Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model

Size: px
Start display at page:

Download "Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model"

Transcription

1 Gaia DR2 and/versus RAVE DR5: application for the semi-analytic thin disk model Speaker: Supervisor: Kseniia Sysoliatina (ARI) Prof. Dr. Andreas Just Gaia DR2 workshop Heidelberg,

2 Outline (1) Comparison of the RAVE DR5 and Gaia DR2 content: distances radial velocities (2) A semi-analytic thin disk model: Validation of findings from TGASxRAVE with Gaia_DR2xRAVE_DR5 Age-metallicity relation from the Gaia_DR2xRAVE_DR5 Red Clump sample

3 Radial Velocity Experiment (RAVE) RAVE kinematically unbiased spectroscopic survey of medium resolution (R~7800). Science with RAVE: Local and Global parameters of the Milky Way (MW escape speed, separation of thin and thick disks, velocity ellipsoid orientation, asymmetric drift, etc.) Substructure as probles of formation (signatures of in-falling stellar streams, role of the mergers in thick disk formation) Stellar astrophysics (variables, binary stars...) More on UK Schmidt Telescope, Anglo-Australian Observatory (Steinmetz+2006, see Kunder+2017 on DR5) Gaia_DR2xRAVE_DR5 ( , 93% of RAVE DR5) positions, proper motions G, G_BP, G_RP photometry geometric distances (Bailer-Jones+2018) radial velocities chemical abundances (Fe, Mg, Al, Si, Ti, Ni) stellar parameters (logg, Teff) spectrophotometric distances (McMillan+2017) radial velocitites

4 Radial Velocity Experiment (RAVE) RAVE kinematically unbiased spectroscopic survey of medium resolution (R~7800). Science with RAVE: Local and Global parameters of the Milky Way (MW escape speed, separation of thin and thick disks, velocity ellipsoid orientation, asymmetric drift, etc.) Substructure as probles of formation (signatures of in-falling stellar streams, role of the mergers in thick disk formation) Stellar astrophysics (variables, binary stars...) UK Schmidt Telescope, Anglo-Australian Observatory (Steinmetz+2006, see Kunder+2017 on DR5) More on Gaia_DR2xRAVE_DR5 (512, 971 = 93% of RAVE DR5) positions, proper motions G, G_BP, G_RP photometry geometric distances (Bailer-Jones+2018) radial velocities? chemical abundances (Fe, Mg, Al, Si, Ti, Ni) stellar parameters (logg, Teff) spectrophotometric distances (McMillan+2017) radial velocitites

5 Gaia DR2 and RAVE DR5 distances

6 Gaia DR2 and RAVE DR5 distances Bayesian method Gaia DR2 distances (Bailer-Jones+2018) Gaia DR2 parallaxes RAVE DR5 distances (McMillan+2017): TGAS parallaxes (logg,teff), [M/H] (J,H,K)2MASS Relative distance errors:

7 Gaia DR2 and RAVE DR5 distances Gaia DR2 and RAVE DR5 distances of comparable precision TGAS-based distances Geometric distances from Gaia DR2 are same or better quality then RAVE DR5 spectrophotometric distances!

8 Gaia DR2 and RAVE DR5 distances Gaia DR2 and RAVE DR5 distances of comparable precision TGAS-based distances Geometric distances from Gaia DR2 are same or better quality then RAVE DR5 spectrophotometric distances!

9 Gaia DR2 and RAVE DR5 distances Defining a «good distance subset»: ed/d RAVE_DR5 ed/d Gaia_DR2 Contains 9,873 stars (only 2% of the Gaia_DR2xRAVE_DR5 cross-match) Conclusions: RAVE DR5 distances are only useful: for a small subset of ~104 stars for giants (e.g., red clump) and upper main sequence mainly close to the Galactic plane In all other cases use Gaia DR2 distances OR wait for the update of RAVE (DR6 with new stellar parameters, abundances and distances constrained by Gaia DR2 parallaxes)

10 Good RAVE distances and Conclusions #1 Defining a «good distance subset»: ed/d RAVE_DR5 ed/d Gaia_DR2 Contains 9,873 stars (only 2% of the Gaia_DR2xRAVE_DR5 cross-match) Conclusions #1: RAVE DR5 distances are only useful: for a small subset of ~104 stars for giants (e.g., red clump) and upper main sequence mainly close to the Galactic plane In all other cases use Gaia DR2 distances OR wait for the update of RAVE (DR6 with new stellar parameters, abundances and distances constrained by Gaia DR2 parallaxes)

11 Gaia DR2 and RAVE DR5 radial velocities

12 Gaia DR2 and RAVE DR5 radial velocities See Soubiran+2018 and especially Katz+2018 on validation of Gaia DR2 radial velocitites. (RAVE Collaboration) (Katz+2018)

13 Gaia DR2 and RAVE DR5 radial velocities Gaia_DR2xRAVE_DR5 with Gaia radial velocitites available = 456, 316 (89% of RAVE DR5)

14 Gaia DR2 and RAVE DR5 radial velocities Something is wrong! Helpful questions: Are these stars misidentified? Where are these stars (d, l, b)? Are they faint sources? Do they have large radial velocity errors in RAVE? Defining a «bad radial velocity subset»: Def1: Vr, Gaia Vr, RAVE 3(eVr, Gaia+eVr, RAVE) Def2: Vr, RAVE > 200 km/s && Vr, Gaia < 100 km/s 24, 442 stars 2, 511

15 Gaia DR2 and RAVE DR5 radial velocities Something is wrong! Helpful questions: Are these stars misidentified? Where are these stars (d, l, b)? Are they faint sources? Do they have large radial velocity errors in RAVE? Defining a «bad radial velocity subset»: Def1: Vr, Gaia Vr, RAVE 3(eVr, Gaia+eVr, RAVE) Def2: Vr, RAVE > 200 km/s && Vr, Gaia < 100 km/s 24, 442 stars 2, 511

16 Gaia DR2 and RAVE DR5 radial velocities

17 What about completeness? RAVE completeness depends on apparent magnitude (Wojno+2017) Gaia DR2 radial velocity catalog: completeness of stars with G < 12.5 (Katz+2018)

18 Gaia_DR2(+Vr)xRAVE effective completeness

19 Conclusions #2 General remarks: A systematic offset between Gaia DR2 and RAVE DR5 radial velocities is very small, ~0.3 km/s Gaia DR2 radial velocities are ~3 times more precise (typical error is 0.3 km/s) There are stars with unreliable RAVE DR5 radial velocitites (low SNR) Gaia DR2 radial velocities catalog is more complete then RAVE DR5 and its completeness function is simpler Thus: Gaia DR2 radial velocities look more attractive If you use Gaia DR2 radial velocities with RAVE or other catalog, you should care about selection function/ possible kinematic biases

20 Gaia DR2 and a semi-analytic thin disk model: first results

21 (1): Semi-analytic Just&Jahreiß model Thin disk model and how disk it works SFR(t) Function with peak, decline after t>t_peak Vertical density profiles AVR(t) Power law, monotonous increase with age Just&Jahreiß 2010 Just&Gao 2011 Rybizki&Just 2015 JJ-model (Poisson's eq) Scale heights Ф( z ) Monotonous increase with age Metallicity distributions AMR(t) IMF 2-slope IMF, (3rd slope tested) Additional ingredients: - gas, thick disk, DM halo - constant thickness of the thin disk [Rybizki&Just 2015] Age distributions Velocity distribution function f( W )

22 Forward modelling paradigm JJ10 disk model stellar populations Extinction Completeness distances metallicities x ages disk heating stellar populations* Parallax errors Scatter in metallicity Data sample

23 Testing the model with TGASxRAVE JJ10 disk model Extinction map Bovy+2015 stellar populations distances metallicities x ages disk heating S_RAVE Wojno+2017 S_TGAS Bovy2017 TGAS parallax errors 0.15 dex scatter in [Fe/H] Sample selection (~ 19, 000 stars): - Local solar cylinder (r=300 pc, z < 1 kpc) with d_estimate = 1/parallax - SNR > 30, eparallax/parallax < 0.3 stellar populations* TGASxRAVE local sample

24 Testing the model with TGASxRAVE Distance error effect influences z > 500 pc Sysoliatina+2018 (submitted)

25 Testing the model with TGASxRAVE Sysoliatina+2018 (submitted)

26 Testing the model with TGASxRAVE Summary of TGASxRAVE forward modelling: Model/data star counts agreement: -8% in total (LMS -3.6%, UMS -6%, RGB -34.7%) Additional 10% uncertainty comes from choice of isochrones Near-plane populations are dynamically colder in the data Metal-rich populations ([Fe/H]>0.2) are not reproduced Sysoliatina+2018 (submitted)

27 Validation with the Gaia_DR2xRAVE_DR5

28 Validation with the Gaia_DR2xRAVE_DR5

29 Validation with the Gaia_DR2xRAVE_DR5 z = [-1000,-600] pc z = [-600,-400] pc z = [-400,-300] pc z = [-300,-200] pc z = [-200,-100] pc z = [-100,0] pc total

30 Validation with the Gaia_DR2xRAVE_DR5 z = [-1000,-600] pc z = [-600,-400] pc z = [-400,-300] pc z = [-300,-200] pc z = [-200,-100] pc z = [-100,0] pc total Near-plane open clusters?

31 Gaia DR2 K-dwarfs in the local 50-pc sphere Hyades cluster 4, 255 stars

32 Extended JJ-model, R=[4,12] kpc SFR + assumption about constant thin disk thickness AVR, age distributions... Model 1 Model 2 IMF = const. AMR(R) -?

33 Gaia_DR2xRAVE_DR5 red clump 4250 < Teff/K < < logg < 2.8 (Boeche+2014)

34 Gaia_DR2xRAVE_DR5 red clump Bovy+2015 extinction map 4250 < Teff/K < < logg < 2.8 (Boeche+2014)

35 Gaia_DR2xRAVE_DR5 red clump 4250 < Teff/K < < logg < 2.8 (Boeche+2014)

36 Gaia_DR2xRAVE_DR5 red clump 4250 < Teff/K < < logg < 2.8 (Boeche+2014) MG < 1.5(GBP-GRP) RAVE Mg, Fe available 35, 042 stars

37 Constructing AMR from red clump JJ10+Padova isochrones

38 Constructing AMR from red clump JJ10+Padova isochrones [Fe/H](t) = age-metallicity relation (2-3 iterations)

39 Constructing AMR from red clump JJ10+Padova isochrones [Fe/H](t) = age-metallicity relation (2-3 iterations)

40 Conclusions #3 Using the Gaia_RD2xRAVE local sample we confirm our findings based on TGASxRAVE cross-match: Overall star counts/density profiles show perfect consistency with the data. Near-plane populations are dynamically colder in the data. Check with the Gaia DR2 K-dwarfs in the 50-pc sphere (Hyades cluster removed) gives the same result. Basing on Gaia_DR2xRAVE red clump sample, AMR is derived for Galactocentric distances R=[7,9] kpc.

41 Summary 1. Gaia DR2 versus RAVE DR5 Distances RAVE DR5 spectrophotometric distances (McMillan+17) are only iseful for a small near-plane subset of ~104 stars (giants and upper main sequence) In all other cases use Gaia DR2 geometric distances (Bailer-Jones+2018) Radial velocities Gaia DR2 radial velocities are more precise then those of RAVE DR5 Show only small offset between Gaia DR2 and RAVE DR5 of ~0.3 km/s Are more reliable for a subset of Gaia_DR2xRAVE stars where RAVE SNR is low (< 10) Gaia DR2 radial velocity catalog have higher completeness then RAVE DR5 and it selection function is simpler (but kinematically unbiased or not?) General remarks: RAVE distances/stellar parameters and abundances will be updated soon, i.e. Gaia_DR2xRAVE_DR6 will be a highly useful sample for the Galactic studies When using some catalog N with parameters NOT provided by Gaia, check an overlap Gaia_DR2xN and use Gaia DR2 high-precision astrometry/radial velocities/photometry depending on your task Thin disk studies with the semi-analytic Just-Jahreiß model Local disk model is consistent with the Gaia_DR2xRAVE_DR5 (star counts, kinematics except of a near-plane discrepancy, etc ) Gaia_DR2xRAVE_DR5 RC sample is useful for reconstructing AMR(R)

42 Thank you!

Astronomisches Rechen-Institut Heidelberg, Germany. The evolution history of the extended solar neighbourhood

Astronomisches Rechen-Institut Heidelberg, Germany. The evolution history of the extended solar neighbourhood Astronomisches Rechen-Institut Heidelberg, Germany The evolution history of the extended solar neighbourhood Andreas Just Kseniia Sysoliatina, Ioanna Koutsouridou Content Dynamical disc model Local model

More information

Correlations between stellar dynamics and metallicity in the discs

Correlations between stellar dynamics and metallicity in the discs Correlations between stellar dynamics and metallicity in the discs Semi-analytic chemodynamical model of the Milky Way Jan Rybizki (Supervisor: Andreas Just) Astronomisches Rechen-Institut - Zentrum für

More information

Galactic archaeology with the RAdial Velocity Experiment

Galactic archaeology with the RAdial Velocity Experiment Galactic archaeology with the RAdial Velocity Experiment Georges Kordopatis & RAVE collaboration Leibniz-Institute for Astrophysics, Potsdam Multi-Object Spectroscopy in the next decade: Big questions,

More information

Matthias Steinmetz. 16 Oct 2012 Science from the Next Generation Imaging and Spectroscopic Surveys 1

Matthias Steinmetz. 16 Oct 2012 Science from the Next Generation Imaging and Spectroscopic Surveys 1 Matthias Steinmetz 16 Oct 2012 Science from the Next Generation Imaging and Spectroscopic Surveys 1 The RAVE Survey Spectroscopic high latitude survey of the MW 9 < I < 13 GAIA spectral range and resolution

More information

(Present and) Future Surveys for Metal-Poor Stars

(Present and) Future Surveys for Metal-Poor Stars (Present and) Future Surveys for Metal-Poor Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics SDSS 1 Why the Fascination

More information

JINA Observations, Now and in the Near Future

JINA Observations, Now and in the Near Future JINA Observations, Now and in the Near Future Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute for Nuclear Astrophysics Examples SDSS-I, II, and III

More information

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran

The Gaia Mission. Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany. ISYA 2016, Tehran The Gaia Mission Coryn Bailer-Jones Max Planck Institute for Astronomy Heidelberg, Germany ISYA 2016, Tehran What Gaia should ultimately achieve high accuracy positions, parallaxes, proper motions e.g.

More information

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE

Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE IAU Symposium 330 Nice, 27. April 2017 Action-based Dynamical Modeling of the Milky Way Disk with Gaia & RAVE Wilma Trick (MPIA, Heidelberg) Hans-Walter Rix (MPIA) Jo Bovy (Uni Toronto) Open Questions

More information

Combining Gaia DR1, DR2 and Matthias Steinmetz (AIP) a preview on the full Gaia dataset. Matthias Steinmetz (AIP)

Combining Gaia DR1, DR2 and Matthias Steinmetz (AIP) a preview on the full Gaia dataset. Matthias Steinmetz (AIP) Combining Gaia DR, DR and Matthias Steinmetz (AIP) a preview on the full Gaia dataset Matthias Steinmetz (AIP) a t a d h AS t 5 - TG E V & A R ase e l e r Ga lact ic D app y lica nam tion ics s Towards

More information

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

Milky Way S&G Ch 2. Milky Way in near 1 IR   H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/ Why study the MW? its "easy" to study: big, bright, close Allows detailed studies of stellar kinematics, stellar evolution. star formation, direct detection of dark matter?? Milky Way S&G Ch 2 Problems

More information

Radial Velocity Surveys. Matthias Steinmetz (AIP)

Radial Velocity Surveys. Matthias Steinmetz (AIP) Radial Velocity Surveys Matthias Steinmetz (AIP) The Galactic case for RV surveys Information on how galaxies form is locked in n the phase-space (position,velocities) Information is locked in stars (abundances)

More information

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Oxygen in red giants from near-infrared OH lines: 3D effects and first results from Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Overview! 1. APOGEE: status and prospects! 2. A first look at

More information

Distance and extinction determination for stars in LAMOST and APOGEE survey

Distance and extinction determination for stars in LAMOST and APOGEE survey Distance and extinction determination for stars in LAMOST and APOGEE survey 王建岭 (LAMOST, References: NAOC) Wang et al. 2015a, MNRAS, submitted Wang et al. 2015b, In preparation Outline Background: why

More information

Probing the history of star formation in the Local Group using the galactic fossil record

Probing the history of star formation in the Local Group using the galactic fossil record Probing the history of star formation in the Local Group using the galactic fossil record Brian O Shea (Michigan State University) Collaborators: Tim Beers, Carolyn Peruta, Monica Derris (MSU), Jason Tumlinson

More information

Bayesian inference using Gaia data. Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg

Bayesian inference using Gaia data. Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg Bayesian inference using Gaia data Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg What is Bayes? an approach to learning (= inference) given data on a phenomenon, determine how well

More information

Asterseismology and Gaia

Asterseismology and Gaia Asterseismology and Gaia Asteroseismology can deliver accurate stellar radii and masses Huber et al 2017 compare results on distances from Gaia and asteroseismology for 2200 Kepler stars Asteroseismology

More information

Chemo-dynamical disk modeling. Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP)

Chemo-dynamical disk modeling. Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP) Chemo-dynamical disk modeling Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP) Talk outline Effect of disk asymmetries on disk dynamics. Radial migration in galactic disks. Chemo-dynamical disk

More information

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator)

Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) Overview of Gaia-ESO Survey results based on high-resolution spectra of FGK-type stars Rodolfo Smiljanic! (Gaia-ESO WG11 co-coordinator) The Gaia-ESO Survey http://www.gaia-eso.eu Public spectroscopic

More information

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Chengqun Yang Contents 1 Stellar Halo

More information

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE

Gaia News:Counting down to launch A. Vallenari. INAF, Padova Astronomical Observatory on behalf of DPACE Gaia News:Counting down to launch A. Vallenari INAF, Padova Astronomical Observatory on behalf of DPACE Outline Gaia Spacecraft status The Gaia sky Gaia open and globular clusters From data to science:

More information

Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey

Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey 2 nd LAMOST KEPLER WORKSHOP LAMOST in the era of large spectroscopic surveys July 31-August 3, 2017, @ Brussels Estimating the mass of our Milky Way from the LAMOST Galactic spectroscopic survey Yang Huang

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia J. Andersen 1,2, B. Nordström 1,2 1 Dark Cosmology Centre, The Niels Bohr Institute, University of Copenhagen, Denmark 2 Stellar Astrophysics

More information

Renegades in the Solar neighborhood

Renegades in the Solar neighborhood Title Renegades in the Solar neighborhood Ana Bonaca ITC Fellow Harvard University // Charlie Conroy // // Andrew Wetzel // Origin of the halo stars: In situ Eggen, Lynden-Bell & Sandage (1962) Accretion

More information

The Besançon Galaxy Model development

The Besançon Galaxy Model development The Besançon Galaxy Model development Annie C. Robin and collaborators Institut UTINAM, OSU THETA, Université Bourgogne-Franche-Comté, Besançon, France Outline Population synthesis principles New scheme

More information

The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia

The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia The Thick Thin Disk and the Thin Thick Disk: a New Paradigm from Gaia Michael Hayden Alejandra Recio-Blanco, Patrick de Laverny, Sarunas Mikolaitis, Guillaume Guiglion, Anastasia Titarenko Observatoire

More information

Review of stellar evolution and color-magnitude diagrams

Review of stellar evolution and color-magnitude diagrams Review of stellar evolution and color-magnitude diagrams The evolution of stars can be used to study the properties of galaxies Very characteristic features pinpoint at the age (chemistry) of the stars

More information

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs The Gaia-ESO Spectroscopic Survey Survey Co-PIs Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs Gaia-ESO survey context and motivations (conclusions and key words of several talks)

More information

Surface Brightness of Spiral Galaxies

Surface Brightness of Spiral Galaxies Surface Brightness of Spiral Galaxies M104: SA N4535: SAB LMC: dwarf irregular,barred Normal 1/4-law+exp fits An example of surface brightness profile. The top curve is the sum of exp disk+1/4-bulge. The

More information

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012

The HERMES project. Reconstructing Galaxy Formation. Ken Freeman RSAA, ANU. The metallicity distribution in the Milky Way discs Bologna May 2012 The HERMES project Reconstructing Galaxy Formation Ken Freeman RSAA, ANU The metallicity distribution in the Milky Way discs Bologna May 2012 HERMES is a new high-resolution fiber-fed multi-object spectrometer

More information

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag.

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag. Atomic Data Requirements for Large Spectroscopic Surveys: ESA Gaia and ESO GES Alex Lobel Royal Observatory of Belgium Outline ESA Gaia mission & science objectives. Astrometric & spectroscopic census

More information

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T.

Hypervelocity Stars. A New Probe for Near-Field Cosmology. Omar Contigiani. Supervisor: Dr. E.M. Rossi. Co-supervisor: Msc. T. Hypervelocity Stars A New Probe for Near-Field Cosmology Omar Contigiani Student Colloquium, 20/06/2017, Leiden Co-supervisor: Msc. T. Marchetti Supervisor: Dr. E.M. Rossi Cosmic Web Near-Field Cosmology

More information

SPADES: A STELLAR PARAMETER DETERMINATION SOFTWARE

SPADES: A STELLAR PARAMETER DETERMINATION SOFTWARE GCDS SURVEY SCIENCE - Nice France November 3rd 2010 SPADES: A STELLAR PARAMETER DETERMINATION SOFTWARE Hélène Posbic Katz, D. ; Gómez, A. ; Caffau, E. ; Bonifacio, P. ; Sbordone, L. ; Arenou, F. GEPI Observatoire

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey KIAA-CambridgeJoint Workshop on Near-Field Cosmology and Galactic Archeology ZHAO Gang National Astronomical Observatories, Chinese Academy of Sciences Dec 1-5, 2008 Beijing Outline LAMOST stellar spectroscopic

More information

The Mass of the Milky Way Using Globular Cluster Kinematics

The Mass of the Milky Way Using Globular Cluster Kinematics The Mass of the Milky Way Using Globular Cluster Kinematics Gwendolyn Eadie, PhD Candidate PhD Supervisor: William Harris Collaborators: Aaron Springford (Stats, Queen s Univ.) Postgraduate Scholarships-Doctoral

More information

The Star Clusters of the Magellanic Clouds

The Star Clusters of the Magellanic Clouds The Dance of Stars MODEST-14 The Star Clusters of the Magellanic Clouds Eva K. Grebel Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg Star Clusters in the Magellanic Clouds!

More information

Milky Way star clusters

Milky Way star clusters Using Γα ια for studying Milky Way star clusters Eugene Vasiliev Institute of Astronomy, Cambridge MODEST-, 26 June Overview of Gaia mission Scanning the entire sky every couple of weeks Astrometry for

More information

arxiv: v1 [astro-ph.ga] 1 Oct 2018

arxiv: v1 [astro-ph.ga] 1 Oct 2018 Astronomy & Astrophysics manuscript no. ld c ESO 1 October, 1 Local disc model in view of Gaia DR1 and RAVE data K. Sysoliatina 1, A. Just 1, I. Koutsouridou, E.K. Grebel 1, G. Kordopatis, M. Steinmetz

More information

The halo is specially interesting because gravitational potential becomes dominated by the dark matter halo

The halo is specially interesting because gravitational potential becomes dominated by the dark matter halo Evidence for dark matter in the Milky Way Astr 511: Galactic Astronomy Winter Quarter 2015 University of Washington Željko Ivezić The halo is specially interesting because gravitational potential becomes

More information

Pre-observations and models

Pre-observations and models Pre-observations and models Carine Babusiaux Observatoire de Paris - GEPI GREAT-ITN, IAC, September 2012 The questions 1) Can the observing program tackle the scientific problem? 2) What is the best configuration

More information

Galaxy Evolution at High Resolution: The New View of the Milky Way's Disc. Jo Bovy (University of Toronto; Canada Research Chair)

Galaxy Evolution at High Resolution: The New View of the Milky Way's Disc. Jo Bovy (University of Toronto; Canada Research Chair) Galaxy Evolution at High Resolution: The New View of the Milky Way's Disc Jo Bovy (University of Toronto; Canada Research Chair) WHY THE MILKY WAY? WHY THE MILKY WAY? Detailed measurements of position,

More information

Mario Juric Institute for Advanced Study, Princeton

Mario Juric Institute for Advanced Study, Princeton Mapping Galactic density, metallicity and kinematics. Mario Juric Institute for Advanced Study, Princeton with Zeljko Ivezic, Nick Bond, Branimir Sesar, Robert Lupton and the SDSS Collaboration Dissecting

More information

WEAVE Galactic Surveys

WEAVE Galactic Surveys WEAVE Galactic Surveys A. Vallenari INAF, Padova On behalf of the Science Team Overview WEAVE Surveys Milky Way Surveys WEAVE Characteristics Project structure Primary Science Surveys There are six primary

More information

The power of chemical tagging for studying Galactic evolution

The power of chemical tagging for studying Galactic evolution for studying Galactic evolution RSAA, Australian National University, Cotter Rd, Weston Creek, ACT, 2611, Australia E-mail: ewylie@mso.anu.edu.au Kenneth Freeman RSAA, Australian National University, Cotter

More information

What do we need to know about galaxy formation?

What do we need to know about galaxy formation? What do we need to know about galaxy formation? rachel somerville University of Michigan Hubble Science Legacy Workshop April 2002 what s next? test the CDM paradigm constrain the nature of the dark matter

More information

Review of the Bulge Stellar Population And Comparison to the Nuclear Bulge

Review of the Bulge Stellar Population And Comparison to the Nuclear Bulge Review of the Bulge Stellar Population And Comparison to the Nuclear Bulge David M. Nataf, Australian National University 22 July, 2016 IAU Symposium 322, 'The Multi- Messenger Astrophysics of the Galactic

More information

1.0. σ M B0 B5 A0 A5 F0 F5 G0 G5 K0 K B0 B5 A0 A5 F0 F5 G0 G5 K0 K5

1.0. σ M B0 B5 A0 A5 F0 F5 G0 G5 K0 K B0 B5 A0 A5 F0 F5 G0 G5 K0 K5 27 THE LUMINOSITY CALIBRATION OF THE HR DIAGRAM REVISITED BY HIPPARCOS A.E. Gomez 1, X. Luri 1;3, M.O. Mennessier 2,J.Torra 3, F. Figueras 3 1 Observatoire de Paris-Meudon, D.A.S.G.A.L., URA 33 du CNRS,

More information

The Milky Way Part 3 Stellar kinematics. Physics of Galaxies 2011 part 8

The Milky Way Part 3 Stellar kinematics. Physics of Galaxies 2011 part 8 The Milky Way Part 3 Stellar kinematics Physics of Galaxies 2011 part 8 1 Stellar motions in the MW disk Let s continue with the rotation of the Galaxy, this time from the point of view of the stars First,

More information

Overview of Dynamical Modeling. Glenn van de Ven

Overview of Dynamical Modeling. Glenn van de Ven Overview of Dynamical Modeling Glenn van de Ven glenn@mpia.de 1 Why dynamical modeling? -- mass total mass stellar systems key is to their evolution compare luminous mass: constrain DM and/or IMF DM radial

More information

The Milky Way Part 2 Stellar kinematics. Physics of Galaxies 2012 part 7

The Milky Way Part 2 Stellar kinematics. Physics of Galaxies 2012 part 7 The Milky Way Part 2 Stellar kinematics Physics of Galaxies 2012 part 7 1 Stellar motions in the MW disk Let s look at the rotation of the Galactic disk First, we need to introduce the concept of the Local

More information

Exploring the structure and evolu4on of the Milky Way disk

Exploring the structure and evolu4on of the Milky Way disk Exploring the structure and evolu4on of the Milky Way disk Results from the Gaia-ESO survey and plans for 4MOST Thomas Bensby Dept. of Astronomy and Theore3cal Physics Lund University Sweden Chemistry

More information

Galactic Bulge Science

Galactic Bulge Science Galactic Bulge Science Ken Freeman Australian National University ngcfht meeting Hilo, Mar 27-29 2013 NGC 5746 1 The Galactic bulge was long thought to be a merger product. We now know that boxy bulges

More information

Gaia & Ultra-Cool Dwarfs: a high-denition picture of the Milky Way

Gaia & Ultra-Cool Dwarfs: a high-denition picture of the Milky Way Mem. S.A.It. Vol. 85, 699 c SAIt 2014 Memorie della Gaia & Ultra-Cool Dwarfs: a high-denition picture of the Milky Way J. Bochanski 1,2 1 Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA

More information

Dynamics of the Milky Way

Dynamics of the Milky Way Jason Sanders (Oxford IoA) with James Binney Dynamics of the Milky Way Tidal streams & Extended Distribution Functions for the Galactic Disc Whistle-stop tour of a PhD Where is the dark matter? We can

More information

A comparison of stellar atmospheric parameters from the LAMOST and APOGEE datasets

A comparison of stellar atmospheric parameters from the LAMOST and APOGEE datasets RAA 2015 Vol. 15 No. 8, 1125 1136 doi: 10.1088/1674 4527/15/8/003 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics A comparison of stellar atmospheric parameters

More information

Lecture 12. November 20, 2018 Lab 6

Lecture 12. November 20, 2018 Lab 6 Lecture 12 November 20, 2018 Lab 6 News Lab 4 Handed back next week (I hope). Lab 6 (Color-Magnitude Diagram) Observing completed; you have been assigned data if you were not able to observe. Due: instrumental

More information

Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys)

Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys) Metal-poor stars observed by the Gaia-ESO Survey (and other large surveys) Rodolfo Smiljanic Nicolaus Copernicus Astronomical Center Warsaw/Poland (image credit: ESA/ESO) Cool Stars 20, July 29 - August

More information

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles

Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Milky Way s Mass and Stellar Halo Velocity Dispersion Profiles Shanghai Astronomical Observatory In collaboration with Juntai Shen, Xiang Xiang Xue, Chao Liu, Chris Flynn, Ling Zhu, Jie Wang Contents 1

More information

Substructure in the Galaxy

Substructure in the Galaxy Substructure in the Galaxy Amina Helmi Kapteyn Astronomical Institute Groningen, NL Is this how our Galaxy formed? Jeffrey Gardner Hierarchical paradigm Main characteristic of model: mergers Can we find

More information

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee Determination of [α/fe] and its Application to SEGUE F/G Stars Young Sun Lee Research Group Meeting on June 16, 2010 Outline Introduction Why [α/fe]? Determination of [α/fe] Validation of estimate of [α/fe]

More information

Age- Abundance Trends in the Solar Neighborhood. Diane Feuillet MPIA April 25, 2017 IAUS 330 Nice, France

Age- Abundance Trends in the Solar Neighborhood. Diane Feuillet MPIA April 25, 2017 IAUS 330 Nice, France Age- Abundance Trends in the Solar Neighborhood Diane Feuillet MPIA April 25, 2017 IAUS 330 Nice, France GalacNc Chemical EvoluNon Alpha elements Fe type elements [O/Fe] [Na/Fe] [Mg/Fe] [Cr/Fe] [Ca/Fe]

More information

Search for streams in thick disk and halo of the Milky Way

Search for streams in thick disk and halo of the Milky Way Journal of Physics: Conference Series PAPER OPEN ACCESS Search for streams in thick disk and halo of the Milky Way To cite this article: Dian Puspita Triani and M Ikbal Arifyanto 2016 J. Phys.: Conf. Ser.

More information

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae

The Geometry of Sagittarius Stream from PS1 3π RR Lyrae The Geometry of Sagittarius Stream from PS1 3π RR Lyrae Nina Hernitschek, Caltech collaborators: Hans-Walter Rix, Branimir Sesar, Judith Cohen Swinburne-Caltech Workshop: Galaxies and their Halos, Sept.

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16 University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 16 Stellar populations Walter Baade (1893-1960) Learning outcomes The student

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

Abundance distribution in the Galactic thick disk

Abundance distribution in the Galactic thick disk Abundance distribution in the Galactic thick disk omas Bensby Lund Observatory, Department of Astronomy and eoretical Physics Discovery of thick disks (Burstein 1979, ApJ, 234, 829) Discovery of the Galactic

More information

Keith Hawkins Columbia Univ. (Simons Fellow) 25 April 2017

Keith Hawkins Columbia Univ. (Simons Fellow) 25 April 2017 Red Clump Stars, Stellar Twins, and the Prospects of Chemical Cartography with Gaia Keith Hawkins Columbia Univ. (Simons Fellow) 25 April 217 khawkins@astro.columbia.edu Ignace Gaston Pardies, Star Map

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Chemical evolution of the Galactic disk using Open Clusters

Chemical evolution of the Galactic disk using Open Clusters Chemical evolution of the Galactic disk using Open Clusters ICC Winter Meeting Feb 2017 1. Galactic Archaeology Unravel the formation and evolution of the Milky Way (MW) Resolved stars provide a fossil

More information

Gaia-LSST Synergy. A. Vallenari. INAF, Padova

Gaia-LSST Synergy. A. Vallenari. INAF, Padova Gaia-LSST Synergy A. Vallenari INAF, Padova The Galaxy view Unveiling the complex history of the MW assembly and internal evolution is still one of the main interest of astrophysics However the specific

More information

arxiv: v2 [astro-ph.ga] 14 Jul 2017

arxiv: v2 [astro-ph.ga] 14 Jul 2017 Mon. Not. R. Astron. Soc., 3 (27) Printed 7 July 27 (MN LATEX style file v2.2) Stellar Inventory of the Solar Neighborhood using Gaia DR Jo Bovy Department of Astronomy and Astrophysics, University of

More information

(a) B-V 6 V. (b) B-V

(a) B-V 6 V. (b) B-V 721 TOWARDS AN IMPROVED MODEL OF THE GALAXY Johan Holmberg 1, Chris Flynn 2, Lennart Lindegren 1 1 Lund Observatory, Box 43, SE-22100 Lund, Sweden 2 Tuorla Observatory, Vaisalantie 20, FI-21500 Piikkio,

More information

Data-driven models of stars

Data-driven models of stars Data-driven models of stars David W. Hogg Center for Cosmology and Particle Physics, New York University Center for Data Science, New York University Max-Planck-Insitut für Astronomie, Heidelberg 2015

More information

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content

Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content arxiv:1005.1289 arxiv:1002.3660 S. Trujillo-Gomez (NMSU) in collaboration with: A. Klypin (NMSU), J. Primack (UCSC)

More information

"The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18

The Gaia distances Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 "The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 "The Gaia distances" Jan Rybizki (MPIA CU8) Gaia Data Workshop Heidelberg 06/19/18 Estimating distances from parallaxes

More information

The motions of stars in the Galaxy

The motions of stars in the Galaxy The motions of stars in the Galaxy The stars in the Galaxy define various components, that do not only differ in their spatial distribution but also in their kinematics. The dominant motion of stars (and

More information

The Three Dimensional Universe, Meudon - October, 2004

The Three Dimensional Universe, Meudon - October, 2004 GAIA : The science machine Scientific objectives and impacts ------- F. Mignard OCA/ Cassiopée 1 Summary Few figures about Gaia Gaia major assets What science with Gaia Few introductory highlights Conclusion

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

Modelling the Milky Way with TRILEGAL

Modelling the Milky Way with TRILEGAL Modelling the Milky Way with TRILEGAL Léo Girardi (Oss. Ast. Padova, Italy) And main collaborators in this moment: DES-Brazil (simulation of DES, kinematics) SDSS-III Brazil (target+field selection for

More information

Precision kinematics Demonstration on Bootes dsph. Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others

Precision kinematics Demonstration on Bootes dsph. Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others Precision kinematics Demonstration on Bootes dsph Sergey Koposov Matt Walker, Vasily Belokurov, Gerry Gilmore, Jorge Pennarubia and others Stellar kinematics in dwarfs Dwarfs most dark matter dominated

More information

The Composition of the Old, Metal-Rich Open Cluster, NGC 6791

The Composition of the Old, Metal-Rich Open Cluster, NGC 6791 The Composition of the Old, Metal-Rich Open Cluster, NGC 6791 Liz Jensen --- Smith College, REU at IFA, University of Hawaii 2006 Mentor: Ann M. Boesgaard --- Institute for Astronomy, University of Hawaii

More information

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm

ON THE CHEMICAL EVOLUTION OF THE MILKY WAY. The Metallicity distribution of the halo in the hierarchical merging paradigm ON THE CHEMICAL EVOLUTION OF THE MILKY WAY The Metallicity distribution of the halo in the hierarchical merging paradigm Halo abundance patterns and stellar yields Standard chemical evolution of solar

More information

The Accretion History of the Milky Way

The Accretion History of the Milky Way The Accretion History of the Milky Way Julio F. Navarro The Milky Way as seen by COBE Collaborators Mario Abadi Amina Helmi Matthias Steinmetz Ken Ken Freeman Andres Meza The Hierarchical Formation of

More information

Extremely Metal-Poor Stars

Extremely Metal-Poor Stars ngcfht workshop 2013.3.27-29. Extremely Metal-Poor Stars Wako Aoki National Astronomical Observatory of Japan Extremely Metal-Poor (EMP) Stars Chemical composition of EMP stars Nucleosynthesis of first

More information

Star clusters before and after Gaia Ulrike Heiter

Star clusters before and after Gaia Ulrike Heiter Star clusters before and after Gaia Ulrike Heiter Uppsala University Outline Gaia mission overview Use of stellar clusters for calibration of stellar physical parameters Impact of Gaia data on cluster

More information

Tristan Cantat-Gaudin

Tristan Cantat-Gaudin Open Clusters in the Milky Way with Gaia ICCUB Winter Meeting 1-2 Feb 2018, Barcelona Tristan Cantat-Gaudin Carme Jordi, Antonella Vallenari, Laia Casamiquela, and Gaia people in Barcelona and around the

More information

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population

Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population Galactic, stellar (and planetary) archaeology with Gaia: The galactic white dwarf population Boris Gänsicke & Roberto Raddi Richard Ashley Jay Farihi Nicola Gentile Fusillo Mark Hollands Paula Izquierdo

More information

Chapter 7: From theory to observations

Chapter 7: From theory to observations Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective

More information

Kinematics of the Solar Neighborhood

Kinematics of the Solar Neighborhood Chapter 15 Kinematics of the Solar Neighborhood Unlike an elliptical galaxy, the Milky Way rotates with a speed much larger than the random velocities of typical stars. Our position inside the disk of

More information

Origin and Evolution of Disk Galaxy Scaling Relations

Origin and Evolution of Disk Galaxy Scaling Relations Origin and Evolution of Disk Galaxy Scaling Relations Aaron A. Dutton (CITA National Fellow, University of Victoria) Collaborators: Frank C. van den Bosch (Utah), Avishai Dekel (HU Jerusalem), + DEEP2

More information

Encuentros en la Segunda Fase: Gaia DR2

Encuentros en la Segunda Fase: Gaia DR2 Encuentros en la Segunda Fase: Gaia DR2 Laura Ruiz-Dern R. Lallement, L. Capitanio, C. Danielski, C. Babusiaux, J.L. Vergely, M. Elyajouri, F. Arenou, N. Leclerc GEPI, Observatoire de Paris Meudon REG,

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

Astr 598: Astronomy with SDSS. Spring Quarter 2004, University of Washington, Željko Ivezić. Lecture 6: Milky Way Structure I: Thin and Thick Disks

Astr 598: Astronomy with SDSS. Spring Quarter 2004, University of Washington, Željko Ivezić. Lecture 6: Milky Way Structure I: Thin and Thick Disks Astr 598: Astronomy with SDSS Spring Quarter 004, University of Washington, Željko Ivezić Lecture 6: Milky Way Structure I: Thin and Thick Disks Stellar Counts There is a lot of information about the Milky

More information

This week at Astro 3303

This week at Astro 3303 This week at Astro 3303 Pick up PE#7 HW#2 is being returned; we ll discuss it Please pass in HW#3 HW#4 is posted Usual collaboration rules apply Today: Interpreting CMDs; review of HW#2 CMDs Stellar populations

More information

The Large Sky Area Multi- Object Spectroscopic Telescope (LAMOST)

The Large Sky Area Multi- Object Spectroscopic Telescope (LAMOST) The Large Sky Area Multi- Object Spectroscopic Telescope (LAMOST) The Milky Way and its Stars February 25 KITP!! Martin C. Smith Shanghai Astronomical Observatory http://hubble.shao.ac.cn/~msmith/ LAMOST

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

Chapter 10: Unresolved Stellar Populations

Chapter 10: Unresolved Stellar Populations Chapter 10: Unresolved Stellar Populations We now consider the case when individual stars are not resolved. So we need to use photometric and spectroscopic observations of integrated magnitudes, colors

More information

arxiv:astro-ph/ v1 14 Dec 1998

arxiv:astro-ph/ v1 14 Dec 1998 Spectroscopy of red giants of the Sagittarius dwarf galaxy arxiv:astro-ph/9812267v1 14 Dec 1998 G. Marconi Osservatorio Astronomico di Roma P. Bonifacio Osservatorio Astronomico di Trieste L. Pasquini

More information

THE GALACTIC BULGE AS SEEN BY GAIA

THE GALACTIC BULGE AS SEEN BY GAIA 143 THE GALACTIC BULGE AS SEEN BY GAIA C. Reylé 1, A.C. Robin 1, M. Schultheis 1, S. Picaud 2 1 Observatoire de Besançon, CNRS UMR 6091, BP 1615, 25010 Besançon cedex, France 2 IAG/USP Departamento de

More information