Explosion Geometry of Supernovae Revealed by Spectropolarimetry with Subaru/FOCAS

Size: px
Start display at page:

Download "Explosion Geometry of Supernovae Revealed by Spectropolarimetry with Subaru/FOCAS"

Transcription

1 1 Explosion Geometry of Supernovae Revealed by Spectropolarimetry with Subaru/FOCAS MT, Kawabata, Maeda, et al. 8, ApJ, 689, 1191 MT, Kawabata, Maeda, et al. 9, ApJ, 699, 1119 MT, Kawabata, Yamanaka, et al. 9, submitted to ApJ (arxiv:98.57) Subaru/FOCAS V+R Masaomi Tanaka (University of Tokyo, IPMU) Koji Kawabata (Hiroshima Univ.), Takashi Hattori (NAOJ), Masayuki Yamanaka (Hiroshima Univ,), Keiichi Maeda, Ken ichi Nomoto (IPMU), Masanori Iye, Kentaro Aoki, Toshiyuki Sasaki (NAOJ), Elena Pian, Paolo Mazzali (Pisa) with great help by the Subaru staff/observers

2 How Massive Stars End Their Life? Supernova! Multi-D simulation But, how? core-collapse --> bounce -->?? Longstanding mystery (> 5 yrs) Recent numerical simulations Harikae et al. 9 Explosion would not succeed in 1-dimensional simulations (e.g., Rampp+; Sumiyoshi+5) The Last Hope = non-spherical explosion (e.g., rotation, magnetic field, instabilities) Are SNe Really Non-Spherical? --> Extracting Explosion Geometry of SNe from Observations

3 3 Power of Polarization Electron scattering Zero polarization Non-zero polarization The unique method to explore the shape of extragalactic (point source) SNe Non-zero polarization (at line)

4 Strategy for SN Spectropolarimetry Spectropolarimetry = Photon-hungry technique Wavelength resolution (R~6), polarization accuracy (.1%) SN = transient Fading rate ~1-mag/5 days Time-critical Observation Need for ToO < 3 days after the discovery Very small samples so far Bolometric magnitude SN Ic 1998bw SN Ic 1994I SN Ia 199A SN II 1999em 56 Ni decay (.1Msun) Days after the explosion 4

5 Polarization Spectrum of SN 7gr F Q (%) Sc II Fe II ISP Na I Fe II SN 7gr O I Q = -- U = -- Large polarization at Ca = Explosion is not spherically symmetric! U (%) (deg) Rest wavelength (Å) 5 No polarization at O/Na = different distribution between Ca and O/Na MT et al. 8, ApJ, 689, 1191

6 Q (%) U (%) (deg) F Polarization Spectrum of SN 9jf Fe II ISP He I Si II SN 9jf O I Rest wavelength (Å) MT et al. in preparation 6 Depth (Doppler velocity) Rotation of the position angle No defined symmetric axis in the element distribution

7 7 Element Distribution in Supernovae No SN shows completely zero polarization O I and Na I: Sometimes polarized (Pre-exist in the massive stars) Unified scenario? : Almost always polarized (Synthesized by the explosion + pre-exist) Example: bipolar explosion shock line of sight Ca NOTE: Two-dimensional (axisymmetric) geometry is often assumed, but cannot explain the rotation of the position angle Ca O, Na

8 8 Current Status and Future Prospects Subaru ToO program for SN spectropolarimetry (PI: MT, Co-I: K. Kawabata, T. Hattori, M. Yamanaka, K. Maeda, et al.) S9A (1 night ToO), S9B ( nights ToO), S1A ( nights ToO) --> SNe so far Doubling the number of high-quality samples in -3 yrs with Subaru --> Seeking a unified scenario (c.f. AGN) with >1 samples +Quantitative study with 3D radiative transfer simulations Prospects for TMT spectropolarimetry (+ AO) Distribution of all the elements in the SN spectrum --> especially Fe (if <.1% relative accuracy is achieved) Explosion geometry of GRB (gamma-ray burst) -associated SN Gamma-ray burst (C:Dana Berry)

9 9 Summary: How Massive Stars End Their Life? Spectropolarimetry of SNe The unique method to extract the geometry No SN shows completely zero polarization Line polarization --> Element distribution --> seeking a (simple) unified scenario Ca JET But, two dimensional geometry is not perfect Future prospects With higher polarization accuracy --> Complete study of element distributions Ca O, Na DISK With more photons --> Geometry of gamma-ray bursts

Asymmetry in Supernovae

Asymmetry in Supernovae IAU Symposium 279, 16/Mar/2012 Asymmetry in Supernovae Keiichi Maeda IPMU, U. Tokyo Asymmetry is common Is asymmetry common in SNe? CC, SASI CC, SASI CC, MHD GRB, Collapser MacFadyen+ 99 Blondin+ 05 Wongwathanarat+

More information

Dust production in a variety of types of supernovae

Dust production in a variety of types of supernovae 2014/08/07 Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) Main collaborators: Keiichi Maeda (Kyoto University) Masaomi Tanaka (NAOJ) Takashi

More information

Supernovae and possible NS-NS EM signatures. Keiichi Maeda

Supernovae and possible NS-NS EM signatures. Keiichi Maeda ? Supernovae and possible NS-NS EM signatures Keiichi Maeda Outline SN (mostly) optical obs. vs. radiation models. @max. Early, before max. Late-phase. w/ radio and/or X-ray. How to connect these to Progenitor,

More information

ISDT Report Time-domain Science

ISDT Report Time-domain Science ISDT Report Time-domain Science Masaomi Tanaka (National Astronomical Observatory of Japan) G.C. Anupama (IIA) (Convener) ISDT time-domain group (15 members) * at this form Warren Skidmore (TMT) (Chapter

More information

A SALT Spectropolarimetric Survey of Supernovae ( S 4 ) K. Nordsieck Univ of Wisconsin

A SALT Spectropolarimetric Survey of Supernovae ( S 4 ) K. Nordsieck Univ of Wisconsin A SALT Spectropolarimetric Survey of Supernovae ( S 4 ) K. Nordsieck Univ of Wisconsin Supernova taxonomy Polarization of Supernovae Survey Structure Why SALT? Astrophysical questions SNIa Core Collapse

More information

Photometric and Spectroscopic Observations of Type Ib Supernova SN 2012au by Kanata-Telescope

Photometric and Spectroscopic Observations of Type Ib Supernova SN 2012au by Kanata-Telescope 1 2012 December 14th Supernova meeting @ IPMU, Tokyo University Photometric and Spectroscopic Observations of Type Ib Supernova SN 2012au by Kanata-Telescope Katsutoshi Takaki (Hiroshima University) Coauthors

More information

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo)

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo) Evolution and Final Fates of Accreting White Dwarfs Ken Nomoto (Kavli IPMU / U. Tokyo) AD 1572 Korean & Chinese Record Guest Star as bright as Venus (Sonjo Sujong Sillok: Korea) AD 1572 Tycho Brahe s Supernova

More information

arxiv: v1 [astro-ph.he] 5 Jun 2009

arxiv: v1 [astro-ph.he] 5 Jun 2009 Accepted for publication in the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 8/13/6 NEBULAR PHASE OBSERVATIONS OF THE TYPE Ib SUPERNOVA 28D/X-RAY TRANSIENT 819: SIDE-VIEWED

More information

The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo)

The Evolution and Explosion of Mass-Accreting Pop III Stars. Ken Nomoto (IPMU / U.Tokyo) The Evolution and Explosion of Mass-Accreting Pop III Stars Ken Nomoto (IPMU / U.Tokyo) Pop III Stars Pop III GRBs Pop III SNe? M > 10 5 M :SMS (Super Massive Stars) GR instability Collapse M ~ 300-10

More information

Subaru telescope observes echo of the exploding star first seen in 1572, and reveals its nature

Subaru telescope observes echo of the exploding star first seen in 1572, and reveals its nature Institute for the Physics and Mathematics of the Universe IPMU Press Release 2008 12 04 Subaru telescope observes echo of the exploding star first seen in 1572, and reveals its nature Kashiwa, Japan A

More information

Dust production by various types of supernovae

Dust production by various types of supernovae Dust production by various types of supernovae Takaya Nozawa ( 野沢貴也 ) IPMU, University of Tokyo, Kashiwa, Japan Collaborators: T. Kozasa (Hokkaido Univ.), N. Tominaga (Konan Univ.) K. Maeda, M. Tanaka,

More information

Prospects in space-based Gamma-Ray Astronomy

Prospects in space-based Gamma-Ray Astronomy Prospects in space-based Gamma-Ray Astronomy On behalf of the European Gamma-Ray community Jürgen Knödlseder Centre d Etude Spatiale des Rayonnements, Toulouse, France Gamma-Ray Astronomy in Europe Europe

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Supernovae as sources of interstellar dust

Supernovae as sources of interstellar dust Supernovae as sources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) Collaborators; T. Kozasa, A. Habe (Hokkaido Univ.), M. Tanaka, K. Maeda, K. Nomoto (IPMU) N. Tominaga (Konan Univ.),

More information

Dust Formation in Various Types of Supernovae

Dust Formation in Various Types of Supernovae Dust Formation in Various Types of Supernovae Collaborators; Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H. Umeda (Univ. of Tokyo) N. Tominaga

More information

Internal conversion electrons and SN light curves

Internal conversion electrons and SN light curves Internal conversion electrons and SN light curves International School of Nuclear Physics 32nd Course: Particle and Nuclear Astrophysics September 23, 2010, Erice Ivo Rolf Seitenzahl DFG Emmy Noether Research

More information

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger Supernovae and Nucleosynthesis in Zero and Low Metal Stars Stan Woosley and Alex Heger ITP, July 6, 2006 Why believe anything I say if we don t know how any star (of any metallicity) blows up? The physics

More information

arxiv:astro-ph/ v1 9 Jun 1999

arxiv:astro-ph/ v1 9 Jun 1999 Direct Analysis of Spectra of Type Ic Supernovae David Branch Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 7319, USA arxiv:astro-ph/996168v1 9 Jun 1999 Received ; accepted

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

The Empirical Grounds of the SN-GRB Connection. M. Della Valle INAF-Napoli ICRANet-Pescara

The Empirical Grounds of the SN-GRB Connection. M. Della Valle INAF-Napoli ICRANet-Pescara The Empirical Grounds of the SN-GRB Connection M. Della Valle INAF-Napoli ICRANet-Pescara Outline Supernova Taxonomy GRB-SN properties GRB-SN census GRB 100316D / SN 2010bh Open questions Supernova taxonomy

More information

OUTFLOWS FROM SUPERNOVAE AND GRBS

OUTFLOWS FROM SUPERNOVAE AND GRBS RevMexAA (Serie de Conferencias), 27, 251 257 (2007) OUTFLOWS FROM SUPERNOVAE AND GRBS P. A. Mazzali, 1,2,3 K. Nomoto, 3 J. Deng, 3 K. Maeda, 4 N. Tominaga, 3 K. Kawabata, 5 and A. V. Filippenko 6 RESUMEN

More information

Long Gamma Ray Bursts from metal poor/pop III stars. Sung-Chul Yoon (Amsterdam) Norbert Langer (Utrecht) Colin Norman (JHU/STScI)

Long Gamma Ray Bursts from metal poor/pop III stars. Sung-Chul Yoon (Amsterdam) Norbert Langer (Utrecht) Colin Norman (JHU/STScI) Long Gamma Ray Bursts from metal poor/pop III stars Sung-Chul Yoon (Amsterdam) Norbert Langer (Utrecht) Colin Norman (JHU/STScI) The First Stars and Evolution of the Early Universe, Seattle, June 06, 2006

More information

THE X-RAY AND RADIO EMISSION FROM SN 2002ap: THE IMPORTANCE OF COMPTON SCATTERING

THE X-RAY AND RADIO EMISSION FROM SN 2002ap: THE IMPORTANCE OF COMPTON SCATTERING The Astrophysical Journal, 605:823 829, 2004 April 20 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. A THE X-RAY AND RADIO EMISSION FROM SN 2002ap: THE IMPORTANCE OF

More information

Stochastic Wake Field particle acceleration in GRB

Stochastic Wake Field particle acceleration in GRB Stochastic Wake Field particle acceleration in GRB (image credits to CXO/NASA) G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani (5) (1) University

More information

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology Collaborators Anthony Mezzacappa John M. Blondin

More information

Explosive transients in the next decade

Explosive transients in the next decade Explosive transients in the next decade S.J. Smartt Queen s University Belfast Public ESO Spectroscopic Survey of Transient Objects 90N per yr on NTT, visitor mode, flexible time domain science All of

More information

Supernova nucleosynthesis and stellar population in the early Universe

Supernova nucleosynthesis and stellar population in the early Universe Mem. S.A.It. Vol. 8, 5 c SAIt 200 Memorie della Supernova nucleosynthesis and stellar population in the early Universe K. Maeda, N. Tominaga 2,, H. Umeda 3, K. Nomoto, T. Suzuki 3 Institute for the Physics

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Gamma-ray Bursts Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk May 2011 Gamma-ray Bursts - Observations - Long-duration

More information

The Supernova/Gamma-Ray Burst Connection. Jens Hjorth Dark Cosmology Centre Niels Bohr Institute University of Copenhagen

The Supernova/Gamma-Ray Burst Connection. Jens Hjorth Dark Cosmology Centre Niels Bohr Institute University of Copenhagen The Supernova/Gamma-Ray Burst Connection Jens Hjorth Dark Cosmology Centre Niels Bohr Institute University of Copenhagen Galama et al. 1998; Fynbo et al. 2000 SN 1998bw/GRB 980425 Galama et al. 1998 Collapsar

More information

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program Nora Linn Strotjohann for the DESY Real-Time Group GROWTH Meeting at Caltech, July 26th 2016 The IceCube Neutrino

More information

Gamma-ray Bursts: Supermassive or Hypermassive Neutron Star formation in Binary Mergers and Asymmetric Supernovae Core Collapses?

Gamma-ray Bursts: Supermassive or Hypermassive Neutron Star formation in Binary Mergers and Asymmetric Supernovae Core Collapses? Gamma-ray Bursts: Supermassive or Hypermassive Neutron Star formation in Binary Mergers and Asymmetric Supernovae Core Collapses? (Conclusion: Rotation and Magnetic Fields are Important!) References Paul

More information

KECK AND EUROPEAN SOUTHERN OBSERVATORY VERY LARGE TELESCOPE VIEW OF THE SYMMETRY OF THE EJECTA OF THE XRF/SN 2006aj 1

KECK AND EUROPEAN SOUTHERN OBSERVATORY VERY LARGE TELESCOPE VIEW OF THE SYMMETRY OF THE EJECTA OF THE XRF/SN 2006aj 1 The Astrophysical Journal, 661:892 898, 2007 June 1 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A KECK AND EUROPEAN SOUTHERN OBSERVATORY VERY LARGE TELESCOPE VIEW

More information

Chapter 6: Stellar Evolution (part 2): Stellar end-products

Chapter 6: Stellar Evolution (part 2): Stellar end-products Chapter 6: Stellar Evolution (part 2): Stellar end-products Final evolution stages of high-mass stars Stellar end-products White dwarfs Neutron stars and black holes Supernovae Core-collapsed SNe Pair-Instability

More information

Monte Carlo Radiative Transfer and Type Ia Supernovae

Monte Carlo Radiative Transfer and Type Ia Supernovae Monte Carlo Radiative Transfer and Type Ia Supernovae (MPA Garching) Markus Kromer, Wolfgang Hillebrandt, Fritz Röpke Dan Kasen, Sergei Blinnikov, Elena Sorokina Overview Introduction and motivation: Type

More information

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs) This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)!1 Cas$A$ All$Image$&$video$credits:$Chandra$X7ray$ Observatory$

More information

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Observable constraints on nucleosynthesis conditions in Type Ia supernovae Observable constraints on nucleosynthesis conditions in Type Ia supernovae MPE Eurogenesis Garching, March 26, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

Upper mass limit? Dominant feedback? Now & Then?

Upper mass limit? Dominant feedback? Now & Then? Metallicity Dependence of Multiple Feedback in Massive Star Formation Kei E. I. Tanaka (Osaka Univ. / NAOJ) J. C. Tan (Chalmers/Virginia), Y. Zhang (RIKEN), T. Hosokawa (Kyoto), V. Rosero (Virginia), J.

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

what powers the brightest supernovae?

what powers the brightest supernovae? what powers the brightest supernovae? time-domain astronomy Palomar-48 inch a data driven revolution 2005ap 2008es ASASSN-15lh PTF-13ajg scp06f6 ptf09cnd 2006gy optical superluminous supernovae 2007bi

More information

Subaru Telescope and Its Prospects for Observational Cosmology

Subaru Telescope and Its Prospects for Observational Cosmology Subaru Telescope and Its Prospects for Observational Cosmology Masa Hayashi Subaru Telescope National Astronomical Observatory of Japan Opening Symposium The Institute for the Physics and Mathematics of

More information

International Science Development Teams (ISDT) Time-domain Science. Masaomi Tanaka (National Astronomical Observatory of Japan)

International Science Development Teams (ISDT) Time-domain Science. Masaomi Tanaka (National Astronomical Observatory of Japan) International Science Development Teams (ISDT) Time-domain Science Masaomi Tanaka (National Astronomical Observatory of Japan) ISDT members Initial member (2013 May)

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

arxiv: v1 [astro-ph.he] 5 Jun 2009

arxiv: v1 [astro-ph.he] 5 Jun 2009 Accepted for publication in the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 8//6 SPECTROPOLARIMETRY OF THE UNIQUE TYPE Ib SUPERNOVA 5bf: LARGER ASYMMETRY REVEALED BY LATER-PHASE

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni SN1987A before(right) and during the explosion Supernova Explosion Qingling Ni Overview Core-Collapse supernova (including Type II supernova) -Mechanism: collapse+rebound Type Ia supernova -Mechanism:

More information

Development of Next Generation Compton Gamma-ray Telescope Hiroyasu Tajima Stanford Linear Accelerator Center

Development of Next Generation Compton Gamma-ray Telescope Hiroyasu Tajima Stanford Linear Accelerator Center Development of Next Generation Compton Gamma-ray Telescope Hiroyasu Tajima Stanford Linear Accelerator Center May 3, 2004 UC Santa Cruz Collaboration H. Tajima, T. Kamae, G. Madejski, E. do Couto e Silva

More information

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Neutrinos and Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What do neutrinos do in astrophysical environments? What do neutrinos

More information

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars The Death of Stars Today s Lecture: Post main-sequence (Chapter 13, pages 296-323) How stars explode: supernovae! White dwarfs Neutron stars White dwarfs Roughly the size of the Earth with the mass of

More information

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS Indrani Banerjee Indian Institute of Science Bangalore The work has been done in collaboration with Banibrata Mukhopadhyay

More information

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6. Supernovae The spectra of supernovae fall into many categories (see below), but beginning in about 1985, astronomers recognized that there were physically, only two basic types of supernovae: Type Ia and

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

Interpretation of Early Bursts

Interpretation of Early Bursts Gamma-Ray Bursts Discovery The early years BATSE Fast versus slow bursts Uniformity and log N log S relation BeppoSAX and discovery of afterglows Redshift measurements Connection of long GRBs to supernovae

More information

Type Ia supernovae observable nuclear astrophysics

Type Ia supernovae observable nuclear astrophysics Astrophysics and Nuclear Structure Hirschegg, January 27, 2013 Type Ia supernovae observable nuclear astrophysics Julius-Maximilians-Universität Würzburg, Germany W. Hillebrandt, S. Woosley, S. Sim, I.

More information

On the progenitors of (Long) GRBs

On the progenitors of (Long) GRBs On the progenitors of (Long) GRBs Hideyuki Umeda (Dept. of Astronomy, Univ of Tokyo) Review of other people s work + I will also show our recent calculations of evolution of massive stars, which may or

More information

Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers)

Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers) Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers) Chris Belczynski 1,2 1 Warsaw University Observatory 2 University of Texas, Brownsville Theoretical Rate Estimates (MOSTLY NS-NS MERGERS:

More information

On the Range of Supernova Explosion Energies. K. Nomoto (IPMU / U. Tokyo)

On the Range of Supernova Explosion Energies. K. Nomoto (IPMU / U. Tokyo) On the Range of Supernova Explosion Energies K. Nomoto (IPMU / U. Tokyo) AD 1572 Korean & Chinese Record Guest Star as bright as Venus (Sonjo Sujong Sillok: Korea) AD 1572 Tycho Brahe s Supernova Stella

More information

Strong gravitational lenses in the 2020s

Strong gravitational lenses in the 2020s Strong gravitational lenses in the 2020s Masamune Oguri University of Tokyo 2014/7/18 TMT science forum @ Tucson Strong gravitational lenses are rare wide-field surveys find strong gravitational lenses

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

Special Topics in Nuclear and Particle Physics

Special Topics in Nuclear and Particle Physics Special Topics in Nuclear and Particle Physics Astroparticle Physics Lecture 5 Gamma Rays & x-rays Sept. 22, 2015 Sun Kee Kim Seoul National University Gamma ray astronomy gamma ray synchrotron radition

More information

An extremely dense group of massive galaxies at the centre of the protocluster at z=3.09 in the SSA22 field

An extremely dense group of massive galaxies at the centre of the protocluster at z=3.09 in the SSA22 field An extremely dense group of massive galaxies at the centre of the protocluster at z=3.09 in the SSA22 field 2015/9/7-11 In the Footsteps of Galaxies @Soverato Mariko Kuob (ICRR Univ Tokyo), Toru Yamada,

More information

The case for Magnetar power in SNe Ib/c and SLSNe. Paolo A. Mazzali and LJMU group: Simon PrenCce Chris Ashall and Elena Pian

The case for Magnetar power in SNe Ib/c and SLSNe. Paolo A. Mazzali and LJMU group: Simon PrenCce Chris Ashall and Elena Pian The case for Magnetar power in SNe Ib/c and SLSNe Paolo A. Mazzali and LJMU group: Simon PrenCce Chris Ashall and Elena Pian Magnetars have been invoked: XRF/SNe: to explain the large Luminosity [i.e.

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

Lobster X-ray Telescope Science. Julian Osborne

Lobster X-ray Telescope Science. Julian Osborne Lobster X-ray Telescope Science Julian Osborne What we want The whole high-energy sky right now 1.00E+13 1.00E+12 1 / f_lim (100 s) 1.00E+11 1.00E+10 1.00E+09 1.00E+08 0.0000001 0.000001 0.00001 0.0001

More information

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Astronomy. Astro 129: Chapter 1a Gamma-Ray Bursts Gamma-Ray Astronomy Gamma rays are photons with energies > 100 kev and are produced by sub-atomic particle interactions. They are absorbed by our atmosphere making observations from satellites

More information

Optical Spectra of Supernovae

Optical Spectra of Supernovae Optical Spectra of Supernovae David Branch 1, E. Baron 1,andDavidJ.Jeffery 2 1 University of Oklahoma, Norman, OK 73019, USA 2 New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA Abstract.

More information

How Supernova Progenitors Affect the Explosions

How Supernova Progenitors Affect the Explosions How Supernova Progenitors Affect the Explosions Progenitor System Single vs. Double Degenerate Circumstellar Material Progenitor Composition Metal Abundance Sullivan et al. 21 Sullivan et al. 21 Patat

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Neutron Star Mass Distribution in Binaries

Neutron Star Mass Distribution in Binaries A Tribute to Gerry@2013.11.26 Neutron Star Mass Distribution in Binaries Chang-Hwan Lee @ Sabbatical Year@Stony Brook (2013.8~2014.8) 1 2 Gerry s Three Questions The Future The Life The Science 3 20 years

More information

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole before The Formation of A Black Hole Kumamoto National College of Technology, Kumamoto 861-1102, Japan E-mail: fujimoto@ec.knct.ac.jp Nobuya Nishimura, Masa-aki Hashimoto, Department of Physics, School

More information

WHAT DO X-RAY OBSERVATIONS

WHAT DO X-RAY OBSERVATIONS WHAT DO X-RAY OBSERVATIONS OF SNRS TELL US ABOUT THE SN AND ITS PROGENITOR DAN PATNAUDE (SAO) ANATOMY OF A SUPERNOVA REMNANT Forward Shock Cas A viewed in X-rays (Patnaude & Fesen 2009). Red corresponds

More information

HSC Supernova Cosmology Legacy Survey with HST

HSC Supernova Cosmology Legacy Survey with HST HSC Supernova Cosmology Legacy Survey with HST Nao Suzuki (Kavli IPMU) on behalf of transient team Naoki Yasuda, Ichiro Takahashi, Jian Jiang, Tomoki Morokuma, Nozomu Tominaga, Masaomi Tanaka, Takashi

More information

Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs)

Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) Yoshiki Matsuoka (NAOJ) Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) Yoshiki Matsuoka (NAOJ Ehime Univ.) on behalf of the SHELLQs collaboration SHELLQs Subaru High-z Exploration of Low-Luminosity

More information

HOW MUCH 56 Ni CAN BE PRODUCED IN CORE-COLLAPSE SUPERNOVAE? EVOLUTION AND EXPLOSIONS OF 30Y100 M STARS

HOW MUCH 56 Ni CAN BE PRODUCED IN CORE-COLLAPSE SUPERNOVAE? EVOLUTION AND EXPLOSIONS OF 30Y100 M STARS The Astrophysical Journal, 673:1014Y1022, 2008 February 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. HOW MUCH 56 Ni CAN BE PRODUCED IN CORE-COLLAPSE SUPERNOVAE? EVOLUTION

More information

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso L Aquila - 14/11/2018 Multi-messenger studies of NS mergers, GRBs and magnetars Simone Dall Osso OUTLINE 1. Overview of GW/EM discoveries since 2015 binary black hole mergers binary neutron star mergers

More information

Supernova remnants: X-ray observations with XMM-Newton

Supernova remnants: X-ray observations with XMM-Newton Supernova remnants: X-ray observations with XMM-Newton Anne DECOURCHELLE, Service d Astrophysique, IRFU, DSM, CEA Supernova remnants: key ingredients to understand our Universe Chemical enrichment, heating

More information

Isotopic yields from supernova light curves

Isotopic yields from supernova light curves Isotopic yields from supernova light curves Astrophysics and Nuclear Structure Hirschegg, January 29, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

AIP Melville, New York, 2012 FROM BIRTH TO DEATH STELLAR POLARIMETRY: Jennifer L Hoffman University of Denver, CO, USA

AIP Melville, New York, 2012 FROM BIRTH TO DEATH STELLAR POLARIMETRY: Jennifer L Hoffman University of Denver, CO, USA STELLAR POLARIMETRY: FROM BIRTH TO DEATH - Madison, Wisconsin, USA 27 30 June 20 7 7 EDITORS Jennifer L Hoffman University of Denver, CO, USA Jon Bjorkman University of Toledo, OH, USA Barbara Whitney

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Detectors for 20 kev 10 MeV

Detectors for 20 kev 10 MeV Gamma-Ray Bursts Detectors for 20 kev to 10 MeV Discovery The early years BATSE Fast versus slow bursts Uniformity and log N log S relation BeppoSAX and discovery of afterglows Redshift measurements Connection

More information

STUDY OF ORPHAN (OFF-AXIS) AND PARENT (ON-AXIS) GAMMA-RAY BURSTS WITH LSST (A SMALL DROP IN THE TRANSIENT SKY)

STUDY OF ORPHAN (OFF-AXIS) AND PARENT (ON-AXIS) GAMMA-RAY BURSTS WITH LSST (A SMALL DROP IN THE TRANSIENT SKY) SERGIO CAMPANA GIANCARLO GHIRLANDA PAOLO D AVANZO ANDREA MELANDRI GIANPIERO TAGLIAFERRI GABRIELE GHISELLINI STUDY OF ORPHAN (OFF-AXIS) AND PARENT (ON-AXIS) GAMMA-RAY BURSTS WITH LSST (A SMALL DROP IN THE

More information

Pulsars with MAGIC. Jezabel R. Garcia on behalf of the MAGIC collaboration

Pulsars with MAGIC. Jezabel R. Garcia on behalf of the MAGIC collaboration Pulsars with MAGIC Jezabel R. Garcia on behalf of the MAGIC collaboration Introduction to MAGIC - Energy range: ~50 GeV to 50 TeV - Energy resolution: 15% (@1TeV) 23% (@100 GeV) - Angular resolution: 0.06

More information

The Collapsar Model for Gamma-Ray Bursts

The Collapsar Model for Gamma-Ray Bursts The Collapsar Model for Gamma-Ray Bursts S. E. Woosley (UCSC) Weiqun Zhang (UCSC) Alex Heger (Univ. Chicago) Andrew MacFadyen (Cal Tech) Harvard CfA Meeting on GRBs, May 21, 2002 Requirements on the Central

More information

THE 82ND ARTHUR H. COMPTON LECTURE SERIES

THE 82ND ARTHUR H. COMPTON LECTURE SERIES THE 82ND ARTHUR H. COMPTON LECTURE SERIES by Dr. Manos Chatzopoulos Enrico Fermi Postdoctoral Fellow FLASH Center for Computational Science Department of Astronomy & Astrophysics University of Chicago

More information

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum Gamma Ray Bursts Progress & Prospects Resmi Lekshmi Indian Institute of Space Science & Technology Trivandrum Why study GRBs? to study GRBs end stages of massive star evolution jet launching, collimation

More information

Unravelling the Explosion Mechanisms

Unravelling the Explosion Mechanisms SFB-TR7 Lectures, INAF-Osservatorio Astronomico di Brera 19. & 20. November 2013 The Violent Deaths of Massive Stars Unravelling the Explosion Mechanisms Connecting Theory to Observations Hans-Thomas Janka

More information

Supernova and Star Formation Rates

Supernova and Star Formation Rates Supernova and Star Formation Rates Enrico Cappellaro Istituto Nazionale di Astrofisica Osservatorio Astronomico di Padova SN vs. SF rates Kennicutt 1998 SFR vs. galaxy color from evolutionary synthesis

More information

!Basic Properties of Black Holes. !Electrically Charged Black Holes. !Structure of a Simple Black Hole. Agenda for Ast 309N, Dec.

!Basic Properties of Black Holes. !Electrically Charged Black Holes. !Structure of a Simple Black Hole. Agenda for Ast 309N, Dec. Agenda for Ast 309N, Dec. 4!Basic Properties of Black Holes Repeat of the first-day survey (partic. credit) Thurs: Exam 3 (no make-up available). Office hours, help session on Tues., Wed. afternoons Quiz

More information

Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae

Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae 1 Theoretical Modeling of Early Bolometric Light Curves of Type IIn Supernovae Emmanouil Georgios Drimalas Department of Physics, National and Kapodistrian University of Athens Supervisor: Professor Toshikazu

More information

Rapidly Fading Supernovae from Massive Star Explosions. Io Kleiser - Caltech Advisor: Dan Kasen - UC Berkeley 31 October 2013

Rapidly Fading Supernovae from Massive Star Explosions. Io Kleiser - Caltech Advisor: Dan Kasen - UC Berkeley 31 October 2013 Rapidly Fading Supernovae from Massive Star Explosions Io Kleiser - Caltech Advisor: Dan Kasen - UC Berkeley 31 October 213 SN 21X Discovery Normalized Magnitude 2 4 1991T 1991bg 1994I 21X-g 21X-r 21X-i

More information

ELT Contributions to The First Explosions 1

ELT Contributions to The First Explosions 1 ELT Contributions to The First Explosions 1 A Whitepaper Submitted to the Astro 2020 Decadal Survey Committee J. Craig Wheeler (The University of Texas at Austin) József Vinkó (Konkoly Observatory) Rafaella

More information

Life and Evolution of a Massive Star. M ~ 25 M Sun

Life and Evolution of a Massive Star. M ~ 25 M Sun Life and Evolution of a Massive Star M ~ 25 M Sun Birth in a Giant Molecular Cloud Main Sequence Post-Main Sequence Death The Main Sequence Stars burn H in their cores via the CNO cycle About 90% of a

More information

Supernovae with SKA. Massimo Della Valle Capodimonte Observatory-INAF Naples

Supernovae with SKA. Massimo Della Valle Capodimonte Observatory-INAF Naples Supernovae with SKA Massimo Della Valle Capodimonte Observatory-INAF Naples Summary Supernova Taxonomy Radio-SN Observations (SKA will do it better) The impact of SKA on SN studies (CC-SNe; SNe-Ia; GRB-SNe,

More information

arxiv:astro-ph/ v1 26 Oct 1998

arxiv:astro-ph/ v1 26 Oct 1998 submitted to Astrophysical Journal Letters Preprint typeset using L A TEX style emulateapj ON THE RADIO-TO-X-RAY LIGHT CURVES OF SN 1998BW AND GRB980425 Koichi IWAMOTO 1 submitted to Astrophysical Journal

More information

Dr. John Kelley Radboud Universiteit, Nijmegen

Dr. John Kelley Radboud Universiteit, Nijmegen arly impressive. An ultrahighoton triggers a cascade of particles mulation of the Auger array. The Many Mysteries of Cosmic Rays Dr. John Kelley Radboud Universiteit, Nijmegen Questions What are cosmic

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies Kazuaki Ota Department of Astronomy Kyoto University 2013 Feb. 14 GCOE Symposium Outline

More information

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar The Mystery of Fast Radio Bursts and its possible resolution Outline Pawan Kumar FRBs: summary of relevant observations Radiation mechanism and polarization FRB cosmology Wenbin Lu Niels Bohr Institute,

More information