 3: Main dome crater Image 1 Color key: Dome/Cone: Dome Crater Cone Dome Craters: Endogenic

More information

General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On

General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On General Oceanography Geology 105 Expedition 10 - Whole Lotta Shakin' Goin' On Name Not attempting to answer questions on expeditions will result in point deductions on course workbook (two or more blank

More information

Introduction. Background

Introduction. Background Introduction In introducing our research on mars we have asked the question: Is there a correlation between the width of an impact crater and the depth of that crater? This will lead to answering the question:

More information

Laboratory #7: Plate Tectonics

Laboratory #7: Plate Tectonics Materials Needed: 1. Pencil 2. Colored Pencils 3. Metric/Standard Ruler 4. Calculator 5. Tracing Paper Laboratory #7: Plate Tectonics Plate Tectonics The Earth is composed of layers. At the center is a

More information

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms.

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Chapter 10 Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Reading Strategy Previewing Before you read the section,

More information

6. In the diagram below, letters A and B represent locations near the edge of a continent.

6. In the diagram below, letters A and B represent locations near the edge of a continent. 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

ENHANCED LUNAR THERMAL RADIATION DURING A LUNAR ECLIPSE*

ENHANCED LUNAR THERMAL RADIATION DURING A LUNAR ECLIPSE* ENHANCED LUNAR THERMAL RADIATION DURING A LUNAR ECLIPSE* R. W. Shorthill, H. C. Borough, and J. M. Conley Boeing Airplane Co. Aero-Space Division, Seattle, Washington In an attempt to detect variations

More information

Plate Tectonics. Chapter 17. Great Idea: The entire Earth is still changing, due to the slow convection of soft, hot rocks deep within the planet.

Plate Tectonics. Chapter 17. Great Idea: The entire Earth is still changing, due to the slow convection of soft, hot rocks deep within the planet. Plate Tectonics Chapter 17 Great Idea: The entire Earth is still changing, due to the slow convection of soft, hot rocks deep within the planet. 1 Chapter Outline The Dynamic Earth Plate Tectonics: A Unifying

More information

Callihan, M.B., and Klimczak, C., 2019, Topographic expressions of lunar graben: Lithosphere,

Callihan, M.B., and Klimczak, C., 2019, Topographic expressions of lunar graben: Lithosphere, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Callihan, M.B., and Klimczak, C., 2019, Topographic expressions of lunar graben: Lithosphere, https://doi.org/10.1130/l1025.1. GSA Data Repository

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Mercury and Venus 3/20/07

Mercury and Venus 3/20/07 Announcements Reading Assignment Chapter 13 4 th Homework due today Quiz on Thursday (3/22) Will cover all material since the last exam. This is Chapters 9-12 and the part of 13 covered in the lecture

More information

Earth and Space Science Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle.

Earth and Space Science Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle. Earth and Space Science 2015 Semester 2 Exam Review Part 1 Convection -A form of heat transfer. - Convection currents circulate in the Asthenosphere located in the Upper Mantle. - Source of heat is from

More information

Continental Drift to Plate Tectonics: From Hypothesis to Theory

Continental Drift to Plate Tectonics: From Hypothesis to Theory Continental Drift to Plate Tectonics: From Hypothesis to Theory 1 Key Understandings Internal structure of the earth/structure of the crust. Difference between continental drift & plate tectonics. Evidence

More information

Amazing Orientale Peaks and Valleys

Amazing Orientale Peaks and Valleys LROC Image Browser - M1124173129LR http://wms.lroc.asu.edu/lroc_browse/view/m1124173129lr 1 of 1 7/19/2013 11:04 PM Amazing Orientale Peaks and Valleys Image Data Time Orbit 17842 Center Longitude 264.72

More information

Introducti on. Land Survey. Geomagnetic Survey. Geomagnetic Results and Interpretati ons - Conclusions and Recommendations C

Introducti on. Land Survey. Geomagnetic Survey. Geomagnetic Results and Interpretati ons - Conclusions and Recommendations C m M 42A86SW8281 63.42 PRICE 010 C O H T E H l 42A86SW828I 63.42 PRICE 010C Introducti on Land Survey Geomagnetic Survey Geomagnetic Results and Interpretati ons - Conclusions and Recommendations - - -

More information

Giant Impact Theory Fission Theory Capture Theory Condensation Theory Colliding Planetisimals Theory Regolith Mountain and Mounds Craters and Impacts

Giant Impact Theory Fission Theory Capture Theory Condensation Theory Colliding Planetisimals Theory Regolith Mountain and Mounds Craters and Impacts By The Terminators Giant Impact Theory Fission Theory Capture Theory Condensation Theory Colliding Planetisimals Theory Regolith Mountain and Mounds Craters and Impacts Marias Rills and Rays Sources The

More information

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES SECOND GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SECOND GRADE UNIVERSE WEEK 1. PRE: Discovering stars. LAB: Analyzing the geometric pattern of constellations. POST: Exploring

More information

PLATE TECTONICS REVIEW GAME!!!!

PLATE TECTONICS REVIEW GAME!!!! PLATE TECTONICS REVIEW GAME!!!! Name the four layers of the earth - crust - mantle - outer core - inner core Which part of Earth s structure contains tectonic plates? LITHOSPHERE Name one reason why the

More information

Chapter 17. Chapter 17

Chapter 17. Chapter 17 Chapter 17 Moons and Other Solar System Objects Sections 17.1-17.2 Chapter 17 Parallax http://www.youtube.com/watc h?v=xuqaildqpww The Moon July 20, 1969 humans first landed on moon What was the first

More information

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17.

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17. Astronomy 1 S 16 Exam 1 Name Identify terms Label each term with the appropriate letter of a definition listed 1. Spectral line R 8. Albedo H 15. helioseismology E 2. Terrestrial Planet G 9. Coulomb Force

More information

Your guide to. The Moon. by Robert Burnham. A supplement to Astronomy magazine

Your guide to. The Moon. by Robert Burnham. A supplement to Astronomy magazine Your guide to The Moon by Robert Burnham 618128 A supplement to Astronomy magazine 4 days after New Moon The crescent Moon South is up to match the view in a telescope, and east lies to the left. If you

More information

General Editor: Vince Russett

General Editor: Vince Russett YCCCART 2014/Y20 North Somerset HER 2015/11 Manual survey using an electronic, hydryostatic level (NIVCOMP) at Wemberham Roman Villa YATTON, CONGRESBURY, CLAVERHAM AND CLEEVE ARCHAEOLOGICAL RESEARCH TEAM

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 5 Magma and Volcanism Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information: pasakyi@ug.edu.gh College

More information

APPENDIX A GLOSSARY. Appendix A.1

APPENDIX A GLOSSARY. Appendix A.1 APPENDIX A GLOSSARY Appendix A.1 Appendix A.2 Back Bearing A back bearing is measured from the object to your position. It is the exact opposite of a direct bearing. Base Line An imaginary line on the

More information

Inside Planet Earth: Surface to Center

Inside Planet Earth: Surface to Center Inside Planet Earth: Surface to Center Section 1: Introduction 1. What percentage of the Earth cannot be accessed by humans? 99% 2. True or False: It would be easier to invent something to travel to the

More information

Surface Features. Chapter 7. Rays. Craters. Origin of Lunar Surface Features. Rilles 5/10/12. The Moon

Surface Features. Chapter 7. Rays. Craters. Origin of Lunar Surface Features. Rilles 5/10/12. The Moon Chapter 7 The Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Surface divided into two major regions Highlands Bright rugged areas composed mainly of anorthosite

More information

Chapter 21. The Moon and Mercury: Comparing Airless Worlds

Chapter 21. The Moon and Mercury: Comparing Airless Worlds Chapter 21 The Moon and Mercury: Comparing Airless Worlds Outline I. The Moon A. The View From Earth B. The Apollo Missions C. Moon Rocks D. The History of the Moon E. The Origin of Earth's Moon II. Mercury

More information

1.4 Notes: Plates Converge or Scrape Past Each Other Think About Tectonic Plates Push Together at Convergent Boundaries

1.4 Notes: Plates Converge or Scrape Past Each Other Think About Tectonic Plates Push Together at Convergent Boundaries 1.4 Notes: Plates Converge or Scrape Past Each Other Think About If new crust is created at divergent boundaries, why does the total amount of crust on Earth stay the same? Tectonic Plates Push Together

More information

Continental Landscapes

Continental Landscapes Continental Landscapes Landscape influenced by tectonics, climate & differential weathering Most landforms developed within the last 2 million years System moves toward an equilibrium Continental Landscapes

More information

Moon 101. Bellaire High School Team: Rachel Fisher, Clint Wu, Omkar Joshi

Moon 101. Bellaire High School Team: Rachel Fisher, Clint Wu, Omkar Joshi Moon 101 Bellaire High School Team: Rachel Fisher, Clint Wu, Omkar Joshi Part I Formation of the Moon Planetary Formation In the solar nebula, dust particles coalesced to form smaller planetesimals and

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 23 Touring Our Solar System 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus,

More information

Plate Tectonics Unit II: Plate Boundaries (3.5 pts)

Plate Tectonics Unit II: Plate Boundaries (3.5 pts) T. James Noyes, El Camino College Plate Tectonics Unit II: The Plate Boundaries (Topic 11A-2) page 1 Name: Section: Plate Tectonics Unit II: Plate Boundaries (3.5 pts) Plate Boundaries We will now discuss

More information

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets page - Lab 13 - Introduction to the Geology of the Terrestrial Planets Introduction There are two main families of planets in our solar system: the inner Terrestrial planets (Earth, Mercury, Venus, and

More information

Our Barren Moon. Chapter Ten. Guiding Questions

Our Barren Moon. Chapter Ten. Guiding Questions Our Barren Moon Chapter Ten Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior

More information

THE PROBLEM OF THE BARTLETT TROUGH

THE PROBLEM OF THE BARTLETT TROUGH THE PROBLEM OF THE BARTLETT TROUGH STEPHEN TABER University of South Carolina ABSTRACT Little is known concerning the great submarine troughs, although they must be classed among the major tectonic features

More information

EARTH SCIENCE KEY UNIT 2-H

EARTH SCIENCE KEY UNIT 2-H EARTH SCIENCE KEY UNIT 2-H UNIT 2 MODELS & DIMENSIONS OF EARTH I. Model = ANYTHING THAT REPRESENTS THE PROPERTIES OF AN OBJECT OR SYSTEM A. Types and examples of models: 1. PHYSICAL Provides us with information

More information

The Surprising Lunar Maria

The Surprising Lunar Maria 1 of 5 posted June 23, 2000 The Surprising Lunar Maria Written by G. Jeffrey Taylor Hawai'i Institute of Geophysics and Planetology The lunar maria, the dark, smooth areas on the Moon, formed when lava

More information

Dynamic Earth A B1. Which type of plate boundary is located at the Jordan Fault? (1) divergent (3) convergent (2) subduction (4) transform

Dynamic Earth A B1. Which type of plate boundary is located at the Jordan Fault? (1) divergent (3) convergent (2) subduction (4) transform Dynamic Earth A B1 1. The edges of most lithospheric plates are characterized by (1) reversed magnetic orientation (2) unusually rapid radioactive decay (3) frequent volcanic activity (4) low P-wave and

More information

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates.

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. As you can see, some of the plates contain continents and others are mostly under the ocean.

More information

Module 7: Plate Tectonics and Earth's Structure Topic 2 Content: Plates of the World Presentation Notes

Module 7: Plate Tectonics and Earth's Structure Topic 2 Content: Plates of the World Presentation Notes There are several large plates and several smaller plates that comprise the Earth s crust. How do these plates interact with the bordering plates? Review each of the world s plates and the landforms that

More information

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea:

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea: Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # A. Viscosity Group # B. Dissolved Gases Group # II. Volcanic Material

More information