The quest for PeVatrons with the ASTRI/CTA mini-array

Size: px
Start display at page:

Download "The quest for PeVatrons with the ASTRI/CTA mini-array"

Transcription

1 9th ASTRI Collaboraton Meetng Universidade de São Paulo Instituto de Astronomia, Geofisica e Ciencias Atmosferica The quest for PeVatrons with the ASTRI/CTA mini-array Giovanni Morlino INFN/Gran Sasso Science Insttute for the ASTRI Collaboraton & the CTA Consortum 1

2 OUTLINE Overview of possible candidate between known shell SNRs Theoretical predictions on direct observation: how many PeVatrons we do expect to see? Indirect detection: Molecular clouds illuminated by escaping CRs 2

3 Leptonic vs. hadronic origin of γ-ra ys Pion decay and IC are competitive mechanisms Above 10 TeV IC spectrum is suppressed because Klein-Nishina efect detection of Eγ >> 10 TeV will establish the hadronic origin Hadronic models Leptonic models Large B >~ 100 μg Low B ~ 10 μg 3

4 Evidence of magnetc feld amplifcaton Cas A Kepler SNR Bds (μg) Pw,ds(%) Cas A Kepler Tycho SN RCW SN 1006 Tycho Inferred B fields assuming that the thickness of X-ray rims are determined by electron synchrotron losses and using the information from the X-ray frequencies. Inferred B fields are much larger than can be expected from the simple compression of BISM Bobs >> 10 m G x 4 ~ 40 m G Shock simultaneously places a large fraction of shock energy into relativistic particles (e.g. IONS) and amplifies magnetic turbulence so B/B >> 1 4

5 Look for PeVatrons in known SNRs Summary of shell SNRs emitng TeV gamma rays NAME Cas A Tycho North. em. SN 1006 (NE) SN 1006 (SW) RX J RX J0852 (Vela Jr.) RCW 86 G Age [yr] Distance [kpc] Flux(>1TeV) [10-12 cm-2 s-1] Spectral index Evidence of cutoff ± ±0.24 (?) ± ±0.6 ΓGeV-TeV=2.2 NO ± ±0.2 (?) 20 '' 0.15± ±0.2 (?) 6 ~ ± ±0.01 YES (best ~700) 200 pc 1 kpc 15.2± ±0.15 YES ~ (?) 20 ~14000(?) 3.2(?) 6.91± ±0.06 NO 30 '' Eγ,max [TeV] 5

6 Look for PeVatrons in known SNRs Summary of shell SNRs emitng TeV gamma rays NAME Cas A Tycho North. em. SN 1006 (NE) SN 1006 (SW) RX J RX J0852 (Vela Jr.) RCW 86 G Age [yr] Distance [kpc] Flux(>1TeV) [10-12 cm-2 s-1] Spectral index Evidence of cutoff ± ±0.24 (?) ± ±0.6 ΓGeV-TeV=2.2 NO ± ±0.2 (?) 20 '' 0.15± ±0.2 (?) 6 ~ ± ±0.01 YES (best ~700) 200 pc 1 kpc 15.2± ±0.15 YES ~ (?) 20 ~14000(?) 3.2(?) 6.91± ±0.06 NO 30 '' ASTRI mini-array9 has sensitivity better than HESS for Eγ> 10 TeV Eγ,max [TeV] Maximum detected energy in γ-rays. In case of hadronic model Ep,max ~ 10Eγ,max 6

7 SNR Cassiopea A Cas A in TeV (VERITAS) Cas A in X-rays (Chandra) Disfavoured by estimated magnetic field from X-ray filaments ~ 0.3 mg N p (E ) E 2.3 7

8 Tycho's SNR X-rays (Chandra) Fermi TS map GeV [Giordano et al. 2011] VERITAS map E > 1 TeV [Acciari et al. 2011] VERITAS does not show a cut-off Eγ,max=10 TeV = Ep,max >100 TeV The best theoretical model predict Ep,max = 500 TeV ( Eknee = 3000 TeV) Synchrotron emission [G.M. & D. Caprioli, 2012] Pion decay CTA sens. 8

9 Tycho's SNR X-rays (Chandra) Fermi TS map GeV [Giordano et al. 2011] VERITAS map E > 1 TeV [Acciari et al. 2011] VERITAS does not show a cut-off Eγ,max=10 TeV = Ep,max >100 TeV The best theoretical model predict Ep,max = 500 TeV ( Eknee = 3000 TeV) [G.M. & D. Caprioli, 2012] 9

10 Kepler's SNR Kepler's SNR is very similar to Tycho, but is far away not observed in γ-rays at the moment Gamma emission should be detectable by CTA Synchrotron emission Pion decay IC on CMB + Galactic light + IR from dust 10

11 SN 1006 SN 1006 in TeV (HESS) SN 1006 in X-rays (Chandra) Size 30 arcmin Bdown ~ μg HESS data (130 hrs of observation) Total gamma-ray flux <~ 1% Crab 11

12 SN 1006 leptonic Model fit parameters from Aharonian et al. (2014), arxiv: Leptonic model (1 zone): Explain the integrated gamma-ray fux hadronic Fails to explain the steep spectrum Requires low B, contrary to what inferred from observed thin X-ray rim (B~120 μg) Hadronic model (1 zone): Requires efciency ~ 30% 1) Steep spectrum E-2.3 with Ecut>>100 TeV mixed 2) hard spectrum E-2 with Ecut~80 TeV How to distinguish between the two scenarios? At high energies X-rays come from downstream while IC photons come from upstream 1' resolution will be able to detect a displacement between X-rays and γ-rays Extending the detection to E>10 TeV will reveal the presence of a cutof 12

13 HESS J The remnant RX J has been considered the most promising candidate to prove the existence of accelerated hadrons FermiLAT data seem to favor a probable leptonic origin BUT... Hadronic model(s): 0 Leptonic model(s): inverse Compton scattering 13

14 HESS J Curves from T. Tanaka et al., ApJ 685 (2008) Hadronic Both leptonic and hadronic models have problems in ftting Ge-TeV emission. Leptonic model (1 zone): Problems in ftting the highest energy points Need a IR background 30 > Gal. average Leptonic on (unknown) IR radiation 14

15 HESS J Curves from T. Tanaka et al., ApJ 685 (2008) Hadronic Leptonic on (unknown) IR radiation Both leptonic and hadronic models have problems in ftting Ge-TeV emission. Leptonic model (1 zone): Problems in ftting the highest energy points Need a IR background 30 > Gal. average Hadronic model in clumpy medium: Reasonable ft with hard spectrum E-1.72 and with Ep,cut~250 TeV Clumpy CSM How to produce hard spectrum? Expansion in circumstellar medium with low average density but with high density clumps: High en. particles penetrate inside the clumps Low en. particles do not penetrate we get a hard spectrum shock 15

16 HESS J (Vela Jr.) Remnant size ~ 120' γ-ray emission well correlate with Radio and X-ray emission Main uncertainty due to distance 200pc < d < 1kpc Both hadronic and leptonic model can fit the data Lept. model favored for spectral shape but need B ~ 6 μg X-ray filaments require B~100 μg Issue in fitting the shell in γ-rays A better morphological study in γ-rays will help in distinguish between L. and H. Contours:X-rays (ROSAT) FermiLAT HESS Hadronic Leptonic ASTRI mini-array9 res.(@10tev) = 4'-5' 16

17 Looking for PeVatrons When we do expect production of PeV particles? To produce PeV particles we need magnetic field ~mg downstream of the shock. All possible mechanisms for magnetic amplification (upstream of the shock) require the presence of CRs. The most invoked ones are: 1) Resonant streaming instability 2) Non resonant amplification 17

18 How to get magnetc feld amplifcaton 1) Resonant streaming instability Particles of a certain momentum amplify Alfvén waves with a wavenumber equal to the inverse gyroradius of the particle. works for medium Mach number [e.g. Skilling (1975), Bell & Lucek (2001), Amato & Blasi (2006), Blasi (2014) arxiv: ] When the growth rate is fast : but this condition imply ( ) ncr 3 ξcr V sh = ni γmin Λ c 2 2 n va When CR ni V sh c the growth rate is slow: In both situations we get ( ) δb B0 2 few 18

19 How to get magnetc feld amplifcaton 2) Non resonant amplification [Bell's instability, Bell (2004)] The diffusive electric current of CRs amplifies almost purely growing waves with wave-numbers much greater than the inverse particle gyroradius. works for very high shock velocity (initial phase of SNR expansion) CR current escaping from the SNR j Amplified magnetic field lines 19

20 How to get magnetc feld amplifcaton 2) Non resonant amplification [Bell's instability, Bell (2004)] The diffusive electric current of CRs amplifies almost purely growing waves with wave-numbers much greater than the inverse particle gyroradius. works for very high shock velocity (initial phase of SNR expansion) Type I SNR (expanding into a uniform medium) At the beginning of the ST phase: 3 nism =1cm M ej =1M Sol 51 E SN =10 erg A factor 10 below the knee Type II SNR (expanding into a red supergiant wind) 5 M =10 M Sol / yr vw =10km / s M ej=1m Sol 51 E SN =410 erg 6 E M 2 10 GeV Right number, but this last only ~50 yr! 20

21 How many PeVatrons? A statstcal approach [Cristofari, Gabici et al., MNRAS (2013)] Assume that SNRs are the source of CRs: how many TeV sources we do expect? HESS sample l<40 ; b <3 ; fux(>1tev)>1.5% Crab 35 obj. - 3 shell SNRs - 3 SNR/MC system - 12 pulsar - 17 unidentified 3<#SNRs< 20 21

22 How many PeVatrons? [Cristofari, Gabici et al., MNRAS (2013)] Assume that SNRs are the source of CRs: how many TeV sources we do expect? HESS sample l<40 ; b <3 ; 35 obj. fux(>1tev)>1.5% Crab - 3 shell SNRs - 3 SNR/MC system - 12 pulsar - 17 unidentified 3<#SNRs< 20 Model assumptions: CR luminosity = 1041 erg/s SN explosion rate= 3/century ηcr~10% SNR composition [Ptuskin et al.(2010)]: Ia(32%), IIP(44%),Ib/c(22%), IIb(2%) Spectrum slope α= Kep= Magnetic feld amplifcation 22

23 How many PeVatrons? [Cristofari, Gabici et al., MNRAS (2013)] Assume that SNR are the source of CRs: how many TeV sources we do expect? HESS sample l<40 ; b <3 ; 35 obj. fux(>1tev)>1.5% Crab - 3 shell SNRs - 3 SNR/MC system - 12 pulsar - 17 unidentified Model assumptions: 3<#SNRs< 20 Obtained with 1000 Montecarlo realizations CR luminosity = 1041 erg/s SN explosion rate= 3/century ηcr~10% SNR composition [Ptuskin et al.(2010)]: Ia(32%), IIP(44%),Ib/c(22%), IIb(2%) Spectrum slope α= Kep= Magnetic feld amplifcation 17<#SNR< 22 4<#SNR< 7 23

24 How many PeVatrons? [Cristofari, Gabici et al., MNRAS (2013)] Assume that SNR are the source of CRs: how many TeV sources we do expect? HESS sample l<40 ; b <3 ; 35 obj. fux(>1tev)>1.5% Crab - 3 shell SNRs - 3 SNR/MC system - 12 pulsar - 17 unidentified Model assumptions: 3<#SNRs< 20 Obtained with 1000 Montecarlo realizations CR luminosity = 1041 erg/s SN explosion rate= 3/century ηcr~10% SNR composition [Ptuskin et al.(2010)]: Ia(32%), IIP(44%),Ib/c(22%), IIb(2%) Spectrum slope α= Kep= Magnetic feld amplifcation 17<#SNR< 22 4<#SNR< 7 These SNRs are PeVatrons only for age < few 100 yrs Number of observable PeVatrons in the same sample compatible with 0 in the worst case 24

25 SN 1987 A (Type IIp SN) Example of very young SNR compatible with theoretical requirement to produce PeV protons HESS upper limit after 210 hr of observation: F(>1TeV) < cm-2 s-1 Wpp < erg ~ 1% ESN Berezhko et al.(2011) predict F(>1TeV) ~ cm-2 s-1 In the next decade the SNR should impact the equatorial rind whose density is estimated n~ cm-3 Dwarkadas (2013) predict a γ-fux: F(>1TeV) ~ cm-2 s-1 for f(e) E -2 F(>1TeV) ~ cm-2 s-1 for f(e) E -2.6 From Berezhko et al.(2011) 25

26 γ-ray emission from SNR/MC system Free-escape CC SN born inside star forming region boundary expected connection between SNRs and MCs Forward Shock 1) Crushed Cloud model Invokes a shocked MC into which a radiative shock is driven by SNR's blast wave. valid for middle age SNRs (W44, IC443, W28) we expect very steep spectra low shock speed cutoff ~ 1-10 TeV low acceleration efficiency Runaway CRs NOT GOOD FOR PEVATRONS Crushed Cloud 26

27 γ-ray emission from SNR/MC system Free-escape CC SN born inside star forming region boundary expected connection between SNRs and MCs Forward Shock 1) Crushed Cloud model Invokes a shocked MC into which a radiative shock is driven by SNR's blast wave. valid for middle age SNRs (W44, IC443, W28) we expect very steep spectra low shock speed cutoff ~ 1-10 TeV low acceleration efficiency Runaway CRs NOT GOOD FOR PEVATRONS 2) Runaway CR model Considers γ-ray emission from MCs illuminated by CRs escaping from the accelerator. Crushed Cloud Valid also for very young SNRs 27

28 γ-ray emission from SNR/MC system Free-escape boundary For a typical SNR at 1 kpc distance and a MC mass of 104 M detectable level of TeV emission if nsource,cr > ngal,cr this happen when the cloud is located at d <~ 100 pc from the SNR (for 3D diffusion model) Forward Shock Runaway CRs 28

29 γ-ray emission from SNR/MC system Free-escape boundary For a typical SNR at 1 kpc distance and a MC mass of 104 M detectable level of TeV emission if nsource,cr > ngal,cr this happen when the cloud is located at d <~ 100 pc from the SNR (for 3D diffusion model) Forward Shock Runaway CRs the distance can be enhanced to d <~500 pc if we consider the 1-D propagation along magnetic field line the source can be observable for ~ 104 yr B Simulation from Nava & Gabici(2012) 29

30 γ-ray emission from SNR/MC system Free-escape boundary For a typical SNR at 1 kpc distance and a MC mass of 104 M detectable level of TeV emission if nsource,cr > ngal,cr this happen when the cloud is located at d <~ 100 pc from the SNR (for 3D diffusion model) Forward Shock Runaway CRs the distance can be enhanced to d <~500 pc if we consider the 1-D propagation along magnetic field line the source can be observable for ~ 104 yr B The predicted spectrum is not universal, can be very different according to the moment of observation: 1) if the propagation distance is inside the cloud 2) if propagation distance > Rcloud Rc 0 D τ 0 Q s (E ) 4 π r dr Q s( E ) τ 4 πr D 2 Qs ( E ) Qs ( E ) 4π r dr Rc 4πr D D( E ) 2 30

31 SUMMARY Few shell-type SNRs already detected in TeV gamma-rays are good candidates to be PeVatrons (or close to) The ASTRImini-array already has the capability to investigate these cases PeVatrons are statistically difcult to observe: assuming that SNRs are indeed the source of Galactic CRs up to the knee, the number of possible observable PeVatrons with current instrument can be very low (even compatible with 0 in the worst scenario) From the theoretical point of view the most favorable candidate for PeVatrons are remnant originated from type II SN exploding in red supergiant wind during the frst yrs. This support the difculty of detection. A possible way to enhance the probability to detect a PeVatron is the indirect observation in γ-ra ysfrom molecular cloud illuminated by escaping PeV particles. These sources could be observable for a much longer time (up to ~104 yr) if MCs are located in the vicinity of a sources at < 500 pc 31

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants Marianne Lemoine-Goumard (CENBG, Université Bordeaux, CNRS-IN2P3, France) On behalf of the Fermi-LAT and HESS Collaborations

More information

Gamma ray emission from supernova remnant/molecular cloud associations

Gamma ray emission from supernova remnant/molecular cloud associations Gamma ray emission from supernova remnant/molecular cloud associations Stefano Gabici APC, Paris stefano.gabici@apc.univ-paris7.fr The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single

More information

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature THE THREE OF CR ISSUE! ACCELERATION CRs TRANSPORT Sources B amplifica2on mechanisms Evidences Diffusion Mechanisms Contribu2ons Theory vs data Oversimplifica8on of the Nature Not accurate systema8cs SNAPSHOT!

More information

Recent discoveries from TeV and X- ray non-thermal emission from SNRs

Recent discoveries from TeV and X- ray non-thermal emission from SNRs Recent discoveries from TeV and X- ray non-thermal emission from SNRs «From Neutrino to multimessenger astronomy» Marseille Fabio Acero LUPM (LPTA), Montpellier Fabio Acero 1 Outline Evidence of acceleration

More information

Diffusive shock acceleration with regular electric fields

Diffusive shock acceleration with regular electric fields Diffusive shock acceleration with regular electric fields V.N.Zirakashvili Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN), 142190

More information

Cosmic ray escape from supernova remnants

Cosmic ray escape from supernova remnants Mem. S.A.It. Vol. 82, 760 c SAIt 2011 Memorie della Cosmic ray escape from supernova remnants Stefano Gabici Astroparticule et Cosmologie (APC), CNRS, Université Paris 7 Denis Diderot, Paris, France, e-mail:

More information

Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy

Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy P. Cristofari h9p:// arxiv.org/pdf/13022150v1.pdf S. Gabici, R. Terrier, S. Casanova, E. Parizot The local cosmic

More information

SNRs, PWNe, and gamma-ray binaries: the ASTRI/CTA mini-array view

SNRs, PWNe, and gamma-ray binaries: the ASTRI/CTA mini-array view 9th ASTRI Collaboration Meeting Universidade de São Paulo Instituto de Astronomia, Geofisica e Ciencias Atmosferica SNRs, PWNe, and gamma-ray binaries: the ASTRI/CTA mini-array view A. Giuliani INAF /

More information

Revue sur le rayonnement cosmique

Revue sur le rayonnement cosmique Revue sur le rayonnement cosmique Vladimir Ptuskin IZMIRAN Galactic wind termination shock GRB N cr ~ 10-10 cm -3 - total number density w cr ~ 1.5 ev/cm 3 - energy density E max ~ 3x10 20 ev - max. detected

More information

Remnants and Pulsar Wind

Remnants and Pulsar Wind High Energy Supernova Remnants and Pulsar Wind Nebulae F. Giordano Dipartimento Interateneo di Fisica and INFN Sez. Bari For the Fermi-LAT Collaboration Scineghe 2010 The Afterlife of a star IC443 Crab

More information

Cosmic Pevatrons in the Galaxy

Cosmic Pevatrons in the Galaxy Cosmic Pevatrons in the Galaxy Jonathan Arons UC Berkeley Cosmic Rays Acceleration in Supernova Remnants Pulsar Wind Nebulae Cosmic rays Cronin, 1999, RMP, 71, S165 J(E) = AE! p, p " 2.7,1GeV < E

More information

Magnetic Fields in Supernova Remnants and Pulsar Wind Nebulae: Deductions from X ray (and gamma ray) Observations

Magnetic Fields in Supernova Remnants and Pulsar Wind Nebulae: Deductions from X ray (and gamma ray) Observations Magnetic Fields in Supernova Remnants and Pulsar Wind Nebulae: Deductions from X ray (and gamma ray) Observations Stephen Reynolds (NC State U) 1. Introduction 2. Determining B in SNRs SED modeling Thin

More information

Supernova Remnants and GLAST

Supernova Remnants and GLAST SLAC-PUB-14797 Supernova Remnants and GLAST Patrick Slane Harvard-Smithsonian Center for Astrophysics Abstract. It has long been speculated that supernova remnants represent a major source of cosmic rays

More information

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array A.MARCOWITH ( LABORATOIRE UNIVERS ET PARTICULES DE MONTPELLIER, FRANCE) & M.RENAUD, V.TATISCHEFF, V.DWARKADAS

More information

COSMIC RAY ACCELERATION

COSMIC RAY ACCELERATION COSMIC RAY ACCELERATION LECTURE 2: ADVANCED TOPICS P. BLASI INAF/OSSERVATORIO ASTROFISICO DI ARCETRI & GRAN SASSO SCIENCE INSTITUTE, CENTER FOR ADVANCED STUDIES SPSAS-HighAstro, 29-30 May 2917, Sao Paulo,

More information

Shell supernova remnants as cosmic accelerators: II

Shell supernova remnants as cosmic accelerators: II Shell supernova remnants as cosmic accelerators: II Stephen Reynolds, North Carolina State University I. Observational tools II. Radio inferences III. X ray synchrotron emission IV. MeV GeV observations

More information

Supernova remnants: X-ray observations with XMM-Newton

Supernova remnants: X-ray observations with XMM-Newton Supernova remnants: X-ray observations with XMM-Newton Anne DECOURCHELLE, Service d Astrophysique, IRFU, DSM, CEA Supernova remnants: key ingredients to understand our Universe Chemical enrichment, heating

More information

Pulsar Wind Nebulae: A Multiwavelength Perspective

Pulsar Wind Nebulae: A Multiwavelength Perspective Pulsar Wind Nebulae: Collaborators: J. D. Gelfand T. Temim D. Castro S. M. LaMassa B. M. Gaensler J. P. Hughes S. Park D. J. Helfand O. C. de Jager A. Lemiere S. P. Reynolds S. Funk Y. Uchiyama A Multiwavelength

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

Observations of supernova remnants

Observations of supernova remnants Observations of supernova remnants Anne Decourchelle Service d Astrophysique, CEA Saclay I- Ejecta dominated SNRs: Cas A, Tycho and Kepler II- Synchrotron-dominated SNRs: SN 1006, G347.3-0.5 Young supernova

More information

The role of ionization in the shock acceleration theory

The role of ionization in the shock acceleration theory The role of ionization in the shock acceleration theory Giovanni Morlino INAF - L.go E. Fermi 5, Firenze, Italy E-mail: morlino@arcetri.astro.it We study the acceleration of heavy nuclei at SNR shocks

More information

Multi-wavelength Properties of Supernova Remnants

Multi-wavelength Properties of Supernova Remnants Multi-wavelength Properties of Supernova Remnants Jacco Vink University of Amsterdam Anton Pannekoek Institute/GRAPPA Supernova classification Simple CSM (?) But see Kepler (Chiotellis+ 12) Complex CSM:

More information

Observations of Supernova Remnants with VERITAS

Observations of Supernova Remnants with VERITAS Observations of Supernova Remnants with VERITAS Presented by Nahee Park What do we want to learn? Are SNRs the main accelerators of the Galactic cosmic rays? Efficiency of cosmic-ray acceleration? Maximum

More information

Fermi-LAT and WMAP observations of the SNR Puppis A

Fermi-LAT and WMAP observations of the SNR Puppis A Fermi-LAT and WMAP observations of the SNR Puppis A Marie-Hélène Grondin & Marianne Lemoine-Goumard Hewitt, J., Grondin, MH, et al. 2012, ApJ, accepted (arxiv:1210.4474) MODE-SNR-PWN workshop - November

More information

Particle Acceleration at Supernova Remnants and Supernovae

Particle Acceleration at Supernova Remnants and Supernovae Particle Acceleration at Supernova Remnants and Supernovae Gwenael Giacinti 1 & Tony Bell 2 1 MPIK, Heidelberg 2 Clarendon Laboratory, University of Oxford Giacinti & Bell, MNRAS 449, 3693 (2015); Bell,

More information

Galactic Accelerators : PWNe, SNRs and SBs

Galactic Accelerators : PWNe, SNRs and SBs TeV γ-ray Observations and Implications for Galactic Accelerators : PWNe, SNRs and SBs (co-chair, HESS working group on SNRs, pulsars and PWNe) LPTA, Montpellier, France Particle Acceleration in Astrophysical

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford Cosmic Accelerators 2. Pulsars, Black Holes and Shock Waves Roger Blandford KIPAC Stanford Particle Acceleration Unipolar Induction Stochastic Acceleration V ~ Ω Φ I ~ V / Z 0 Z 0 ~100Ω P ~ V I ~ V 2 /Z

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

High energy radiation from molecular clouds (illuminated by a supernova remnant

High energy radiation from molecular clouds (illuminated by a supernova remnant High energy radiation from molecular clouds (illuminated by a supernova remnant A. Marcowith (L.P.T.A. Montpellier) collaboration with S. Gabici (D.I.A.S.) 1 Outlook Introduction: Scientific interests.

More information

CTB 37A & CTB 37B - The fake twins SNRs

CTB 37A & CTB 37B - The fake twins SNRs Annecy le vieux CTB 37A & CTB 37B - The fake twins SNRs LAPP Annecy CTB 37: a complex complex 843 MHz MGPS map (Green et al. 1999) Bright region in radio emission Thought to be 2 SNRs plus a bridge and

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling Wataru Ishizaki ( Department of Physics, Graduate School of Science, The University of Tokyo ) Abstract The pulsar

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

TeV Galactic Source Physics with CTA

TeV Galactic Source Physics with CTA TeV Galactic Source Physics with CTA Yves Gallant, Matthieu Renaud LPTA, CNRS/IN2P3, U. Montpellier 2, France for the CTA consortium TeV Particle Astrophysics 2010 Multimessenger HE astrophysics session

More information

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center! > News < Anti-matter, dark matter measurement By measuring the cosmic rays (Mainly electron, positron, proton, anti-proton and light nuclei) AMS-02 will be launched onboard the Shuttle Endeavour On May

More information

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars Marie-Hélène Grondin CENBG, Bordeaux (France) on behalf of the Fermi-LAT Collaboration and the Pulsar Timing

More information

Pulsars and Pulsar-Wind Nebulae: TeV to X-Ray Connection. Oleg Kargaltsev (University of Florida) George Pavlov (Penn State University)

Pulsars and Pulsar-Wind Nebulae: TeV to X-Ray Connection. Oleg Kargaltsev (University of Florida) George Pavlov (Penn State University) Pulsars and Pulsar-Wind Nebulae: TeV to X-Ray Connection Oleg Kargaltsev (University of Florida) George Pavlov (Penn State University) Pulsar Wind Nebulae. All active pulsars emit relativistic winds c

More information

Particle acceleration & supernova remnants

Particle acceleration & supernova remnants Particle acceleration & supernova remnants Tony Bell, Brian Reville, Klara Schure University of Oxford HESS SN1006: A supernova remnant 7,000 light years from Earth X-ray (blue): NASA/CXC/Rutgers/G.Cassam-Chenai,

More information

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope Marie-Hélène Grondin Centre d'etudes Nucléaires de Bordeaux- Gradignan SNR/PWN Workshop Montpellier, 2010 June 1 th M.-H. Grondin, SNR/PWN Wokshop,

More information

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants PACIFIC 2014, Moorea, French Polynesia, 15-20 Sep 2014 Efficient CR Acceleration and High-energy Emission at Supernova Remnants Anatomy of an SNR Emission from an SNR High-energy non-thermal emission =

More information

VERITAS Observations of Supernova Remnants

VERITAS Observations of Supernova Remnants VERITAS Observations of Supernova Remnants Reshmi Mukherjee 1 for the VERITAS Collaboration 1 Barnard College, Columbia University Chandra SNR Meeting, Boston, Jul 8, 2009 Outline (Quick) introduction

More information

Pulsar Winds in High Energy Astrophysics

Pulsar Winds in High Energy Astrophysics Pulsar Winds in High Energy Astrophysics Dmitry Khangulyan Institute of Space and Astronautical Science (ISAS/JAXA) The extreme Universe viewed in very high energy gamma-rays, Kashiwa 09/25/2012 OUTLINE

More information

Particle acceleration in Supernova Remnants

Particle acceleration in Supernova Remnants Particle acceleration in Supernova Remnants Anne Decourchelle Service d Astrophysique, CEA Saclay Collaborators: J. Ballet, G. Cassam-Chenai, D. Ellison I- Efficiency of particle acceleration at the forward

More information

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants Yousaf Butt, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

More information

Charged Cosmic Rays and Neutrinos

Charged Cosmic Rays and Neutrinos Charged Cosmic Rays and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline of the talk 1 Introduction talk by F. Halzen 2 SNRs as Galactic CR sources 3 Extragalactic CRs transition anisotropies

More information

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016 Review of direct measurements of cosmic rays Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016 CR astrophуsics main problems Sources? - Accelerators? The basic paradigm of CR acceleration

More information

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter:

More information

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies Brian Lacki With Todd Thompson, Eliot Quataert, Eli Waxman, Abraham Loeb 21 September 2010 The Cosmic SED Nonthermal Thermal Nonthermal

More information

arxiv: v2 [astro-ph.he] 19 Oct 2011

arxiv: v2 [astro-ph.he] 19 Oct 2011 Astronomy & Astrophysics manuscript no. Tycho c ESO 2013 January 26, 2013 Strong evidences of hadron acceleration in Tycho s Supernova Remnant G. Morlino 1, and D. Caprioli 1, INAF/Osservatorio Astrofisico

More information

TeV Astrophysics in the extp era

TeV Astrophysics in the extp era Institute of Astronomy and Astrophysics TeV Astrophysics in the extp era Andrea Santangelo* IAAT Kepler Center Tübingen Also at IHEP, CAS, Beijing High Throughput X-ray Astronomy in the extp Era, February

More information

Cosmic Rays, Photons and Neutrinos

Cosmic Rays, Photons and Neutrinos Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems

More information

Probing Cosmic Hadron Colliders with hard X-ray detectors of ASTRO-H

Probing Cosmic Hadron Colliders with hard X-ray detectors of ASTRO-H Probing Cosmic Hadron Colliders with hard X-ray detectors of ASTRO-H F.A. Aharonian, DIAS (Dublin) & MPIK (Heidelberg) ASTRO-H SWG Meeting, ISAS, Tokyo, Feb 25-26, 2009 X-rays - tracers of high energy

More information

A pulsar wind nebula associated with PSR J as the powering source of TeV J

A pulsar wind nebula associated with PSR J as the powering source of TeV J A pulsar wind nebula associated with PSR J2032+4127 as the powering source of TeV J2032+4130 Javier Moldón Netherlands Institute for Radio Astronomy Extreme Astrophysics in an Ever-Changing Universe Crete,

More information

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling

Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Composite Supernova Remnants: Multiwavelength Observations and Theoretical Modelling Okkie de Jager & Stefan Ferreira (NWU, South Africa) Regis Terrier & Arache Djannati-Ataï (Univ. of Paris VII, France)

More information

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC) 1 Diffusive shock acceleration: a first order Fermi process 2 Shock waves Discontinuity in physical parameters shock front n 2, p 2, T 2 n 1, p 1, T 1 v 2 v 1 downstream medium (immaterial surface) upstream

More information

arxiv: v1 [astro-ph.he] 10 Mar 2013

arxiv: v1 [astro-ph.he] 10 Mar 2013 4 th Fermi Symposium : Monterey, CA : 28 Oct-2 Nov 212 1 From E. Fermi to Fermi-LAT: watching particle acceleration in supernova remnants D. Caprioli Princeton University, 4 Ivy Ln., Princeton, NJ, 844,

More information

Particle acceleration and pulsars

Particle acceleration and pulsars Meudon, nov. 2013 p. 1/17 Particle acceleration and pulsars Fabrice Mottez LUTH - Obs. Paris-Meudon - CNRS - Univ. Paris Diderot Meudon, nov. 2013 p. 2/17 Pulsars (PSR) and pulsar wind nebulae (PWNe) Mostly

More information

Cosmic Ray Electrons and GC Observations with H.E.S.S.

Cosmic Ray Electrons and GC Observations with H.E.S.S. Cosmic Ray Electrons and GC Observations with H.E.S.S. Christopher van Eldik (for the H.E.S.S. Collaboration) MPI für Kernphysik, Heidelberg, Germany TeVPA '09, SLAC, July 2009 The Centre of the Milky

More information

Potential Neutrino Signals from Galactic γ-ray Sources

Potential Neutrino Signals from Galactic γ-ray Sources Potential Neutrino Signals from Galactic γ-ray Sources, Christian Stegmann Felix Aharonian, Jim Hinton MPI für Kernphysik, Heidelberg Madison WI, August 28 31, 2006 TeV γ-ray Sources as Potential ν Sources

More information

Nonthermal Emission in Starburst Galaxies

Nonthermal Emission in Starburst Galaxies Nonthermal Emission in Starburst Galaxies! Yoel Rephaeli!!! Tel Aviv University & UC San Diego Cosmic Ray Origin! San Vito, March 20, 2014 General Background * Stellar-related nonthermal phenomena * Particle

More information

T. J. Brandt. CRISM: 27 Jun On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er.

T. J. Brandt. CRISM: 27 Jun On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er. On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er brandt@cesr.fr CRISM: 27 Jun 2011 All- par:cle CR Spectrum Cosmic rays are: charged particles from outer space (V. Hess, 1912) { ~90%

More information

Supernova remnants in the very high energy sky: prospects for the Cherenkov Telescope Array

Supernova remnants in the very high energy sky: prospects for the Cherenkov Telescope Array Supernova remnants in the very high energy sky: prospects for the Cherenkov Telescope Array Columbia University E-mail: pc2781@columbia.edu Roberta Zanin Max-Planck-Institut fur Kernphysik Stefano Gabici

More information

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J1303-631 Matthew Dalton Humboldt University at Berlin For the H.E.S.S. Collaboration TeV Particle Astrophysics, Paris.

More information

Interaction rayons cosmiques - MIS le contexte hautes énergies

Interaction rayons cosmiques - MIS le contexte hautes énergies Interaction rayons cosmiques - MIS le contexte hautes énergies Guillaume Dubus remerciements à Pierrick Martin Atelier Astrochimie IPAG 24-25 novembre 2011 Institut de Planétologie et d Astrophysique de

More information

Are supernova remnants PeV accelerators? The contribution of HESS observations

Are supernova remnants PeV accelerators? The contribution of HESS observations Are supernova remnants PeV accelerators? The contribution of HESS observations Marianne Lemoine Goumard Laboratoire Leprince Ringuet Ecole Polytechnique 1 Outline 1. VHE Gamma ray Astronomy & HESS 2. Clearly

More information

Radio emission from Supernova Remnants. Gloria Dubner IAFE Buenos Aires, Argentina

Radio emission from Supernova Remnants. Gloria Dubner IAFE Buenos Aires, Argentina Radio emission from Supernova Remnants Gloria Dubner IAFE Buenos Aires, Argentina History Before radio astronomy, only 2 SNRs were known: Crab and Kepler s SNR 1948: Ryle and Smith detected an unusually

More information

Supernova Remnants and Pulsar Wind Nebulae observed in TeV γ rays

Supernova Remnants and Pulsar Wind Nebulae observed in TeV γ rays Supernova Remnants and Pulsar Wind Nebulae observed in TeV γ rays NOW 2014 Conca Specchiulla, Sept 7-14, 2014 Kathrin Valerius Erlangen Centre for Astroparticle Physics Univ. Erlangen-Nürnberg KCETA Karlsruhe

More information

The XMM-Newton (and multiwavelength) view of the nonthermal supernova remnant HESS J

The XMM-Newton (and multiwavelength) view of the nonthermal supernova remnant HESS J The XMM-Newton (and multiwavelength) view of the nonthermal supernova remnant HESS J- Gerd Pühlhofer Institut für Astronomie und Astrophysik Kepler Center for Astro and Particle Physics Tübingen, Germany

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Expanding molecular bubble surrounding Tycho's SNR evidence for a single-degenerate progenitor

Expanding molecular bubble surrounding Tycho's SNR evidence for a single-degenerate progenitor Expanding molecular bubble surrounding Tycho's SNR evidence for a single-degenerate progenitor Ping Zhou (Nanjing University) Collaborators: Yang Chen, Zhi-Yu Zhang, Xiang-Dong Li, Samar Safi-Harb, Xin

More information

Observations of. Pulsar Wind Nebulae

Observations of. Pulsar Wind Nebulae Observations of Pulsar Wind Nebulae I. Injection Spectrum I. Late-Phase Evolution II. PWNe and Magnetars PWNe and Their SNRs PWN Shock Reverse Shock Forward Shock Pulsar Wind Pulsar Termination Shock PWN

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

Production of Secondary Cosmic Rays in Supernova Remnants

Production of Secondary Cosmic Rays in Supernova Remnants Production of Secondary Cosmic Rays in Supernova Remnants E. G. Berezhko, Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Ave., 677891 Yakutsk, Russia E-mail: ksenofon@ikfia.sbras.ru

More information

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES SVESHNIKOVA L.G. 1, STRELNIKOVA O.N. 1, PTUSKIN V.S. 3 1 Lomonosov Moscow State University, SINP,

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Cosmic-ray Acceleration and Current-Driven Instabilities

Cosmic-ray Acceleration and Current-Driven Instabilities Cosmic-ray Acceleration and Current-Driven Instabilities B. Reville Max-Planck-Institut für Kernphysik, Heidelberg Sep 17 2009, KITP J.G. Kirk, P. Duffy, S.O Sullivan, Y. Ohira, F. Takahara Outline Analysis

More information

Lecture 2 Supernovae and Supernova Remnants

Lecture 2 Supernovae and Supernova Remnants Lecture 2 Supernovae and Supernova Remnants! The destiny of the stars! Explosive nucleosynthesis! Facts about SNe! Supernova remnants * Morphological classification * Evolutive stages! Emission of SNRs

More information

THE TeV GAMMA-RAY MILKY WAY

THE TeV GAMMA-RAY MILKY WAY Publications of the Korean Astronomical Society pissn: 1225-1534 30: 553 557, 2015 September eissn: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/pkas.2015.30.2.553

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

A few issues in CSM interaction signals (and on mass loss estimates) Keiichi Maeda

A few issues in CSM interaction signals (and on mass loss estimates) Keiichi Maeda A few issues in CSM interaction signals (and on mass loss estimates) Keiichi Maeda Radio/X constraints on CSM around SNe Ia Useful limit for SN 2011fe: Mdot/v w < ~10-8 M yr -1 /100km s -1 Radio Chomiuk+

More information

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere for the HAWC collaboration E-mail: miguel@psu.edu Observations of high energy gamma rays are an

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01 Background-subtracted gamma-ray count map of SNR G78.2+2.1 showing the VERITAS detection (VER2019+407). For details, see Figure 1 below. Reference: E. Aliu et al. (The VERITAS Collaboration), Astrophysical

More information

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks

Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Balmer-Dominated Supernova Remnants and the Physics of Collisionless Shocks Parviz Ghavamian SNR 0509-67.5 HST ACS Hα (F657N) Supernova Remnants Heat and Enrich the ISM and Accelerate Cosmic Rays reverse-shocked

More information

Study of the very high energy gamma-ray diffuse emission in the central 200 pc of our galaxy with H.E.S.S.

Study of the very high energy gamma-ray diffuse emission in the central 200 pc of our galaxy with H.E.S.S. Study of the very high energy gamma-ray diffuse emission in the central 200 pc of our galaxy with H.E.S.S. Lemière A., Terrier R., Jouvin L., Marandon V, Lefranc V., Viana A. For the H.E.S.S. Collaboration

More information

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array FAPESP CUNY Week, New York, November 2018 M82 Star Formation- Clouds-SNRturbulence connection Sun & Stars

More information

Probing Pulsar Winds With X-rays!

Probing Pulsar Winds With X-rays! Probing Pulsar Winds With X-rays! Collaborators:! Bryan Gaensler! Steve Reynolds! David Helfand! Stephen Ng! Anne Lemiere! Okkie de Jager! Stephanie LaMassa! Jack Hughes! PWNe and Their SNRs! PWN Shock

More information

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier 1 EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY Léa Jouvin, A. Lemière and R. Terrier 2 Excess of VHE cosmic rays (CRs) γ-ray count map Matter traced by CS 150 pc After subtracting the

More information

Non-thermal emission from pulsars experimental status and prospects

Non-thermal emission from pulsars experimental status and prospects Non-thermal emission from pulsars experimental status and prospects # γ!"# $%&'() TeV γ-ray astrophysics with VERITAS ( $γ" *$%&'() The charged cosmic radiation - how it all began... Discovery: Victor

More information

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies Sources: acceleration and composition Luke Drury Dublin Institute for Advanced Studies Hope to survey... Current status of shock acceleration theory from an astrophysical (mainly cosmic-ray origin) perspective...

More information

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker 46 1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker From Aharonian et al. 2011 From Letessier-Sevon & Stanev 2011 Fermi 2-year sky map Outline 1. 2. 3. 4. knee ankle (b)

More information

Probing the Pulsar Wind in the TeV Binary System

Probing the Pulsar Wind in the TeV Binary System Probing the Pulsar Wind in the TeV Binary System -PSR B1259-63/SS2883- Jumpei Takata (University of Hong Kong) Ronald Taam (TIARA, Taiwan) 1 Outline 1, Introduction -TeV binaries -Fermi observation -PSR

More information

Upper limits on gamma-ray emission from Supernovae serendipitously observed with H.E.S.S.

Upper limits on gamma-ray emission from Supernovae serendipitously observed with H.E.S.S. Upper limits on gamma-ray emission from Supernovae serendipitously observed with H.E.S.S. Rachel Simoni 1, Nigel Maxted 2, Mathieu Renaud 3, Jacco Vink 1, Luigi Tibaldo 4 for the H.E.S.S. collaboration

More information

Supernovae in stellar clusters as CR pevatrons. Collaborators: D.C.Ellison, P.E.Gladilin, S.M. Osipov

Supernovae in stellar clusters as CR pevatrons. Collaborators: D.C.Ellison, P.E.Gladilin, S.M. Osipov Supernovae in stellar clusters as CR pevatrons Collaborators: D.C.Ellison, P.E.Gladilin, S.M. Osipov Gamma Ray Spectral Energy Distribu6on: Starburst galaxies Ackermann + 12 A&ARv v.22, p.54, 2014 S.Ohm,

More information

Crab Pulsar. Chandra Image of the Crab Nebula. Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum

Crab Pulsar. Chandra Image of the Crab Nebula. Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum Crab Pulsar Chandra Image of the Crab Nebula Crab is the most famous pulsar, which is studied in detail across the entire energy spectrum Conventional view on the Crab Pulsar Related Emitting Zones Pulsar(Massaro+)

More information

TeV Gamma Rays from Synchrotron X-ray X

TeV Gamma Rays from Synchrotron X-ray X TeV Gamma Rays from Synchrotron X-ray X SNR Kyoto University Department of Physics Toru Tanimori (CANGAROO Collaboration) Introduction TeV Gamma Ray emissions in celestial objects Results of CANGAROO The

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information