The accuracy of the gravitational potential was determined by comparison of our numerical solution

Size: px
Start display at page:

Download "The accuracy of the gravitational potential was determined by comparison of our numerical solution"

Transcription

1 the results of three key accuracy tests. 48 A6.1. Gravitational Potential The accuracy of the gravitational potential was determined by comparison of our numerical solution with the analytical result for a sphere of radius a < R centered at the origin. On the outer boundary, the potential is that due to a point source at the origin. The numerical result has a relative error of a fraction of a percent for the potential, and a few percent for the field components on a grid, for both uniform and nonuniform cells. The largest errors occur at the surface of the sphere, reflecting the fact that averaging the density over cells that straddle the edge of the sphere is the dominant contribution to the inaccuracy of the numerical solution. In practice, such sharp changes in the values of functions are either resolved by the adaptive grid or smeared over several zones by viscosity forces; therefore, we expect truncation errors in the gravitational field components to be considerably less than a few percent for most MHD problems. A6.2. Free Fall A useful test problem for which there is a known analytical solution is the gravitational collapse of a spherically symmetric, nonuniform, cold cloud of infinite size starting from rest (e. g., see Spitzer 1978). The initial state has a Gaussian density profile. Boundary values for the density, velocity, and gravitational potential are obtained from the analytical solution by numerical quadrature at the mean positions of cells which are the images of those lying along the outer boundary of the computational region. Because the density becomes sharply peaked, this is a severe test of the accuracy of the spatial differencing, interpolation, gravitational force, advection for a smooth flow, and the adaptive grid, but not of the pressure or magnetic forces. After a density enhancement of five orders of magnitude on a grid, the largest relative error in any dependent variable is about 10%, which is in the density of the cell at the origin. The lengths of the sides of this cell are smaller by a factor of 50 from their values in the initial state, which had a grid that was nearly uniform. After a density enhancement of six orders of magnitude, the largest relative error, which is again in the density at the origin, has

2 increased to 20%. The density contours remain nearly spherical. Since the density profile should be 49 less sharply peaked at the origin when pressure and magnetic forces are included in a more realistic problem, truncation errors are expected to be significantly lower in practice than the values for these test runs, provided the mesh points are positioned properly. A6.3. Collapse Under Flux-Freezing Under the assumption that the magnetic flux is frozen in the neutrals, we have followed the evolution of a model cloud whose innermost flux tubes are magnetically and thermally supercritical. The initial, spherically symmetric density distribution is given by n(r, z) = (n 0 n S ) cos 4 π 2R r 2 + z 2 + n S, r 2 + z 2 R, (A51a) = n S, r 2 + z 2 > R, (A51b) where n 0 and n S have values of and cm 3, respectively, and R = cm. The 60 M O object has B = B z = 22.8 µg, T = 10 K, and α 0 = 5. The central mass-to-flux ratio is greater than the total value by a factor of 2.8 and is 1.3 times the supercritical value (see eq. [8]). By the end of a test run on a grid, the central density has reached cm 3 at t f = yr (= 2.6 initial free-fall times). The solid curve in Figure 2 shows the central magnetic field strength B c versus the central density n c. The dashed curve gives the slope κ d(ln B c )/d(ln n c ). At the start of the run, the fragment begins to contract spherically and κ 2/3 because the uniform magnetic field exerts no forces. The field strength soon increases due to the deformation of the field lines as the cloud contracts. The magnetic force increases sufficiently to reverse the radial component of the velocity, but the density continues to increase as matter flows down along field lines. The field weakens as it pushes the matter outward, but then increases monotonically once the material resumes its inward motion. After the density is enhanced beyond an order of magnitude, force balance between pressure and gravity is established along field lines, and κ oscillates about the expected value of 1/2 (see Mouschovias 1976b). Figure 3a shows field lines and density contours at t f for the entire fragment. Along the axis, the density decreases from

3 50 its central value to cm 3 at z = Z. Matter in the supercritical flux tubes has formed a very thin disk inside the radius 0.2 R, while outside 0.8 R, in the magnetically supported envelope, the field lines have barely moved. The differential mass-to-flux ratio at the axis, obtained by evaluating the integral in equation (8) numerically, has changed by less than 0.2%, which is a negligible amount compared to the change expected when ambipolar diffusion is included. Note that exact conservation of the differential mass-to-flux ratio is not guaranteed by our numerical scheme because the density and flux are advected separately. The filtered and unfiltered meshes at t f are displayed in Figures 3b and 3c, respectively. Note that in the lower left quadrant of the two plots, adjacent zone sides are much more nearly orthogonal in the filtered mesh than in the unfiltered one. Truncation errors in spatial derivatives are smallest on an orthogonal mesh, even though the order of the error terms is independent of the zone shape. Figures 4a, 4b, and 4c show the field lines superposed on the density contours, the filtered mesh, and the unfiltered mesh, respectively, at t f for the innermost 2% of the fragment. The ratio of equatorial and polar radii of the innermost isodensity contours exceeds 10. The unfiltered mesh is extremely distorted, with small angles between adjacent zone sides and very abrupt changes in lengths, whereas the filtered mesh varies quite smoothly. The height and width of the innermost filtered mesh zone have decreased from the values for a uniform mesh by factors of 180 and 45, respectively. Along the axis, there are roughly three zones resolving any region over which the density varies by an order of magnitude. The numerical parameters for the grid (discussed in A5.1 and A5.2) had the following values throughout the calculation: w u = 5, w ρ = 4, w v = 1, w q = 0, w m = 1, m = 2, w n = , n = 2, w p = 1, p = 2, w a = w b = w e = w h = 30, l = 2.

4 REFERENCES 51 Black, D. C., & Scott, E. H. 1982, ApJ, 263, 696 Bonner, W. B. 1956, MNRAS, 116, 351 Ebert, R. 1955, Z. Astrophys., 37, , Z. Astrophys., 42, 263 Elmegreen, B. G. 1979, ApJ, 232, , in Light on Dark Matter, ed. F. P. Israel (Dordrecht: Reidel), 265 Evans, C. R., & Hawley, J. F. 1988, ApJ, 332, 659 Falgarone, E., and Puget, J. L. 1985, A&A, 142, 157 Fiedler, R. A. 1990, Ph. D. thesis, University of Illinois at Urbana-Champaign Fiedler, R. A., & Mouschovias, T. Ch. 1992, ApJ, in preparation Gear, C. W. 1971, Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs: Prentice-Hall) Hindmarsh, A. C. 1983, in Scientific Computing, ed. R. S. Stepleman et al., Vol. 1 (IMACS Transactions on Scientific Computation) (Amsterdam: North Holland), 55 Kulsrud, R., & Pearce, W. P. 1969, ApJ, 156, 445 Lizano, S., & Shu, F. H. 1989, ApJ, 342, 834 McDaniel, E. W., & Mason, E. A. 1973, The Mobility and Diffusion of Ions in Gases (New York: Wiley) Mestel, L., & Spitzer, L. Jr. 1956, MNRAS, 116, 504 Mouschovias, T. Ch. 1976a, ApJ, 206, b, ApJ, 207, , ApJ, 211, , in Protostars and Planets, ed. T. Gehrels (Tucson: Univ. of Arizona Press), , ApJ, 228, , in Solar and Stellar Magnetic Fields: Origins and Coronal Effects, ed. J. O. Stenflo (Dordrecht: Reidel), 479

5 . 1987a, in Physical Processes in Interstellar Clouds, ed. G. E. Morfill & M. Scholer 52 (Dordrecht: Reidel), b, in Physical Processes in Interstellar Clouds, ed. G. E. Morfill & M. Scholer (Dordrecht: Reidel), , in The Physics and Chemistry of Interstellar Molecular Clouds, ed. G. Winnewisser & J. T. Armstrong (Berlin: Springer), a, in Galactic and Intergalactic Magnetic Fields, ed. R. Beck, P. P. Kronberg, & R. Wielebinski (Dordrecht: Reidel), b, in Physical Processes in Fragmentation and Star Formation, ed. R. Capuzzo- Dolcetta, C. Chiosi, & A. di Fazio (Dordrecht: Kluwer), , ApJ, 373, 169 Mouschovias, T. Ch., Ciolek, G., & Morton, S. A. 1992, ApJ, in preparation Mouschovias, T. Ch., & Morton, S. A. 1985, ApJ, 298, , ApJ, 371, a, ApJ, in press. 1992b, ApJ, in press Mouschovias, T. Ch., Morton, S. A., & Ciolek, G. 1992, ApJ, in preparation Mouschovias, T. Ch., & Paleologou, E. V. 1986, ApJ, 308, 781 Mouschovias, T. Ch., Paleologou, E. V., & Fiedler, R. A. 1985, ApJ, 291, 772 Mouschovias, T. Ch., & Spitzer, L., Jr. 1976, ApJ, 210, 326 Nakano, T. 1979, PASJ, 31, 697 Nakano, T., & Tademaru, T. 1972, ApJ, 173, 87 Paleologou, E. V., & Mouschovias, T. Ch. 1983, ApJ, 275, 838 Scott, E. H., & Black, D. C. 1980, ApJ, 239, 166 Shu, F. H. 1983, ApJ, 273, 202 Spitzer, L., Jr. 1968, Diffuse Matter in Space (New York: Interscience). 1978, Physical Processes in the Interstellar Medium (New York: Wiley-Interscience)

6 Tomisaka, K., Ikeuchi, S., & Nakamura, T. 1988, ApJ, 335, , ApJ, 362, 202 Tscharnuter, W. M., & Winkler, K.-H. A. 1979, Comput. Phys. Comm., 18, 171 van Leer, B. 1979, J. Comput. Phys., 32, 101

7 CAPTIONS TO FIGURES 54 FIG. 1. A portion of the nonuniform, nonorthogonal grid. The cell indices are indicated in parentheses. The points labeled "α", "β", "γ", and "δ" are grid points, while points a, c, and e are at the volume-averaged coordinates of their respective cells. The points b, T, and d are at the surfaceaveraged coordinates of the left, top, and right sides of cell (i, j). FIG. 2. The central magnetic field strength B c vs. the central density n c (scale on left, solid curve), and the slope κ d(ln B c )/d(ln n c ) (scale on right, dashed curve). Initially, κ 2/3, the value for spherical contraction. After force balance has been established between pressure and gravity along magnetic field lines, κ oscillates about the expected value of one half. FIG. 3. (a) Density contours and magnetic field lines for the entire fragment. Three contours are shown per order of magnitude of variation in the density, with the uppermost contour corresponding to the lowest value, 300 cm 3. The next lowest value is 600, and then 1000 cm 3. This pattern is repeated up to n c = cm 3. Field lines beyond the radius 0.8 R have hardly moved. (b) Filtered mesh, and (c) unfiltered mesh for the entire computational region. In the lower left quadrant, adjacent zone sides in the filtered mesh are much more nearly orthogonal (allowing more accurate spatial differencing) than they are in the unfiltered mesh. FIG. 4. (a) Density contours and magnetic field lines for the innermost 2% of the fragment. Several contours are labeled by the corresponding value of the density. Typically, the ratio of equatorial and polar radii exceeds 10. Along the z-axis, the density decreases by more than four orders of magnitude as z increases from 0 to Z. Structures smaller than zone sizes (see b) in some contours are an artifact of the contouring algorithm, which was not designed for the widely varying spatial resolution of our mesh. (b) Filtered mesh, and (c) unfiltered mesh for the innermost 2% of the computational region. The filtered mesh varies smoothly, while the unfiltered mesh is extremely distorted, with small angles between zone sides, abrupt variations of lengths, and some tangling. The

8 filtered mesh provides roughly three well-placed cells per order of magnitude of density variation, 55 whereas the unfiltered mesh has far more zones inside the innermost isodensity contour.

9 POSTAL ADDRESSES: Robert A. Fiedler National Center for Supercomputing Applications University of Illinois 5325 Beckman Institute 405 N. Mathews Avenue Urbana, IL Telemachos Ch. Mouschovias Department of Astronomy University of Illinois 1002 W. Green St. Urbana, IL 61801

Disk Formation and Jet Driving in Collapsing Cloud Cores

Disk Formation and Jet Driving in Collapsing Cloud Cores Disk Formation and Jet Driving in Collapsing Cloud Cores Masahiro Machida (Kyushu University) Star Formation Process Observations have shown that Low-velocity outflows and high-velocity jets are ubiquitous

More information

Sink particle accretion test

Sink particle accretion test Sink particle accretion test David A. Hubber & Stefanie Walch 1 Objectives Simulate spherically-symmetric Bondi accretion onto a sink particle for an isothermal gas. Calculate the accretion rate onto a

More information

Molecular Cloud Support, Turbulence, and Star Formation in the Magnetic Field Paradigm

Molecular Cloud Support, Turbulence, and Star Formation in the Magnetic Field Paradigm Molecular Cloud Support, Turbulence, and Star Formation in the Magnetic Field Paradigm Shantanu Basu The University of Western Ontario Collaborators: Glenn Ciolek (RPI), Takahiro Kudoh (NAOJ), Wolf Dapp,

More information

Testing Star Formation theories Zeeman splitting applied

Testing Star Formation theories Zeeman splitting applied Testing Star Formation theories Zeeman splitting applied Zeeman splitting An Introduction Wikipedia Zeeman What? A particle with angular momentum essentially is like a magnet. With no external Gield, any

More information

Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: IV. 3D Molecular Fraction and Galactic-Scale HI-to-H 2 Transition

Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: IV. 3D Molecular Fraction and Galactic-Scale HI-to-H 2 Transition Three-Dimensional Distribution of the ISM in the Milky Way Galaxy: IV. 3D Molecular Fraction and Galactic-Scale HI-to-H 2 Transition Yoshiaki SOFUE 1 and Hiroyuki NAKANISHI 2 1 Insitute of Astronomy, The

More information

ASTRONOMY AND ASTROPHYSICS Ionization structure and a critical visual extinction for turbulent supported clumps

ASTRONOMY AND ASTROPHYSICS Ionization structure and a critical visual extinction for turbulent supported clumps Astron. Astrophys. 334, 678 684 (1998) ASTRONOMY AND ASTROPHYSICS Ionization structure and a critical visual extinction for turbulent supported clumps D.P. Ruffle 1, T.W. Hartquist 2,3, J.M.C. Rawlings

More information

Impact of Protostellar Outflow on Star Formation: Effects of Initial Cloud Mass

Impact of Protostellar Outflow on Star Formation: Effects of Initial Cloud Mass Impact of Protostellar Outflow on Star Formation: Effects of Initial Cloud Mass Masahiro N. Machida 1 and Tomoaki Matsumoto 2 ABSTRACT Star formation efficiency controlled by the protostellar outflow in

More information

COLLAPSE OF MAGNETIZED SINGULAR ISOTHERMAL TOROIDS. I. THE NONROTATING CASE Anthony Allen. Frank H. Shu. and Zhi-Yun Li

COLLAPSE OF MAGNETIZED SINGULAR ISOTHERMAL TOROIDS. I. THE NONROTATING CASE Anthony Allen. Frank H. Shu. and Zhi-Yun Li The Astrophysical Journal, 599:351 362, 2003 2003 December 10 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. COLLAPSE OF MAGNETIZED SINGULAR ISOTHERMAL TOROIDS. I. THE

More information

ON THE EVOLUTION OF ULTRACOMPACT H ii REGIONS Eric Keto

ON THE EVOLUTION OF ULTRACOMPACT H ii REGIONS Eric Keto Astrophysical Journal, 580:980 986, 2002 December # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. ON THE EVOLUTION OF ULTRACOMPACT H ii REGIONS Eric Keto Harvard-Smithsonian

More information

The effect of magnetic fields on the formation of circumstellar discs around young stars

The effect of magnetic fields on the formation of circumstellar discs around young stars Astrophysics and Space Science DOI 10.1007/sXXXXX-XXX-XXXX-X The effect of magnetic fields on the formation of circumstellar discs around young stars Daniel J. Price and Matthew R. Bate c Springer-Verlag

More information

arxiv: v1 [astro-ph.he] 16 Jun 2009

arxiv: v1 [astro-ph.he] 16 Jun 2009 Star Formation at the Galactic Center Marco Fatuzzo, 1 and Fulvio Melia 2 1 Physics Department, Xavier University, Cincinnati, OH 45207 arxiv:0906.2917v1 [astro-ph.he] 16 Jun 2009 2 Department of Physics

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

Unraveling the Envelope and Disk: The ALMA Perspective

Unraveling the Envelope and Disk: The ALMA Perspective Unraveling the Envelope and Disk: The ALMA Perspective Leslie Looney (UIUC) Lee Mundy (UMd), Hsin-Fang Chiang (UIUC), Kostas Tassis (UChicago), Woojin Kwon (UIUC) The Early Disk Disks are probable generic

More information

Mass-Radius Relation: Hydrogen Burning Stars

Mass-Radius Relation: Hydrogen Burning Stars Mass-Radius Relation: Hydrogen Burning Stars Alexis Vizzerra, Samantha Andrews, and Sean Cunningham University of Arizona, Tucson AZ 85721, USA Abstract. The purpose if this work is to show the mass-radius

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

EFFECTS OF DIFFERENTIAL ROTATION ON THE MAXIMUM MASS OF NEUTRON STARS Nicholas D. Lyford, 1 Thomas W. Baumgarte, 1,2 and Stuart L.

EFFECTS OF DIFFERENTIAL ROTATION ON THE MAXIMUM MASS OF NEUTRON STARS Nicholas D. Lyford, 1 Thomas W. Baumgarte, 1,2 and Stuart L. The Astrophysical Journal, 583:41 415, 23 January 2 # 23. The American Astronomical Society. All rights reserved. Printed in U.S.A. EFFECTS OF DIFFERENTIAL ROTATION ON THE AXIU ASS OF NEUTRON STARS Nicholas

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

arxiv:astro-ph/ v1 3 Apr 2005

arxiv:astro-ph/ v1 3 Apr 2005 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 2 February 2008 (MN LATEX style file v2.2) The effect of a finite mass reservoir on the collapse of spherical isothermal clouds and the evolution of

More information

Star formation. Protostellar accretion disks

Star formation. Protostellar accretion disks Star formation Protostellar accretion disks Summary of previous lectures and goal for today Collapse Protostars - main accretion phase - not visible in optical (dust envelope) Pre-main-sequence phase -

More information

THE ROLE OF DUST-CYCLOTRON DAMPING OF ALFVÉN WAVES IN STAR FORMATION REGIONS

THE ROLE OF DUST-CYCLOTRON DAMPING OF ALFVÉN WAVES IN STAR FORMATION REGIONS THE ROLE OF DUST-CYCLOTRON DAMPING OF ALFVÉN WAVES IN STAR FORMATION REGIONS Diego Falceta-Gonçalves, Marcelo C. de Juli & Vera Jatenco-Pereira Instituto de Astronomia, Geofísica e C. Atmosféricas Universidade

More information

Protostars 1. Early growth and collapse. First core and main accretion phase

Protostars 1. Early growth and collapse. First core and main accretion phase Protostars 1. First core and main accretion phase Stahler & Palla: Chapter 11.1 & 8.4.1 & Appendices F & G Early growth and collapse In a magnetized cloud undergoing contraction, the density gradually

More information

Kengo TOMIDA Kohji Tomisaka, Masahiro N. Machida, Tomoaki Matsumoto, Satoshi Okuzumi, Yasunori Hori

Kengo TOMIDA Kohji Tomisaka, Masahiro N. Machida, Tomoaki Matsumoto, Satoshi Okuzumi, Yasunori Hori 09/19/2014 Department of Astrophysical Sciences, Princeton University Department of Physics, University of Tokyo JSPS Research Fellow Kengo TOMIDA Kohji Tomisaka, Masahiro N. Machida, Tomoaki Matsumoto,

More information

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk Today in Astronomy 142:! The local standard of rest the Milky Way, continued! Rotation curves and the! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk distribution

More information

Star Formation Law in the Milky Way

Star Formation Law in the Milky Way Publ. Astron. Soc. Japan 2014 000, 1 7 doi: 10.1093/pasj/xxx000 1 Star Formation Law in the Milky Way Yoshiaki SOFUE 1 and Hiroyuki NAKANISHI 2 1 Insitute of Astronomy, The University of Tokyo, Mitaka,

More information

arxiv:astro-ph/ v1 26 Sep 2003

arxiv:astro-ph/ v1 26 Sep 2003 Star Formation at High Angular Resolution ASP Conference Series, Vol. S-221, 2003 M.G. Burton, R. Jayawardhana & T.L. Bourke The Turbulent Star Formation Model. Outline and Tests arxiv:astro-ph/0309717v1

More information

Cosmic Evolution, Part II. Heavy Elements to Molecules

Cosmic Evolution, Part II. Heavy Elements to Molecules Cosmic Evolution, Part II Heavy Elements to Molecules First a review of terminology: Element Atom Electro- magnetic Electrons Nucleus Electromagnetic Strong Nuclear Compound Molecule Protons Neutrons Neutral

More information

Magnetic Fields in the Formation of Sun-Like Stars

Magnetic Fields in the Formation of Sun-Like Stars Magnetic Fields in the Formation of Sun-Like Stars Josep M. Girart 1*, Ramprasad Rao 2,3, and Daniel P. Marrone 2 1 Institut de Ciències de l Espai (CSIC- IEEC), Campus UAB Facultat de Ciències, Torre

More information

NUMERICAL METHODS IN ASTROPHYSICS An Introduction

NUMERICAL METHODS IN ASTROPHYSICS An Introduction -1 Series in Astronomy and Astrophysics NUMERICAL METHODS IN ASTROPHYSICS An Introduction Peter Bodenheimer University of California Santa Cruz, USA Gregory P. Laughlin University of California Santa Cruz,

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Overview spherical accretion

Overview spherical accretion Spherical accretion - AGN generates energy by accretion, i.e., capture of ambient matter in gravitational potential of black hole -Potential energy can be released as radiation, and (some of) this can

More information

Star Formation at the Galactic Center

Star Formation at the Galactic Center PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 121:585 590, 2009 June 2009. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Star Formation at the Galactic Center

More information

State of the Art MHD Methods for Astrophysical Applications p.1/32

State of the Art MHD Methods for Astrophysical Applications p.1/32 State of the Art MHD Methods for Astrophysical Applications Scott C. Noble February 25, 2004 CTA, Physics Dept., UIUC State of the Art MHD Methods for Astrophysical Applications p.1/32 Plan of Attack Is

More information

A Very Dense Low-Mass Molecular Condensation in Taurus: Evidence for the Moment of Protostellar Core Formation

A Very Dense Low-Mass Molecular Condensation in Taurus: Evidence for the Moment of Protostellar Core Formation PASJ: Publ. Astron. Soc. Japan 51, 257-262 (1999) A Very Dense Low-Mass Molecular Condensation in Taurus: Evidence for the Moment of Protostellar Core Formation Toshikazu ONISHI, Akira MIZUNO, and Yasuo

More information

Accretion Mechanisms

Accretion Mechanisms Massive Protostars Accretion Mechanism Debate Protostellar Evolution: - Radiative stability - Deuterium shell burning - Contraction and Hydrogen Ignition Stahler & Palla (2004): Section 11.4 Accretion

More information

Distribution of the Masses of Protostars in Globular Clusters

Distribution of the Masses of Protostars in Globular Clusters Distribution of the Masses of Protostars in Globular Clusters Prof. K.V.K. Nehru, Ph.D. Larson identifies the globular star clusters as the original products of the star formation process. In The Neglected

More information

The Early Phases of Disc Formation and Disc Evolution

The Early Phases of Disc Formation and Disc Evolution The Early Phases of Disc Formation and Disc Evolution modelling prospective Robi Banerjee Hamburger Sternwarte Topics Angular momentum Fragmentation Disc-envelope evolution Initial angular momentum of

More information

arxiv:astro-ph/ v2 1 May 2006

arxiv:astro-ph/ v2 1 May 2006 Outflow driven by a Giant Protoplanet Masahiro N. Machida 1 and Shu-ichiro Inutsuka 2 Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan arxiv:astro-ph/0604594v2

More information

Advection Dominated Accretion Flows. A Toy Disk Model. Bohdan P a c z y ń s k i

Advection Dominated Accretion Flows. A Toy Disk Model. Bohdan P a c z y ń s k i ACTA ASTRONOMICA Vol. 48 (1998) pp. 667 676 Advection Dominated Accretion Flows. A Toy Disk Model by Bohdan P a c z y ń s k i Princeton University Observatory, Princeton, NJ 8544-11, USA e-mail: bp@astro.princeton.edu

More information

The Life Cycle of Stars. : Is the current theory of how our Solar System formed.

The Life Cycle of Stars. : Is the current theory of how our Solar System formed. Life Cycle of a Star Video (5 min) http://www.youtube.com/watch?v=pm9cqdlqi0a The Life Cycle of Stars Solar Nebula Theory : Is the current theory of how our Solar System formed. This theory states that

More information

Does magnetic-field-angular-momentum misalignment strengthens or weakens magnetic braking? (Is magnetic braking dynamically important?

Does magnetic-field-angular-momentum misalignment strengthens or weakens magnetic braking? (Is magnetic braking dynamically important? Does magnetic-field-angular-momentum misalignment strengthens or weakens magnetic braking? (Is magnetic braking dynamically important?) Yusuke Tsukamoto Kagoshima University S. Okuzumi, K. Iwasaki, M.

More information

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012 The First Stars Simone Ferraro Princeton University Sept 25, 2012 Outline Star forming minihalos at high z Cooling physics and chemistry Gravitational Collapse and formation of protostar Magnetic fields

More information

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers Corona Australis molecular cloud: Andrew Oreshko Classification of Young Stellar Objects (YSOs) Spectral Index Hartmann: Accretion

More information

Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity

Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity Three-Dimensional Evolution of the Parker Instability under a Uniform Gravity Jongsoo Kim 1,2,S.S.Hong 2, Dongsu Ryu 3, and T. W. Jones 4 ABSTRACT Using an isothermal MHD code, we have performed three-dimensional,

More information

Physical Processes in Astrophysics

Physical Processes in Astrophysics Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

More information

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

Early Stages of (Low-Mass) Star Formation: The ALMA Promise Early Stages of (Low-Mass) Star Formation: The ALMA Promise Philippe André, CEA/SAp Saclay Outline Introduction: Prestellar cores and the origin of the IMF Identifying proto-brown dwarfs Bate et al. 1995

More information

Brown Dwarf Formation from Disk Fragmentation and Ejection

Brown Dwarf Formation from Disk Fragmentation and Ejection Brown Dwarf Formation from Disk Fragmentation and Ejection Shantanu Basu Western University, London, Ontario, Canada Collaborator: Eduard Vorobyov (University of Vienna) 50 years of Brown Dwarfs Ringberg

More information

THE ROLE OF MHD WAVES AND AMBIPOLAR DIFFUSION IN THE FORMATION OF INTERSTELLAR CLOUD CORES AND PROTOSTARS BY CHESTER ENG B.S., Columbia University, 19

THE ROLE OF MHD WAVES AND AMBIPOLAR DIFFUSION IN THE FORMATION OF INTERSTELLAR CLOUD CORES AND PROTOSTARS BY CHESTER ENG B.S., Columbia University, 19 cfl Copyright by Chester Eng, 2002 THE ROLE OF MHD WAVES AND AMBIPOLAR DIFFUSION IN THE FORMATION OF INTERSTELLAR CLOUD CORES AND PROTOSTARS BY CHESTER ENG B.S., Columbia University, 1992 M.S., University

More information

An analytic column density profile to fit prestellar cores

An analytic column density profile to fit prestellar cores Mon. Not. R. Astron. Soc. 395, 109 1098 (009) doi:10.1111/j.1365-966.009.14616.x An analytic column density profile to fit prestellar cores Wolf B. Dapp and Shantanu Basu Department of Physics and Astronomy,

More information

ASTRONOMY AND ASTROPHYSICS. How thin B[e] supergiant disks can be? Ph. Stee

ASTRONOMY AND ASTROPHYSICS. How thin B[e] supergiant disks can be? Ph. Stee Astron. Astrophys. 336, 980 985 (1998) ASTRONOMY AND ASTROPHYSICS How thin B[e] supergiant disks can be? Ph. Stee Observatoire de la Côte d Azur, Département FRESNEL, CNRS UMR 6528, 2130, route de l Observatoire,

More information

An analytic column density profile to fit prestellar cores

An analytic column density profile to fit prestellar cores Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 23 March 2009 (MN LATEX style file v2.2) An analytic column density profile to fit prestellar cores Wolf B. Dapp 1 and Shantanu Basu 1, 1 Department

More information

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2 Accretion disks AGN-7:HR-2007 p. 1 AGN-7:HR-2007 p. 2 1 Quantitative overview Gas orbits in nearly circular fashion Each gas element has a small inward motion due to viscous torques, resulting in an outward

More information

AST4930: Star and Planet Formation. Syllabus. AST4930: Star and Planet Formation, Spring 2014

AST4930: Star and Planet Formation. Syllabus. AST4930: Star and Planet Formation, Spring 2014 AST4930: Star and Planet Formation Lecture 1: Overview Assoc. Prof. Jonathan C. Tan jt@astro.ufl.edu Bryant 302 Syllabus AST4930: Star and Planet Formation, Spring 2014 Assoc. Prof. Jonathan C. Tan (jt

More information

Measurement of electric potential fields

Measurement of electric potential fields Measurement of electric potential fields Matthew Krupcale, Oliver Ernst Department of Physics, Case Western Reserve University, Cleveland Ohio, 44106-7079 18 November 2012 Abstract In electrostatics, Laplace

More information

ASTR 2030 Black Holes Fall Homework 2. Due in class Wed Mar 6

ASTR 2030 Black Holes Fall Homework 2. Due in class Wed Mar 6 ASTR 2030 Black Holes Fall 2019. Homework 2. Due in class Wed Mar 6 Your name and ID: Sagittario Infrared observations by the groups of Andrea Ghez (UCLA) and Reinhard Genzel (Max- Planck) show stars buzzing

More information

Collapse of magnetized dense cores. Is there a fragmentation crisis?

Collapse of magnetized dense cores. Is there a fragmentation crisis? Collapse of magnetized dense cores Is there a fragmentation crisis? Patrick Hennebelle (ENS-Observatoire de Paris) Collaborators: Benoît Commerçon, Andréa Ciardi, Sébastien Fromang, Romain Teyssier, Philippe

More information

The Initial Mass Function Elisa Chisari

The Initial Mass Function Elisa Chisari The Initial Mass Function AST 541 Dec 4 2012 Outline The form of the IMF Summary of observations Ingredients of a complete model A Press Schechter model Numerical simulations Conclusions The form of the

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

arxiv:astro-ph/ Dec 1999

arxiv:astro-ph/ Dec 1999 Mon. Not. R. Astron. Soc. 000, 5 (999) Printed 30 January 2002 (MN LATEX style file v.4) Two Stellar Mass Functions Combined into One by the Random Sampling Model of the IMF Bruce G. Elmegreen BM Research

More information

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters

Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters of massive gas and radii of M. Rees, J. Ostriker 1977 March 5, 2009 Talk contents: The global picture The relevant theory Implications of the theory Conclusions The global picture Galaxies and have characteristic

More information

Gas Cloud Collisions and Stellar Cluster Formation

Gas Cloud Collisions and Stellar Cluster Formation Gas Cloud Collisions and Stellar Cluster Formation J. Klapp 1, G. Arreaga-Garcia 2 1 Instituto Nacional de Investigaciones Nucleares, Km 36.5 Carretera México-Toluca, Ocoyoacac, 52750 Estado de México,

More information

The Ecology of Stars

The Ecology of Stars The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

Milky Way s Substance Loop

Milky Way s Substance Loop Milky Way s Substance Loop Wei-Xiong Huang May 6, 2015 Abstract: Milky Way center exists a star of super huge mass, its called milky way "nuclear-star". Its rotation and gravitation led milky way all substances

More information

The Milky Way spiral arm pattern

The Milky Way spiral arm pattern Mem. S.A.It. Vol. 00, 199 c SAIt 2008 Memorie della The Milky Way spiral arm pattern 3D distribution of molecular gas P. Englmaier 1, M. Pohl 2, and N. Bissantz 3 1 Institut für Theoretische Physik, Universität

More information

Lecture 22 Stability of Molecular Clouds

Lecture 22 Stability of Molecular Clouds Lecture 22 Stability of Molecular Clouds 1. Stability of Cloud Cores 2. Collapse and Fragmentation of Clouds 3. Applying the Virial Theorem References Myers, Physical Conditions in Molecular Clouds in

More information

AST 101 Introduction to Astronomy: Stars & Galaxies

AST 101 Introduction to Astronomy: Stars & Galaxies AST 101 Introduction to Astronomy: Stars & Galaxies The H-R Diagram review So far: Stars on Main Sequence (MS) Next: - Pre MS (Star Birth) - Post MS: Giants, Super Giants, White dwarfs Star Birth We start

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

arxiv:astro-ph/ v1 16 Apr 1999

arxiv:astro-ph/ v1 16 Apr 1999 Scaling Laws in Self-Gravitating Disks Daniel Huber & Daniel Pfenniger Geneva Observatory, Ch. des Maillettes 51, CH-129 Sauverny, Switzerland Received / Accepted arxiv:astro-ph/99429v1 16 Apr 1999 Abstract.

More information

Star Formation. Stellar Birth

Star Formation. Stellar Birth Star Formation Lecture 12 Stellar Birth Since stars don t live forever, then they must be born somewhere and at some time in the past. How does this happen? And when stars are born, so are planets! 1 Molecular

More information

The effect of turbulent pressure on the red giants and AGB stars

The effect of turbulent pressure on the red giants and AGB stars Astron. Astrophys. 317, 114 120 (1997) ASTRONOMY AND ASTROHYSICS The effect of turbulent pressure on the red giants AGB stars I. On the internal structure evolution S.Y. Jiang R.Q. Huang Yunnan observatory,

More information

ABSTRACT The fate of a planetary system like our own, as the parent star expands through the red giant phase and becomes a white dwarf has been a topi

ABSTRACT The fate of a planetary system like our own, as the parent star expands through the red giant phase and becomes a white dwarf has been a topi Planets Around White Dwarfs Jianke Li 1, Lilia Ferrario 2 & Dayal Wickramasinghe 2 1 ANU Astrophysical Theory Centre Department of Mathematics, Faculty of Science & the Mount Stromlo and Siding Spring

More information

Head on Collision of Two Unequal Mass Black Holes

Head on Collision of Two Unequal Mass Black Holes Head on Collision of Two Unequal Mass Black Holes Peter Anninos (1) and Steven Bran (2) (1) National Center for Supercomputing Applications, Beckman Institute, 405 N. Mathews Avenue, Urbana, Illinois,

More information

dt 2 = 0, we find that: K = 1 2 Ω (2)

dt 2 = 0, we find that: K = 1 2 Ω (2) 1 1. irial Theorem Last semester, we derived the irial theorem from essentially considering a series of particles which attract each other through gravitation. The result was that d = K + Ω (1) dt where

More information

Theory of Protostellar Disk Formation Zhi-Yun Li (University of Virginia)

Theory of Protostellar Disk Formation Zhi-Yun Li (University of Virginia) Theory of Protostellar Disk Formation Zhi-Yun Li (University of Virginia) Collaborators: Ruben Krasnopolsky (ASIAA) Sienny Shang (ASIAA) 1 Focus on magnetic effects on disk formation Investigated by many

More information

Formation of Rotationally Supported Protostellar Disks: Some Theoretical Difficulties. Ruben Krasnopolsky Zhi-Yun Li Hsien Shang

Formation of Rotationally Supported Protostellar Disks: Some Theoretical Difficulties. Ruben Krasnopolsky Zhi-Yun Li Hsien Shang Formation of Rotationally Supported Protostellar Disks: Some Theoretical Difficulties Ruben Krasnopolsky Zhi-Yun Li Hsien Shang Protostars and disks Jet Envelope Jet Inside a protostellar core, a star

More information

Magnetic Effects Change Our View of the Heliosheath

Magnetic Effects Change Our View of the Heliosheath Magnetic Effects Change Our View of the Heliosheath M. Opher Λ, P. C. Liewer Λ, M. Velli, T. I. Gombosi ΛΛ, W.Manchester ΛΛ,D. L. DeZeeuw ΛΛ,G.Toth ΛΛ and I. Sokolov ΛΛ Λ Jet Propulsion Laboratory, MS

More information

COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES

COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES COSMIC-RAY DRIVEN MAGNETIC FIELD DYNAMO IN GALAXIES Michał Hanasz, Centre for Astronomy Nicolaus Copernicus University, Toruń MAGNETIC FIELDS IN SPIRAL GALAXIES - RADIO OBSERVATIONS M51 NGC891 A. Fletcher

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Bondi flows on compact objects revisited

Bondi flows on compact objects revisited Astron. Astrophys. 323, 382 386 (1997) ASTRONOMY AND ASTROPHYSICS Bondi flows on compact objects revisited Sandip K. Chakrabarti 1 and Soumitri A. Sahu 2 1 SNBNCBS, Calcutta 7000 91, India and TIFR, Mumbai

More information

University, Bld. 1, GSP-2, Leninskie Gory, Moscow, Russia;

University, Bld. 1, GSP-2, Leninskie Gory, Moscow, Russia; Baltic Astronomy, vol. 24, 194 200, 2015 STAR FORMATION AND GALAXY DYNAMO EQUATIONS WITH RANDOM COEFFICIENTS E. A. Mikhailov 1 and I. I. Modyaev 2 1 Faculty of Physics, M. V. Lomonosov Moscow State University,

More information

ASTRONOMY AND ASTROPHYSICS Magnetic field generation in weak-line T Tauri stars: an α 2 -dynamo

ASTRONOMY AND ASTROPHYSICS Magnetic field generation in weak-line T Tauri stars: an α 2 -dynamo Astron. Astrophys. 346, 922 928 (1999) ASTRONOMY AND ASTROPHYSICS Magnetic field generation in weak-line T Tauri stars: an α 2 -dynamo M. Küker and G. Rüdiger Astrophysikalisches Institut Potsdam, An der

More information

OH AND CN ZEEMAN OBSERVATIONS OF MAGNETIC FIELDS IN MOLECULAR CLOUDS

OH AND CN ZEEMAN OBSERVATIONS OF MAGNETIC FIELDS IN MOLECULAR CLOUDS RevMexAA (Serie de Conferencias), 36, 17 112 (29) OH AND CN ZEEMAN OBSERVATIONS OF MAGNETIC FIELDS IN MOLECULAR CLOUDS R. M. Crutcher 1 RESUMEN Observaciones del efecto Zeeman en OH y CN proveen información

More information

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction Grid point and spectral models are based on the same set of primitive equations. However, each type formulates and solves the equations

More information

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O HW2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The polarization of light passing though the dust grains shows that: 1) A) the dust grains

More information

Other stellar types. Open and globular clusters: chemical compositions

Other stellar types. Open and globular clusters: chemical compositions Other stellar types Some clusters have hotter stars than we find in the solar neighbourhood -- O, B, A stars -- as well as F stars, and cooler stars (G, K, M) Hence we can establish intrinsic values (M

More information

Chapter 7. Basic Turbulence

Chapter 7. Basic Turbulence Chapter 7 Basic Turbulence The universe is a highly turbulent place, and we must understand turbulence if we want to understand a lot of what s going on. Interstellar turbulence causes the twinkling of

More information

arxiv: v2 [astro-ph.ga] 2 Aug 2012

arxiv: v2 [astro-ph.ga] 2 Aug 2012 Draft version November 9, 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 MAGNETIZATION OF CLOUD CORES AND ENVELOPES AND OTHER OBSERVATIONAL CONSEQUENCES OF RECONNECTION DIFFUSION A. Lazarian

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

Problem set: solar irradiance and solar wind

Problem set: solar irradiance and solar wind Problem set: solar irradiance and solar wind Karel Schrijver July 3, 203 Stratification of a static atmosphere within a force-free magnetic field Problem: Write down the general MHD force-balance equation

More information

Magnetic Drivers of CME Defection in the Low Corona

Magnetic Drivers of CME Defection in the Low Corona Magnetic Drivers of CME Defection in the Low Corona C. Kay (Boston University) M. Opher (Boston University) R. M. Evans (NASA GSFC/ORAU T. I. Gombosi (University of Michigan) B. van der Holst (University

More information

The large-scale magnetic field in protoplanetary disks

The large-scale magnetic field in protoplanetary disks The large-scale magnetic field in protoplanetary disks Jérôme Guilet MPA, Garching Max-Planck-Princeton center for plasma physics In collaboration with Gordon Ogilvie (Cambridge) 1/24 Talk outline 1) Impacts

More information

arxiv:astro-ph/ v1 27 Apr 2006

arxiv:astro-ph/ v1 27 Apr 2006 GRAVITATIONAL COLLAPSE OF MAGNETIZED CLOUDS II. THE ROLE OF OHMIC DISSIPATION Frank H. Shu arxiv:astro-ph/0604574v1 27 Apr 2006 Physics Department, National Tsing Hua University Hsinchu 30013, Taiwan,

More information

Beyond Our Solar System Chapter 24

Beyond Our Solar System Chapter 24 Beyond Our Solar System Chapter 24 PROPERTIES OF STARS Distance Measuring a star's distance can be very difficult Stellar parallax Used for measuring distance to a star Apparent shift in a star's position

More information

Magnetic Field Structure of Dense Cores using Spectroscopic Methods

Magnetic Field Structure of Dense Cores using Spectroscopic Methods Draft version January 21, 219 Typeset using LATEX twocolumn style in AASTeX62 Magnetic Field Structure of Dense Cores using Spectroscopic Methods Sayantan Auddy, 1, 2 Philip C. Myers, 1 Shantanu Basu,

More information

The HII Regions of Sextans A

The HII Regions of Sextans A Publications of the Astronomical Society of the Pacific 6: 765-769, 1994 July The HII Regions of Sextans A Paul Hodge 1 Astronomy Department, University of Washington, Seattle, Washington 98195 Electronic

More information

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space

Chapter 15 Star Birth. Star-Forming Clouds. Stars form in dark clouds of dusty gas in interstellar space Chapter 15 Star Birth Star-Forming Clouds Stars form in dark clouds of dusty gas in interstellar space The gas between the stars is called the interstellar medium Visible light (Hubble Space Telescope)

More information

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region E. H. Avrett and

More information