Galactic Cosmic Rays. Alexandre Marcowith Laboratoire Univers & Particules de Montpellier

Size: px
Start display at page:

Download "Galactic Cosmic Rays. Alexandre Marcowith Laboratoire Univers & Particules de Montpellier"

Transcription

1 Galactic Cosmic Rays Alexandre Marcowith Laboratoire Univers & Particules de Montpellier

2 Outlines Introduction: Cosmic Rays spectra in 3D Historical Supernova remnants Sources of high energy photons and cosmic rays Fermi acceleration Collisionless shock physics Other energetic particle sources Massive star clusters Supernova remnant/molecular clouds interaction Low energy cosmic rays Conclusions Perspectives A.Marcowith Seminar IPAG 2

3 100 years of cosmic ray research( ) Viktor HESS ( ) Discovery of cosmic rays: altitude ionization effect Nobel price 1936 Pierre Auger ( ) Discovery of electromagnetic showers (1938): start of astroparticle physics A.Marcowith Seminar IPAG 3

4 Introduction Cosmic Rays in 3D Energy spectrum Angular spectrum: anisotropy Mass spectrum: composition A.Marcowith Seminar IPAG 4

5 A.Marcowith Seminar IPAG 5

6 Galactic Cosmic Rays GCR A.Marcowith Seminar IPAG 6

7 Sources of galactic cosmic rays Supernova remnants: Hadrons + electronspositrons Massive star clusters: Hadrons+ electronspositrons Pulsars and pulsar wind nebulae: Electronspositrons (+ Hadrons) X-ray binaries: Electron-positron + Hadrons Drury+01 (SSR,vol.99) A.Marcowith Seminar IPAG 7

8 Les restes de supernova Base du modèle standard : Argument énergétique: Densité d énergie du RC e RC ~ 1.5 ev/cm 3 Temps de résidence t res ~10 M ans P cr = V gal e RC / t r ~ erg/s soit 10% P SN Argument de composition: Requiert d accélérer la matière du MIS. Argument spectral: Spectre source proche de celui d accélération diffusion par onde de choc (c.f. + loin) A.Marcowith Seminar IPAG 8

9 Chandra Historical SNRs CassiopeiaA SN ~ 1681 Type II (type IIb) Distance 3.4 kpc ( ) Radius 2.5 pc Shock speed ~5000 km/s + Kepler (type Ia) kpc + RCW86 (type II? ) 185(?) 2.8 kpc Chandra Chandra + HST Tycho SN 1572 Type Ia Distance 3.8 kpc ( ) Radius 3.4 pc Shock speed ~ 4600 km/s A.Marcowith Seminar IPAG SN 1006 Type Ia Distance 2.2 kpc (+/-0.1) Radius 9 pc Shock speed ~ 3000 km/s 9

10 Young SN remnant structure Interstellar medium 2 shocks Cassiopae A by Chandra < Ejecta > Court. A Decourchelle Green: 4-6 kev Analysis restricted to young SNr with age a few 10 3 years Free expansion early Sedov phase. A.Marcowith Seminar IPAG 10

11 Observations: radio Non thermal radiation: radio (Green catalog; Green 08) : synchrotron (polarized emission) F(ν) ν α ; <α> = 0.55 ( ) s=( ) Kepler In agreement with diffusive shock acceleration (DSA) s=2 A.Marcowith Seminar IPAG 11

12 Young SNR: X-rays CasA Tycho Filament size %R sh RCW86 SN1006 Kepler Blue: synchrotron non thermal X kev (Vink 08) A.Marcowith Seminar IPAG 12

13 X - ray Filaments: consequencies Downstream: within a synchrotron loss timescale t syn (E ph, B) - Advection with a speed V av Advection length : ΔR dif Diffusion with a coefficient D Diffusion length : ΔR adv Shock restframe view To be compared with the filament size ΔR x Constraint over B A.Marcowith Seminar IPAG 13

14 X-ray Filaments: Magnetic field Parizot, AM, Ballet, Gallant 06 Downstream MF => 2 orders of magnitude above standard Magnetic field amplification is required ISM values: Amplification A.Marcowith Seminar IPAG 14

15 X-ray stripes Eriksen+11 Turbulence pattern? Bykov+11 Tycho A.Marcowith Seminar IPAG 15

16 Supernova remnants: gammarays Detected at one (GeV/TeV) or both GeV-TeV wavebands Historical SNRs: Tycho, SN1006, Cassiopeia A, RCW86 other SNRs: RX J , Vela Jr, HESS SNR in interaction with molecular clouds: IC443, W28, W51c, W44, CTB37a, W49b, W30 Evolved SNRs: Cygnus loop + star forming regions and massive star clusters: W1, W2, Cygnus X (données Milagro), LMC GeV: Fermi, Agile TeV: HESS, MAGIC, Veritas, CangarooIII Part-II Part-I A.Marcowith Seminar IPAG 16

17 Emission mechanisms Non-thermal particle distribution : N(E)=N 0 E s Leptonic : Inverse Compton Source of low energy photons: Cosmic microwave background but sometimes IR, UV Luminosity n e E (s 1)/2 (Thompson regime). IC/synchrotron => B in a onezone model + Bremsstrahlung (NT electrons) Luminosity n e n ISM E s Hadronic : Neutral pion production Cross section increases only in log(e): gamma-ray and hadron indices similar above 1 GeV. Luminosity n ISM n CR dv A.Marcowith Seminar IPAG 17

18 Cassiopeia A Tycho SN XMM newton GeV x Abdo+10 Uchiyama+11 +XMM newton TeV +Chandra & CO data Albert+07 Acciari+11 A.Marcowith Seminar IPAG Acero+10 18

19 Tycho Hadronic model s GeV =2.3 may be up to VHE E CR consistent with 10% of E SN for n ext =0.3 cm -3 Uchiyama+11 Fermi data more consistent with hadronic model. CasA Hadronic model s GeV =2.1 + cut off at 10 TeV (blue) s GeV =2.3 no cut off (red) E CR =3.2 x erg = 1/30 E SN for n ext = 10 cm -3 Abdo+10 Density possibly smaller. Leptonic (Inverse Compton) model also possible. A.Marcowith Seminar IPAG 19

20 Aharonian+07 Other SNRs Aharonian+07 +ASCA +ROSAT Vela junior SNR RXJ Type Ic? Iyudin+10 Type? Age ~ yrs? Age ~ 1600 yrs (SN 393?) Distance ~ pc Distance ~ 1 kpc Radius 13 pc (D=750 pc) Radius 20 pc Both powerful gamma-ray A.Marcowith Seminar IPAG objects and show X-ray filaments 20

21 RXJ1713 Hadronic/Mixed Spectra Abdo+11 Leptonic RX J1713: data more consistent with leptonic models: index s GeV =2 and a mean MF = 10mG <=> X-ray filaments? Inclusion of hadrons in a mixed model: E CR < 30% E SN but a hard spectrum is required. Cut off beyond 10 TeV: if hadrons are present: several hundred TeV particles. Vela Jr: both models are possible but hadronic model requires a lot of energy into hadrons (50% ESN) and leptonic model difficult to reconcile with X-ray filaments A.Marcowith Seminar IPAG 21

22 Short summary: Young SNR and cosmic rays Several issues: Most of historical SNR are weak gamma-ray sources but emit non-thermal X-rays => particle accelerators. Cosmic ray content in question E CR is < 10% (CasA) but 10% Tycho. E max-cr < knee (max: RXJ 1713, Tycho) Leptonic origin difficult to reconcile with high MF deduced from X-ray filaments MF relaxation? (Rettig & Pohl 12, A.M. & Casse 10, Pohl+05) Time dependent turbulent features? (Bykov+08) Contribution from the reverse shock (CasA)? Thought to be weakly magnetized. Injection dependence wrt the mean magnetic field direction (SN1006)? No definite observational proofs that historical young isolated SNR are the sources of GCR YET! A.Marcowith Seminar IPAG 22 What about theory?

23 l accélération de Fermi (1er ordre) Accélération diffusive par onde de choc (ADOC ou DSA) Cas linéaire Cas non-linéaire A.Marcowith Seminar IPAG 23

24 A.Marcowith Seminar IPAG 24

25 Non-linear DSA in young SNR (too?) Efficient mechanism (Drury & Voelk 81) P CR ~ [ ] ρu sh 2 continuity conditions (Rankine-Hugoniot) have to include P CR => modification of the shock profile A.Marcowith Seminar IPAG 25

26 CR retro-action A.Marcowith Seminar IPAG 26

27 MFA feed-back MFA mainly has a negative feed-back - MFA in the shock precursor => increase of the Alfvén velocity B tot = (δb 2 + B 2 ) 1/2, ū a = B tot /(4πρ) 1/2 Decrease scattering center velocity V sh -u a => smaller compression Stationary solution closer to the test particle one : s=4 or even harder (AM, Lemoine & Pelletier 06) - A part of the turbulence energy => pre-heating (but not too much) => smaller compressibility Magnetic energy density Fluid velocity Particle distribution Spectral index V a (B 0 ): no MFA Trans: U a in the kinetic CR Eq. Trans+Ampl: U a in the kinetic CR Eq.+growth rate Caprioli+09 A.Marcowith Seminar IPAG 27

28 Collisionless shock microphysics How to simultaneously explain: 1/ High energy CR production including the non-linear effects 2/ MF amplification 3/ High energy emission A.Marcowith Seminar IPAG 28

29 Multiple species and scales Still quite challenging Completeness: Need to include: plasma waves, magnetized fluid and energetic particles + radiation. Scale description: Requires to compute acceleration process from thermal to ultrarelativistic particle scales. Intrinsic linear & nonlinear process (scale back-reaction). Heating, damping Plasma fluctuations Magnetized thermal particles Generation, scattering, stochastic acceleration Compression, adiabatic losses Energetic particles Radiation, cooling Photons A.Marcowith Seminar IPAG 29

30 Streaming instability Principle Recent developments A.Marcowith Seminar IPAG 30

31 Shock moving upstream J CR Principle Non resonant instability λ < r L =E/ZeB, lefthand circularly polarized Γ(k=1/λ)= ū a (k kc) 1/2 ; k c =J cr /B 0 F(x,p) V ch MIS B tot = (δb 2 + B 2 ) 1/2, ū a = B tot /(4πρ) 1/2 Resonant instability λ > r L =E/ZeB, righthand circularly polarized Shock precursor Γ(k) = Χ 0 k// ū a, Χ 0 = P cr /U btot Skilling 75, McKenzie & Völk 82, Bell & Lucek 01, Bell 04, Pelletier, Lemoine,AM 06, AM, Pelletier, Lemoine 06, Amato & Blasi 09 Bykov+12 (review) A.Marcowith Seminar IPAG 31

32 MF amplification Non-resonant instability: Fastest especially at high shock velocity (Pelletier, Lemoine, AM 06) Expected MF amplitude at the shock front (B V sh 3/2 )! # " B turb B ISM $ & % 2 2! u = M sh $! a " c % # " P CR 2 'u sh $ & = 500 % ( ) 2 (1/50)(1/5) = 1000 But: only small scales : Issue for confinement of high-energy particles Voelk 05 A.Marcowith Seminar IPAG 32

33 Different numerical approaches Particle In Cell (PIC): all species kinetic: Small scales l ~ r thi :instabilities that mediate the shock formation injection problem. Hybrid (electron as fluid, ions as kinetic): Dominant instability for particle acceleration back reaction over the CR current Kinetic magneto hydrodynamic (MHD) (electron+ion fluid, energetic particles as kinetic): Large scales l~r CR long term evolution of the dominant Instability CR transport and escape. Microscopic Mesoscopic Macroscopic A.Marcowith Seminar IPAG 33

34 Développements Instability studies Shock formation Particle injection at supra-thermal energies Acceleration process High energy cosmic rays tansport and instabilities => versus: ISM properties (magnetization, temperature, ionization degree), shock properties (MF obliquity, shock velocity) 1. Fluctuations produciton PIC:Hybrid Riquelme & Spitkovsky 10, Gagrgaté & Spitkovsky 12 MHD/kinetic Bykov+12, Reville & Bell Turbulence properties Upstream (Pelletier+06) downstream (AM & Casse 10) 3. Particle transport Kinetic/MHD Reville+08, AM & Casse High shock speeds studies Very young SNR Renaud,AM+ in prep Gamma-ray burst Lemoine A.Marcowith Seminar IPAG & Pelletier 11 34

35 Conclusions: shock microphysics MFA likely connected to energetic particles as source of free energy: Streaming Pressure gradient => Sonic waves Debates: Master instability depending on the ISM and shock properties Saturation process and turbulence properties Simulations: Injection Fermi acceleration at work Role of high CRs controling the turbulence up- and downstream => Maximum energy Not clear answer about SNR as sources of CRs may be valuable to look after alternative sources A.Marcowith Seminar IPAG 35

36 Other sources of energetic particles/photons Massive star clusters SNR/Molecular clouds interaction A.Marcowith Seminar IPAG 36

37 Massive star Photon residual map GeV clusters Cygnus X cocoon by Fermi Extended hard gamma emission Tibaldo+11 Fermi Ackerman+11 MSX 8 micron Cygnus X cocoon spectrum: index close to 2. (calorimeter?) Hadrons seem to be mandatory => E > 3 ev/cm -3 A.Marcowith Seminar IPAG 37

38 CR acceleration: collective processes In massive star clusters (Bykov 01, Parizot, AM+04, Ferrand & AM 10 ) Strong SNR shocks Multiple weak shocks Super-sonic/alfvenic turbulence: second order Fermi acceleration => Efficient CR accelerators up to 100 PeV but theory difficult due to strong nonlinear feed-backs. A.Marcowith Seminar IPAG 38

39 Test-particle solutions CR solutions Non-linear solutions MFI+FII FI F(p) distribution Spectral index Case of a cluster with N=100 stars Ferrand & AM 10 Ferrand+08, Ferrand & AM in prep. A.Marcowith Seminar IPAG 39

40 Massive star sample θ * = t FII /t esc and ransition hard-soft at p * =1/θ * GeV A.Marcowith Seminar IPAG 40

41 SNR in interaction with molecular clouds GeV CTB 37a TeV Uchiyama+10 Green: VLA data, ellipses CO cloud (a), black/white crosses OH masers Triangle(c)/open(b) crosses: OH masers, stars: HII regions(d)/pwn(c) White(a,b)/black contours(c): CO data A.Marcowith Seminar IPAG 41 Aharonian+08a/b, Acciari+09, Fiasson+09

42 IC443 Age: 3-30 kyrs Distance ~ 1.5 kpc? Size ~ 19 pc Fermi Egret Veritas Magic Shock/dense materials interaction (OH masers). Good fit provided by a hadronic model with broken power-law. E CR ~ x10 49 erg Also W44: => Neutral pion decay nicely reproduced combining Agile and Fermi data Giuliani+11 Abdo+10, + Agile Tavani+10 A.Marcowith Seminar IPAG 42

43 Shock/cloud interaction 2D MHD simulations (perp A.Marcowith Seminar IPAG strong shock) Inoue MF Amplification due to turbulent medium (shock rippling) that is shocked B grows due to velocity shear along mean B B => few hundred microg Network secondary shocks M < 2 (M= 5 in the dense cloud limit) Behind the blast wave => propagate in an ionized medium. 43

44 SNR/MC Several explanations: Hadrons accelerated from the thermal pool (Drury+96, Bykov & Uvarov 00, Inoue+10, Malkov & Diamond 11 W44). Single shock acceleration + Break due to loss cone transition between single strong shock and multiple weak shock re-acceleration + High energy spectrum softer spectrum due to secondary shocks Hadrons from the cloud re-accelerated at the shock front (Blandford & Cowie 82, Uchiyama+10) Hadrons escaping the SNR and interacting with MCs (Gabici+07+09, Torres+08, Casanova+10) A.Marcowith Seminar IPAG 44

45 Illuminated clouds? Probe of the diffusion coefficient around CR source Gabici+09, Ohira+10: One can expect soft GeV and hard TeV spectra especially for young SNR and/or close MCs. If we know SNR-MC distance and the CR released time => probe the diffusion coefficient around the sources. W28 case: if 1801 & 1800a and b are within a diffusive length: Diffusion coefficient (HESS1801, and HESS 1800 a/b)~ 6% ISM values Gabici+10 See also Torres+08 in the case of IC443 ~ % ISM values yr 8000 yr 2000 yr 500 yr CR spectrum at a MC at different times (Gabici+09) But OH masers detected Hewitt & Yusef- Zadeh 09 A.Marcowith Seminar IPAG 45

46 Ion radicals measurements: dense gas Probe CR ionization rates in different environments using lines produced by different ion radicals Dense shocked gas: 1. W51c: Ionization in dense region probed by [DCO+/HCO+] Ceccarelli+11 ξ~10-15 s => 2 orders of magnitude above standard values 2. IC443 [H3+] Indriolo+10 ξ> s Ionization rates IC443 A.Marcowith Seminar IPAG 46

47 Some challenges Inducing LE-CR spectrum Local deconvolution from the solar wind modulation effect likely Around SNR/MC shocks. MeV protons and kev electrons: interface between thermal and non-thermal components. Enhanced LE-CRs around sources: LE CR may be released differently depending on the upstream region: shock aging effect Transport to diffuse clouds (where enhanced ionization has been observed too). NO yet detailed modeling either for source spectrum or for transport Only reference : heliospheric shock A.Marcowith Seminar IPAG 47

48 Importance of LE CRs LE CRs important for: Ionization and ISM heating through wave production. Chemistry. Spallation => MeV Astrophysics. Dynamical effects => pressure gradients largely overlooked. Influence over ISM Spatial: A source has influence on its local environment over pc. Timescales: 10 4 => 10 7 yrs Sources are usually in clusters A.Marcowith Seminar IPAG 48

49 Conclusions Young (historical) SNRs: CR spectrum HE particle acceleration + MF amplification likely connected to non-resonant streaming instability. HE particles dominate EP pressure and largely control the Fermi process and escape. No yet observational/theoretical proof the SNR are the sources of GCR Other sources of EP and likely CRs Massive star clusters => promising candidates to be tested SNR/MC Aged shocks but still (re)accelerate particles =>most of Fermi SNRs Evidences of LE-CR ionization A.Marcowith Seminar IPAG 49

50 Perspectives Theory: numerical calculations Injection: PIC-Hybrid effects of obliquity and ISM Fermi process: Hybrid-MHD parametric studies and role of HE CRs Escape: go towards 3D simulations Shock/cloud interaction: impact of neutrals, decide among different scenarii. Observations: CTA Improved sensitivity : spectral studies Important role of angular resolution => population studies Acero+12 A.Marcowith Seminar IPAG 50

51 Back-up 1. Simulations of turbulence in SNRs 2. Neutral damping effects A.Marcowith Seminar IPAG 51

52 Numerical highlights PIC Riquelme & Spitkovsky 09 Non-resonant instability saturation by CR feed-back Solid blue: 3D simulations transvers MF Dotted: longitudinal MF Hybrid Gargaté & Spitkovsky 12 Non-thermal acceleration by the Fermi process for different Alfvén Mach numbers (// shock) A.Marcowith Seminar IPAG 52

53 Draw-backs PIC/Hybrid methods cannot catch large scales and are limited in time evolution. Simulation regime not in correspondence with SNR conditions V sh > 0.5c Biases in PIC m p /m e < 1836 Low M a (except Gargaté & Spitkovsky 12) Cover a part of the parameter space Upstream magnetization + MF Obliquity (but Gargaté & Spitkovsky 12) Ionization degree: shock/molecular cloud regions. A.Marcowith Seminar IPAG 53

54 PIC-MHD simulations particles propagate into a MHD solution. Statistical reconstruction of the transport properties => diffusion coefficient. Only done in test-particle case (but see Reville & Bell 12) Turbulent Magnetic field Reville+08 Mean square displacement at different particle energies vs time: Sampling over a large amount of particles implemented randomly in space and in pitch-angle A.Marcowith Seminar IPAG 54

55 MHD-Kinetic calculations Kepler: MF advected downstream X (synchrotron) and g ray (Inverse Compton) profiles produced by electrons Kepler: MF relaxing downstream => Neutral pion (Acero+ in prep) => CTA SDE+HD 1D spherical AM & Casse 10 A.Marcowith Seminar IPAG 55

56 Ion-neutral damping Case of resonant Alfvén waves (weak turbulence limit; δb < B) (Drury et al 96) Typical energy where ion-neutral damping is the strongest: E 1 for waves with ω=kv a >Γ Maximum energy of particles if acceleration is limited by ionneutral damping: E 2 1. If E 2 < E 1 then acceleration highly reduced compared to the neutral free case. 2. If E 2 > E 1 then acceleration slightly reduced compared to the neutral free case. %0.4! T # E 1 = 8GeV " 10 4 K$ U sh! # E 2 = 1TeV " 10 3 km /s$ n i! " 1cm %3 3! " # $ %3 / 2 P #! T 0.1$ " 10 4 K! B # & ' " 1µG $ %0.4 # $ 2 n i! " 1cm %3 High speed shocks ~1000 km/s are more likely in case 2. Low speed shocks ~100 km/s: E 2 < 1 GeV and likely in case 1. # $ 0.5 %1! n n # " 1cm %3 $ A.Marcowith Seminar IPAG 56

57 High MFA limit (δb 2 /B 2 >1) SNR/MC Young SNR Ionneutral damping Ptuskin & Zirakashvili 03 A.Marcowith Seminar IPAG 57

58 Particle acceleration performances Homogeneous-ionised- low density medium Adiabatic high speed phases last longer. Streaming instability likely to generate strong magnetic fields Internal injection from the heated thermal plasma unless propagating in massive star clusters regions Acceleration up to very high energies (PeV and more). TeV particles observed from X and Gamma-rays. Inhomogeneous-partially neutral- dense medium Faster shock aging. Lower velocities. Alfvèn waves damped by ion-neutral damping. Magnetic field compression? The clouds can have magnetic fields > 10 µgauss. External energetic particles injection likely important Importance of reacceleration/coulomb losses at low energy (kev-mev). Acceleration performances to be tested versus wave damping and low shock velocities. A.Marcowith Seminar IPAG 58

59 Break & spectral indices Spectral break: Strong shock: balance t FI =t damping => E~1-10 GeV Ptuskin & Zirakashvili 03 Index at low energy: Strong shock: s GeV = 2 Index at high energy: Multiple weak shocks: s TeV > 2 E.g. dense cloud case M= 5 gives s=2(m 2 +1)/(M 2-1) => 3 Inoue+10 A.Marcowith Seminar IPAG 59

Recent discoveries from TeV and X- ray non-thermal emission from SNRs

Recent discoveries from TeV and X- ray non-thermal emission from SNRs Recent discoveries from TeV and X- ray non-thermal emission from SNRs «From Neutrino to multimessenger astronomy» Marseille Fabio Acero LUPM (LPTA), Montpellier Fabio Acero 1 Outline Evidence of acceleration

More information

High energy radiation from molecular clouds (illuminated by a supernova remnant

High energy radiation from molecular clouds (illuminated by a supernova remnant High energy radiation from molecular clouds (illuminated by a supernova remnant A. Marcowith (L.P.T.A. Montpellier) collaboration with S. Gabici (D.I.A.S.) 1 Outlook Introduction: Scientific interests.

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

Gamma ray emission from supernova remnant/molecular cloud associations

Gamma ray emission from supernova remnant/molecular cloud associations Gamma ray emission from supernova remnant/molecular cloud associations Stefano Gabici APC, Paris stefano.gabici@apc.univ-paris7.fr The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single

More information

Revue sur le rayonnement cosmique

Revue sur le rayonnement cosmique Revue sur le rayonnement cosmique Vladimir Ptuskin IZMIRAN Galactic wind termination shock GRB N cr ~ 10-10 cm -3 - total number density w cr ~ 1.5 ev/cm 3 - energy density E max ~ 3x10 20 ev - max. detected

More information

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array A.MARCOWITH ( LABORATOIRE UNIVERS ET PARTICULES DE MONTPELLIER, FRANCE) & M.RENAUD, V.TATISCHEFF, V.DWARKADAS

More information

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature THE THREE OF CR ISSUE! ACCELERATION CRs TRANSPORT Sources B amplifica2on mechanisms Evidences Diffusion Mechanisms Contribu2ons Theory vs data Oversimplifica8on of the Nature Not accurate systema8cs SNAPSHOT!

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

Cosmic Pevatrons in the Galaxy

Cosmic Pevatrons in the Galaxy Cosmic Pevatrons in the Galaxy Jonathan Arons UC Berkeley Cosmic Rays Acceleration in Supernova Remnants Pulsar Wind Nebulae Cosmic rays Cronin, 1999, RMP, 71, S165 J(E) = AE! p, p " 2.7,1GeV < E

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Magnetic Fields in Supernova Remnants and Pulsar Wind Nebulae: Deductions from X ray (and gamma ray) Observations

Magnetic Fields in Supernova Remnants and Pulsar Wind Nebulae: Deductions from X ray (and gamma ray) Observations Magnetic Fields in Supernova Remnants and Pulsar Wind Nebulae: Deductions from X ray (and gamma ray) Observations Stephen Reynolds (NC State U) 1. Introduction 2. Determining B in SNRs SED modeling Thin

More information

Cosmic ray escape from supernova remnants

Cosmic ray escape from supernova remnants Mem. S.A.It. Vol. 82, 760 c SAIt 2011 Memorie della Cosmic ray escape from supernova remnants Stefano Gabici Astroparticule et Cosmologie (APC), CNRS, Université Paris 7 Denis Diderot, Paris, France, e-mail:

More information

Diffusive shock acceleration with regular electric fields

Diffusive shock acceleration with regular electric fields Diffusive shock acceleration with regular electric fields V.N.Zirakashvili Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN), 142190

More information

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford Cosmic Accelerators 2. Pulsars, Black Holes and Shock Waves Roger Blandford KIPAC Stanford Particle Acceleration Unipolar Induction Stochastic Acceleration V ~ Ω Φ I ~ V / Z 0 Z 0 ~100Ω P ~ V I ~ V 2 /Z

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

Remnants and Pulsar Wind

Remnants and Pulsar Wind High Energy Supernova Remnants and Pulsar Wind Nebulae F. Giordano Dipartimento Interateneo di Fisica and INFN Sez. Bari For the Fermi-LAT Collaboration Scineghe 2010 The Afterlife of a star IC443 Crab

More information

Observations of supernova remnants

Observations of supernova remnants Observations of supernova remnants Anne Decourchelle Service d Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas A, Tycho and Kepler II- Synchrotron-dominated SNRs: SN 1006, G347.3-0.5 Young supernova

More information

Multi-wavelength Properties of Supernova Remnants

Multi-wavelength Properties of Supernova Remnants Multi-wavelength Properties of Supernova Remnants Jacco Vink University of Amsterdam Anton Pannekoek Institute/GRAPPA Supernova classification Simple CSM (?) But see Kepler (Chiotellis+ 12) Complex CSM:

More information

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1)

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1) contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1) 3) Transport in the bubble stochastic acceleration (Fermi 2) and escape

More information

The quest for PeVatrons with the ASTRI/CTA mini-array

The quest for PeVatrons with the ASTRI/CTA mini-array 9th ASTRI Collaboraton Meetng Universidade de São Paulo Instituto de Astronomia, Geofisica e Ciencias Atmosferica The quest for PeVatrons with the ASTRI/CTA mini-array Giovanni Morlino INFN/Gran Sasso

More information

Shell supernova remnants as cosmic accelerators: II

Shell supernova remnants as cosmic accelerators: II Shell supernova remnants as cosmic accelerators: II Stephen Reynolds, North Carolina State University I. Observational tools II. Radio inferences III. X ray synchrotron emission IV. MeV GeV observations

More information

Cosmic-ray Acceleration and Current-Driven Instabilities

Cosmic-ray Acceleration and Current-Driven Instabilities Cosmic-ray Acceleration and Current-Driven Instabilities B. Reville Max-Planck-Institut für Kernphysik, Heidelberg Sep 17 2009, KITP J.G. Kirk, P. Duffy, S.O Sullivan, Y. Ohira, F. Takahara Outline Analysis

More information

COSMIC RAY ACCELERATION

COSMIC RAY ACCELERATION COSMIC RAY ACCELERATION LECTURE 2: ADVANCED TOPICS P. BLASI INAF/OSSERVATORIO ASTROFISICO DI ARCETRI & GRAN SASSO SCIENCE INSTITUTE, CENTER FOR ADVANCED STUDIES SPSAS-HighAstro, 29-30 May 2917, Sao Paulo,

More information

Observations of Supernova Remnants with VERITAS

Observations of Supernova Remnants with VERITAS Observations of Supernova Remnants with VERITAS Presented by Nahee Park What do we want to learn? Are SNRs the main accelerators of the Galactic cosmic rays? Efficiency of cosmic-ray acceleration? Maximum

More information

Particle acceleration & supernova remnants

Particle acceleration & supernova remnants Particle acceleration & supernova remnants Tony Bell, Brian Reville, Klara Schure University of Oxford HESS SN1006: A supernova remnant 7,000 light years from Earth X-ray (blue): NASA/CXC/Rutgers/G.Cassam-Chenai,

More information

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR M. Malkov CASS/UCSD Collaborators: P. Diamond, R. Sagdeev 1 Supernova Remnant Shocks- Cosmic

More information

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Marie-Hélène Grondin Centre d'etudes Nucléaires de Bordeaux- Gradignan SNR/PWN Workshop Montpellier, 2010 June 1 th M.-H. Grondin, SNR/PWN Wokshop,

More information

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies Sources: acceleration and composition Luke Drury Dublin Institute for Advanced Studies Hope to survey... Current status of shock acceleration theory from an astrophysical (mainly cosmic-ray origin) perspective...

More information

Supernova remnants: X-ray observations with XMM-Newton

Supernova remnants: X-ray observations with XMM-Newton Supernova remnants: X-ray observations with XMM-Newton Anne DECOURCHELLE, Service d Astrophysique, IRFU, DSM, CEA Supernova remnants: key ingredients to understand our Universe Chemical enrichment, heating

More information

Particle Acceleration at Supernova Remnants and Supernovae

Particle Acceleration at Supernova Remnants and Supernovae Particle Acceleration at Supernova Remnants and Supernovae Gwenael Giacinti 1 & Tony Bell 2 1 MPIK, Heidelberg 2 Clarendon Laboratory, University of Oxford Giacinti & Bell, MNRAS 449, 3693 (2015); Bell,

More information

Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy

Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy P. Cristofari h9p:// arxiv.org/pdf/13022150v1.pdf S. Gabici, R. Terrier, S. Casanova, E. Parizot The local cosmic

More information

Galactic Accelerators : PWNe, SNRs and SBs

Galactic Accelerators : PWNe, SNRs and SBs TeV γ-ray Observations and Implications for Galactic Accelerators : PWNe, SNRs and SBs (co-chair, HESS working group on SNRs, pulsars and PWNe) LPTA, Montpellier, France Particle Acceleration in Astrophysical

More information

Cosmic Rays, Photons and Neutrinos

Cosmic Rays, Photons and Neutrinos Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems

More information

On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks

On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks, 1 T. Inoue 2, Y. Ohira 1, R. Yamazaki 1, A. Bamba 1 and J. Vink 3 1 Department of Physics and Mathematics, Aoyama-Gakuin University,

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

CTB 37A & CTB 37B - The fake twins SNRs

CTB 37A & CTB 37B - The fake twins SNRs Annecy le vieux CTB 37A & CTB 37B - The fake twins SNRs LAPP Annecy CTB 37: a complex complex 843 MHz MGPS map (Green et al. 1999) Bright region in radio emission Thought to be 2 SNRs plus a bridge and

More information

Particle acceleration at relativistic shock waves and gamma-ray bursts

Particle acceleration at relativistic shock waves and gamma-ray bursts Particle acceleration at relativistic shock waves and gamma-ray bursts Martin Lemoine Institut d Astrophysique de Paris CNRS, Université Pierre & Marie Curie Outline: 1. Particle acceleration and relativistic

More information

Pulsar Wind Nebulae: A Multiwavelength Perspective

Pulsar Wind Nebulae: A Multiwavelength Perspective Pulsar Wind Nebulae: Collaborators: J. D. Gelfand T. Temim D. Castro S. M. LaMassa B. M. Gaensler J. P. Hughes S. Park D. J. Helfand O. C. de Jager A. Lemiere S. P. Reynolds S. Funk Y. Uchiyama A Multiwavelength

More information

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie On (shock ( shock) acceleration of ultrahigh energy cosmic rays Martin Lemoine Institut d Astrophysique d de Paris CNRS, Université Pierre & Marie Curie 1 Acceleration Hillas criterion log 10 (B/1 G) 15

More information

arxiv: v1 [astro-ph.he] 10 Mar 2013

arxiv: v1 [astro-ph.he] 10 Mar 2013 4 th Fermi Symposium : Monterey, CA : 28 Oct-2 Nov 212 1 From E. Fermi to Fermi-LAT: watching particle acceleration in supernova remnants D. Caprioli Princeton University, 4 Ivy Ln., Princeton, NJ, 844,

More information

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter:

More information

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong. Collisionless Shocks in 12 minutes or less Don Ellison, North Carolina State Univ. Andrei Bykov, Ioffe Institute, St. Petersburg Don Warren, RIKEN, Tokyo Strong collisionless shocks are important sources

More information

Fermi-LAT and WMAP observations of the SNR Puppis A

Fermi-LAT and WMAP observations of the SNR Puppis A Fermi-LAT and WMAP observations of the SNR Puppis A Marie-Hélène Grondin & Marianne Lemoine-Goumard Hewitt, J., Grondin, MH, et al. 2012, ApJ, accepted (arxiv:1210.4474) MODE-SNR-PWN workshop - November

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

arxiv: v2 [astro-ph.he] 19 Oct 2011

arxiv: v2 [astro-ph.he] 19 Oct 2011 Astronomy & Astrophysics manuscript no. Tycho c ESO 2013 January 26, 2013 Strong evidences of hadron acceleration in Tycho s Supernova Remnant G. Morlino 1, and D. Caprioli 1, INAF/Osservatorio Astrofisico

More information

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC) 1 Diffusive shock acceleration: a first order Fermi process 2 Shock waves Discontinuity in physical parameters shock front n 2, p 2, T 2 n 1, p 1, T 1 v 2 v 1 downstream medium (immaterial surface) upstream

More information

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley) w/ Todd Thompson & Eli Waxman Thompson, Quataert, & Waxman 2007, ApJ, 654, 219 Thompson,

More information

Particle acceleration in Supernova Remnants

Particle acceleration in Supernova Remnants Particle acceleration in Supernova Remnants Anne Decourchelle Service d Astrophysique, CEA Saclay Collaborators: J. Ballet, G. Cassam-Chenai, D. Ellison I- Efficiency of particle acceleration at the forward

More information

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants PACIFIC 2014, Moorea, French Polynesia, 15-20 Sep 2014 Efficient CR Acceleration and High-energy Emission at Supernova Remnants Anatomy of an SNR Emission from an SNR High-energy non-thermal emission =

More information

T. J. Brandt. CRISM: 27 Jun On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er.

T. J. Brandt. CRISM: 27 Jun On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er. On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er brandt@cesr.fr CRISM: 27 Jun 2011 All- par:cle CR Spectrum Cosmic rays are: charged particles from outer space (V. Hess, 1912) { ~90%

More information

Colliding winds in massive star binaries: expectations from radio to gamma rays

Colliding winds in massive star binaries: expectations from radio to gamma rays Colliding winds in massive star binaries: expectations from radio to gamma rays Michaël De Becker Department of Astrophysics, Geophysics, and Oceanography University of Liège Belgium Outline Colliding

More information

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Wataru Ishizaki ( Department of Physics, Graduate School of Science, The University of Tokyo ) Abstract The pulsar

More information

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Marie-Hélène Grondin CENBG, Bordeaux (France) on behalf of the Fermi-LAT Collaboration and the Pulsar Timing

More information

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center! > News < Anti-matter, dark matter measurement By measuring the cosmic rays (Mainly electron, positron, proton, anti-proton and light nuclei) AMS-02 will be launched onboard the Shuttle Endeavour On May

More information

arxiv: v1 [astro-ph.he] 18 Aug 2009

arxiv: v1 [astro-ph.he] 18 Aug 2009 Draft version August 18, 2009 Preprint typeset using L A TEX style emulateapj v. 03/07/07 SPECTRA OF MAGNETIC FLUCTUATIONS AND RELATIVISTIC PARTICLES PRODUCED BY A NONRESONANT WAVE INSTABILITY IN SUPERNOVA

More information

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT Journal of The Korean Astronomical Society http://dx.doi.org/10.5303/jkas.2012.45.5.127 45: 127 138, 2012 October ISSN:1225-4614 c 2012 The Korean Astronomical Society. All Rights Reserved. http://jkas.kas.org

More information

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Brian Lacki With Todd Thompson, Eliot Quataert, Eli Waxman, Abraham Loeb 21 September 2010 The Cosmic SED Nonthermal Thermal Nonthermal

More information

Production of Secondary Cosmic Rays in Supernova Remnants

Production of Secondary Cosmic Rays in Supernova Remnants Production of Secondary Cosmic Rays in Supernova Remnants E. G. Berezhko, Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677891 Yakutsk, Russia E-mail: ksenofon@ikfia.sbras.ru

More information

Postshock turbulence and diffusive shock acceleration in young supernova remnants. A. Marcowith 1 and F. Casse 2 ABSTRACT

Postshock turbulence and diffusive shock acceleration in young supernova remnants. A. Marcowith 1 and F. Casse 2 ABSTRACT DOI: 10.1051/0004-6361/200913022 c ESO 2010 Astronomy & Astrophysics Postshock turbulence and diffusive shock acceleration in young supernova remnants A. Marcowith 1 and F. Casse 2 1 Laboratoire de Physique

More information

Interaction rayons cosmiques - MIS le contexte hautes énergies

Interaction rayons cosmiques - MIS le contexte hautes énergies Interaction rayons cosmiques - MIS le contexte hautes énergies Guillaume Dubus remerciements à Pierrick Martin Atelier Astrochimie IPAG 24-25 novembre 2011 Institut de Planétologie et d Astrophysique de

More information

The role of ionization in the shock acceleration theory

The role of ionization in the shock acceleration theory The role of ionization in the shock acceleration theory Giovanni Morlino INAF - L.go E. Fermi 5, Firenze, Italy E-mail: morlino@arcetri.astro.it We study the acceleration of heavy nuclei at SNR shocks

More information

Probing the Pulsar Wind in the TeV Binary System

Probing the Pulsar Wind in the TeV Binary System Probing the Pulsar Wind in the TeV Binary System -PSR B1259-63/SS2883- Jumpei Takata (University of Hong Kong) Ronald Taam (TIARA, Taiwan) 1 Outline 1, Introduction -TeV binaries -Fermi observation -PSR

More information

Wave Phenomena and Cosmic Ray Acceleration ahead of strong shocks. M. Malkov In collaboration with P. Diamond

Wave Phenomena and Cosmic Ray Acceleration ahead of strong shocks. M. Malkov In collaboration with P. Diamond Wave Phenomena and Cosmic Ray Acceleration ahead of strong shocks M. Malkov In collaboration with P. Diamond CR Spectrum (preliminary) 2 Why bother? Issues with nonlinear acceleration theory: an observer

More information

Particle Acceleration in Astrophysics

Particle Acceleration in Astrophysics Particle Acceleration in Astrophysics Don Ellison, North Carolina State University Lecture 3: 1) Stochastic Acceleration (i.e., second-order Fermi) 2) Turbulence 3) Magnetic Field Amplification (MFA) in

More information

TeV Galactic Source Physics with CTA

TeV Galactic Source Physics with CTA TeV Galactic Source Physics with CTA Yves Gallant, Matthieu Renaud LPTA, CNRS/IN2P3, U. Montpellier 2, France for the CTA consortium TeV Particle Astrophysics 2010 Multimessenger HE astrophysics session

More information

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath Cosmic Ray Transport (in the Galaxy) Luke Drury Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath 1 A few disclaimers and preliminary remarks! Not my main field of research

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker 46 1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker From Aharonian et al. 2011 From Letessier-Sevon & Stanev 2011 Fermi 2-year sky map Outline 1. 2. 3. 4. knee ankle (b)

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization!

The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization! The Physics of Cosmic Rays! Ellen Zweibel! University of Wisconsin-Madison! &! Center for Magnetic Self-Organization! Galaxies(are(Pervaded(by(Magne2c( Fields(&(Rela2vis2c(Par2cles( Synchrotron radiation

More information

VERITAS Observations of Supernova Remnants

VERITAS Observations of Supernova Remnants VERITAS Observations of Supernova Remnants Reshmi Mukherjee 1 for the VERITAS Collaboration 1 Barnard College, Columbia University Chandra SNR Meeting, Boston, Jul 8, 2009 Outline (Quick) introduction

More information

THE TeV GAMMA-RAY MILKY WAY

THE TeV GAMMA-RAY MILKY WAY Publications of the Korean Astronomical Society pissn: 1225-1534 30: 553 557, 2015 September eissn: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/pkas.2015.30.2.553

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Gamma-rays from black-hole binaries (?)

Gamma-rays from black-hole binaries (?) Gamma-rays from black-hole binaries (?) Valentí Bosch-Ramon Dublin Institute for Advanced Studies Accretion and Outflow in Black Hole Systems IAU Symposium 275: Jets at all Scales Kathmandu, Nepal 13/10/2010

More information

Observations of. Pulsar Wind Nebulae

Observations of. Pulsar Wind Nebulae Observations of Pulsar Wind Nebulae I. Injection Spectrum I. Late-Phase Evolution II. PWNe and Magnetars PWNe and Their SNRs PWN Shock Reverse Shock Forward Shock Pulsar Wind Pulsar Termination Shock PWN

More information

Turbulence & particle acceleration in galaxy clusters. Gianfranco Brunetti

Turbulence & particle acceleration in galaxy clusters. Gianfranco Brunetti Turbulence & particle acceleration in galaxy clusters Gianfranco Brunetti Mergers & CR-acceleration Cluster-cluster mergers are the most energetic events in the present Universe (10 64 erg/gyr). They can

More information

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Parviz Ghavamian SNR 0509-67.5 HST ACS Hα (F657N) Supernova Remnants Heat and Enrich the ISM and Accelerate Cosmic Rays reverse-shocked

More information

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier 1 EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY Léa Jouvin, A. Lemière and R. Terrier 2 Excess of VHE cosmic rays (CRs) γ-ray count map Matter traced by CS 150 pc After subtracting the

More information

Particle Acceleration Mechanisms in Astrophysics

Particle Acceleration Mechanisms in Astrophysics Particle Acceleration Mechanisms in Astrophysics Don Ellison, North Carolina State Univ. Nonthermal particle distributions are ubiquitous in diffuse plasmas in space result of low densities and large magnetic

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

Particle acceleration in SN 1006

Particle acceleration in SN 1006 Particle acceleration in SN 1006 Anne DECOURCHELLE, Service d Astrophysique/AIM, IRFU CEA, France First results from an XMM-Newton LP on SN 1006 Co-Is: G. Maurin (post-doc), M. Miceli, F. Bocchino, G.

More information

Particle acceleration and pulsars

Particle acceleration and pulsars Meudon, nov. 2013 p. 1/17 Particle acceleration and pulsars Fabrice Mottez LUTH - Obs. Paris-Meudon - CNRS - Univ. Paris Diderot Meudon, nov. 2013 p. 2/17 Pulsars (PSR) and pulsar wind nebulae (PWNe) Mostly

More information

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics Gamma-ray emission at the base of the Fermi bubbles Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics On behalf of the Fermi-LAT collaboration TeVPA 2018, Berlin Fermi bubbles surprise

More information

3D simulations of supernova remnants evolution with particle acceleration

3D simulations of supernova remnants evolution with particle acceleration Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era Boston, MA, 09/07/09 3D simulations of supernova remnants evolution with particle acceleration Gilles Ferrand (g.ferrand@cea.fr) and Anne Decourchelle

More information

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Okkie de Jager & Stefan Ferreira (NWU, South Africa) Regis Terrier & Arache Djannati-Ataï (Univ. of Paris VII, France)

More information

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01 Background-subtracted gamma-ray count map of SNR G78.2+2.1 showing the VERITAS detection (VER2019+407). For details, see Figure 1 below. Reference: E. Aliu et al. (The VERITAS Collaboration), Astrophysical

More information

Interstellar molecules uncover cosmic rays properties

Interstellar molecules uncover cosmic rays properties Interstellar molecules uncover cosmic rays properties Solenn Vaupre, P. Hily-Blant, C. Ceccarelli, G. Dubus, S. Gabici and T. Montmerle Institute of Planetology and Astrophysics of Grenoble (IPAG) Oct

More information

Young star clusters as gamma ray emitters and their detection with Cherenkov Telescopes

Young star clusters as gamma ray emitters and their detection with Cherenkov Telescopes Young star clusters as gamma ray emitters and their detection with Cherenkov Telescopes F. Krayzel, A. Marcowith, G. Maurin, N. Komin, G. Lamanna To cite this version: F. Krayzel, A. Marcowith, G. Maurin,

More information

Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells

Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells Cosmic-ray acceleration by compressive plasma fluctuations in supernova shells Ming Zhang Florida Institute of Technology E-mail: mzhang@fit.edu We suggest that the production of Galactic cosmic rays in

More information

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants Yousaf Butt, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

More information

Supernova Remnant Studies with Fermi LAT

Supernova Remnant Studies with Fermi LAT Supernova Remnant Studies with Fermi LAT J.W. Hewitt Univ. of North Florida on behalf of the Fermi LAT collaboration TeVPA 2017 Columbus, OH August 7, 2017 Fermi Larger Area Telescope (LAT) Large Area

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission 1 Outline Mainly from 2009 ApJ 697 1071 The Pair Conversion Telescope The Large Area Telescope Charged Background and Events

More information

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014

Cosmic Rays in CMSO. Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014 Cosmic Rays in CMSO Ellen Zweibel University of Wisconsin-Madison Santa Fe, 2014 Galaxies are Pervaded by Magnetic Fields & Relativistic Particles Synchrotron radiation from M51 (MPIfR/NRAO) Galactic molecular

More information

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays Short Course on High Energy Astrophysics Exploring the Nonthermal Universe with High Energy Gamma Rays Lecture 1: Introduction Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck Institut

More information

TeV Astrophysics in the extp era

TeV Astrophysics in the extp era Institute of Astronomy and Astrophysics TeV Astrophysics in the extp era Andrea Santangelo* IAAT Kepler Center Tübingen Also at IHEP, CAS, Beijing High Throughput X-ray Astronomy in the extp Era, February

More information

Pulsar Winds in High Energy Astrophysics

Pulsar Winds in High Energy Astrophysics Pulsar Winds in High Energy Astrophysics Dmitry Khangulyan Institute of Space and Astronautical Science (ISAS/JAXA) The extreme Universe viewed in very high energy gamma-rays, Kashiwa 09/25/2012 OUTLINE

More information

The First Fermi LAT SNR Catalog SNR and Cosmic Ray Implications

The First Fermi LAT SNR Catalog SNR and Cosmic Ray Implications The First Fermi LAT SNR Catalog SNR and Cosmic Ray Implications T. J. Brandt (1), F. Acero (2), (3,4), J. W. Hewitt (1,5), M. Renaud (6), on behalf of the Fermi LAT Collaboration (1) NASA Goddard Space

More information

Cosmic rays and relativistic shock acceleration

Cosmic rays and relativistic shock acceleration Cosmic rays and relativistic shock acceleration Thank you Athina Meli ECAP Erlangen Center for Astroparticle Physics Friedrich-Alexander Universität Erlangen-Nüremberg Outline Cosmic ray spectrum (non)

More information