Magnetic phases and critical points of insulators and superconductors

Size: px
Start display at page:

Download "Magnetic phases and critical points of insulators and superconductors"

Transcription

1 Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/ cond-mat/ Quantum Phase Transitions Cambridge University Press Talks online: Sachdev

2 What is a quantum phase transition? Non-analyticity in ground state properties as a function of some control parameter g E E True level crossing: Usually a first-order transition g Avoided level crossing which becomes sharp in the infinite volume limit: g second-order transition

3 Why study quantum phase transitions? T Quantum-critical g c Theory for a quantum system with strong correlations: describe phases on either side of g c by expanding in deviation from the quantum critical point. Critical point is a novel state of matter without quasiparticle excitations g Critical excitations control dynamics in the wide quantum-critical region at non-zero temperatures. Important property of ground state at g=g c : temporal and spatial scale invariance; characteristic energy scale at other values of g: ~ z g g ν c

4 I. Quantum Ising Ising Chain chain II. Outline Coupled Dimer Antiferromagnet A. Coherent state path integral B. Quantum field theory near critical point Single order parameter. III. Coupled dimer antiferromagnet in a magnetic field Bose condensation of triplons IV. Magnetic transitions in superconductors Quantum phase transition in a background Abrikosov flux lattice V. Antiferromagnets with an odd number of S=1/2 spins per unit cell. Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: Z 2 gauge theory: non-collinear spins, RVB, visons, topological order, and deconfined spinons Multiple order parameters. VI. Conclusions

5 I. Quantum Ising Chain Degrees of freedom: j = 1 N qubits, N "large", 1 1 or =, j 2 2 j j ( + ) = ( ) j j j j j Hamiltonian of decoupled qubits: H = Jg σ 2Jg 0 j x j j j

6 leads to entangled states at g of order unity Coupling between qubits: H = J σ σ + z z 1 j j 1 j ( + )( + ) Prefers neighboring qubits are Full Hamiltonian j j j+ 1 j+ 1 either or j j+ 1 j j+ 1 (not entangled) ( x z z g ) j j j H = H + H = J σ + σ σ j

7 Ground state: G = Weakly-coupled qubits Lowest excited states: 1 2g j = j + Coupling between qubits creates flipped-spin quasiparticle states at momentum p p j ipx j = e pa Excitation energy ε 2 Excitation gap = 2gJ 2J + O g j 2 1 ( p) = + 4Jsin + O( g ) 1 ( ) ( g 1) ε ( p) π a p π a Entire spectrum can be constructed out of multi-quasiparticle states

8 S( p, ω) Dynamic Structure Factor : Cross-section to flip a to a (or vice versa) while transferring energy ω and momentum p S( p, ω ) Zδ ω ( p) ( ε ) Quasiparticle pole Weakly-coupled qubits ( g 1) Three quasiparticle continuum Structure holds to all orders in 1/g ~3 ω At T > 0, collisions between quasiparticles broaden pole to a Lorentzian of width 1 τ where the phase coherence time is given by ϕ τ 1 ϕ = 2kT B e π kbt τ ϕ S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)

9 Ground states: G = g 2 Second state G obtained by G and G mix only at order g Lowest excited states: domain walls Strongly-coupled qubits( g 1) N Ferromagnetic moment z N0 = G σ G 0 d j = + Coupling between qubits creates new domainwall quasiparticle states at momentum p ipx = j p e d j j j 2 2 ( p) = + Jg + O( g ) Excitation energy ε 4 sin 2 ( ) Excitation gap = 2J 2gJ + O g pa 2 ε ( p) π a p π a

10 S( p, ω) Dynamic Structure Factor : Strongly-coupled qubits ( g 1) Cross-section to flip a to a (or vice versa) while transferring energy ω and momentum p S( p, ω ) N 2 ( π) δ ( ω) δ ( p) Two domain-wall continuum Structure holds to all orders in g ~2 ω At T > 0, motion of domain walls leads to a finite phase coherence time τ, 1 2kT B B and broadens coherent peak to a width 1 τϕ where e = τ π S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997) ϕ k T ϕ

11 Entangled states at g of order unity Flipped-spin Quasiparticle weight Z g c g ( ) 1/4 Z g g ~ c A.V. Chubukov, S. Sachdev, and J.Ye, Phys. Rev. B 49, (1994) N ~ ( ) 1/8 0 gc g moment N 0 Ferromagnetic P. Pfeuty Annals of Physics, 57, 79 (1970) g c g Excitation energy gap ~ g gc g c g

12 S( p, ω) Dynamic Structure Factor : Critical coupling ( g = g c ) Cross-section to flip a to a (or vice versa) while transferring energy ω and momentum p S( p, ω ) ( ) ω 7/8 ~ c p cp ω No quasiparticles --- dissipative critical continuum

13 ( x z z gσ + σ σ ) H = I J i i i+ 1 i Quasiclassical dynamics Quasiclassical dynamics i χω ( ) = dt σ j () t, σk ( 0) e = T k 7/4 0 A ( 1 iω / Γ +...) π kt B Γ R = 2 tan 16 z z iωt S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997). R σσ z j z k ~ j 1 k P. Pfeuty Annals of Physics, 57, 79 (1970) 1/4

14 Outline I. Quantum Ising Chain II. Coupled Dimer Dimer Antiferromagnet A. Coherent state path integral B. Quantum field theory near critical point III. IV. Coupled dimer antiferromagnet in a magnetic field Bose condensation of triplons Magnetic transitions in superconductors Quantum phase transition in a background Abrikosov flux lattice V. Antiferromagnets with an odd number of S=1/2 spins per unit cell. Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: Z 2 gauge theory: non-collinear spins, RVB, visons, topological order, and deconfined spinons VI. Conclusions Single order parameter. Multiple order parameters.

15 II. Coupled Dimer Antiferromagnet M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, (1989). N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994). J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999). M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, (2002). S=1/2 spins on coupled dimers H = < ij> J ij S i S j 0 λ 1 J λ J

16 λ close to 1 Square lattice antiferromagnet Experimental realization: La CuO 2 4 Ground state has long-range magnetic (Neel) order S i = ( ) i 1 x + iy N 0 0 Excitations: 2 spin waves (magnons) ε = c p + c p p x x y y

17 λ close to 0 Weakly coupled dimers 1 = 2 ( ) Paramagnetic ground state S = 0 i

18 λ close to 0 Weakly coupled dimers 1 = 2 ( ) Excitation: S=1 triplon (exciton, spin collective mode) Energy dispersion away from antiferromagnetic wavevector ε spin gap p = + c p x x y y 2 c p

19 λ close to 0 Weakly coupled dimers 1 = 2 ( ) S=1/2 spinons are confined by a linear potential into a S=1 triplon

20 T=0 Neel order N 0 λ c Spin gap λ 1 Neel state S = N 0 Quantum paramagnet S = 0 δ in cuprates?

21 II.A Coherent state path integral Path integral for quantum spin fluctuations Key ingredient: Spin Berry Phases A isa e

22 II.A Coherent state path integral Path integral for quantum spin fluctuations Key ingredient: Spin Berry Phases A isa e

23 II.A Coherent state path integral See Chapter 13 of Quantum Phase Transitions, S. Sachdev, Cambridge University Press (1999). Z = Path integral for a single spin ( H[ S] / T Tr e ) ( is A d d H S ) D N τ δ N 1 exp ( τ) τ τ N τ ( ) ( 2 = ) ( ) τ ( ) Aτ τ dτ = Oriented area of triangle on surface of unit sphere bounded Action for lattice antiferromagnet ( τ) ( τ + dτ) 0 by N, N,and a fixed reference N N n L ( τ ) = η ( x, τ) + ( x, τ) j j j j η = ± 1 identifies sublattices j n and L vary slowly in space and time

24 Integrate out L and take the continuum limit ( ) ( 2 Z = D n x, τ δ n 1) exp is ηjaτ ( xj, τ) dτ j η =± 1 identifies sublattices j 1 ( 2 2 ( ) ( ) ) τ n c xn 2 2 d xdτ + 2g g g < g c λ > λ > g c c λ < λ c Discretize spacetime into a cubic lattice ( 2 ) 1 i Z = d n δ n 1exp n n η A a A oriented area of spherical triangle aµ a a a a+ µ a aτ g a, µ 2 a formed by n, n, and an arbitrary reference point n a a+ µ 0 a cubic lattice sites; µ xy,, τ;

25 Integrate out L and take the continuum limit ( ) ( 2 Z = D n x, τ δ n 1) exp is ηjaτ ( xj, τ) dτ j η =± 1 identifies sublattices j 1 ( 2 2 ( ) ( ) ) τ n c xn 2 2 d xdτ + 2g g g < g c λ > λ > g c c λ < λ c Z Discretize spacetime into a cubic lattice ( 2 ) 1 = d n n 1exp n n a aδ a a a+ µ g a, µ Berry phases can be neglected for coupled dimer antiferromagent a cubic lattice sites; µ xy,, τ; (justified later) Quantum path integral for two-dimensional quantum antiferromagnet Partition function of a classical three-dimensional ferromagnet at a temperature g Quantum transition at λ=λ c is related to classical Curie transition at g=g c

26 II.B Quantum field theory for critical point S φα λ close to λ c : use soft spin field 1 u = d xdτ φ + φ + λ λ φ + φ 2 4! (( ) 2 c ( ) 2 ( ) ) ( ) 2 α τ α α α b x c 3-component antiferromagnetic order parameter Oscillations of φ α about zero (for λ < λ c ) spin-1 collective mode Im χ ( p, ω ) ε p = + c p T=0 spectrum = λ λ c c ω

27 Dynamic spectrum at the critical point Critical coupling ( λ = λ c ) ( p ω ) Im χ, ( ω ) ~ c p (2 η )/2 cp ω No quasiparticles --- dissipative critical continuum

28 I. Quantum Ising Chain Outline II. Coupled Dimer Antiferromagnet A. Coherent state path integral B. Quantum field theory near critical point III. Coupled dimer Dimer antiferromagnet Antiferromagnet in a in magnetic a magnetic field field Bose condensation of triplons IV. Magnetic transitions in superconductors Quantum phase transition in a background Abrikosov flux lattice V. Antiferromagnets with an odd number of S=1/2 spins per unit cell. Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: Z 2 gauge theory: non-collinear spins, RVB, visons, topological order, and deconfined spinons VI. Conclusions Single order parameter. Multiple order parameters.

29 Both states are insulators T=0 H S j SDW = N1 cos. + N sin. 2 ( K r ) j Collinear spins: N N = ( K r ) j Non-collinear spins: N N S j = 0 Pressure, exchange constant,. Quantum critical point Evolution of phase diagram in a magnetic field

30 Effect of a field on paramagnet Energy of zero momentum triplon states 0 Bose-Einstein condensation of S z =1 triplon H

31 III. Phase diagram in a magnetic field. H SDW gµ B H = Spin singlet state with a spin gap 1 Tesla = mev 1/λ Related theory applies to double layer quantum Hall systems at ν=2

32 III. Phase diagram in a magnetic field. Zeeman term leads to a uniform precession of spins ( i H )( i H ) 2 * τφα τφα εασρ σφρ τφα εαβγ βφγ Take H oriented along the z direction. Then ( )( 2 2) ( 2)( 2 2 λ ) c λ φx + φy λc λ H φx + φy 2 For λ > λc, φx ~ λ λc + H, while for λ < λc, Hc = ~ λc λ. H SDW gµ B H = Spin singlet state with a spin gap 1 Tesla = mev 1/λ Related theory applies to double layer quantum Hall systems at ν=2

33 III. Phase diagram in a magnetic field. Zeeman term leads to a uniform precession of spins ( i H )( i H ) 2 * τφα τφα εασρ σφρ τφα εαβγ βφγ Take H oriented along the z direction. Then ( )( 2 2) ( 2)( 2 2 λ ) c λ φx + φy λc λ H φx + φy 2 For λ > λc, φx ~ λ λc + H, while for λ < λc, Hc = ~ λc λ. Elastic scattering intensity [ ] I H = H I[ 0] + a J 2 H SDW gµ B H = H ~ λ λ c Spin singlet state with a spin gap c 1 Tesla = mev 1/λ Related theory applies to double layer quantum Hall systems at ν=2

34 I. Quantum Ising Chain Outline II. III. Coupled Dimer Antiferromagnet A. Coherent state path integral B. Quantum field theory near critical point Coupled dimer antiferromagnet in a magnetic field Bose condensation of triplons IV. Magnetic transitions in superconductors IV. Magnetic transitions in superconductors in superconductors Quantum phase transition in a background Abrikosov flux lattice V. Antiferromagnets with an odd number of S=1/2 spins per unit cell. Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: Z 2 gauge theory: non-collinear spins, RVB, visons, topological order, and deconfined spinons VI. Conclusions Single order parameter. Multiple order parameters.

35 S j SDW = N1 cos. + N sin. 2 ( K r ) j ( K r ) j T=0 S j = 0 Collinear spins: N N = Non-collinear spins: N N Quantum critical point Pressure, carrier concentration,. We have so far considered the case where both states are insulators

36 S j SC+SDW = N1 cos. + N sin. 2 ( K r ) j ( K r ) j T=0 SC S j = 0 Collinear spins: N N = Non-collinear spins: N N Quantum critical point Pressure, carrier concentration,. Now both sides have a background superconducting (SC) order

37 Magnetic transition in a d-wave superconductor If K does not exactly connect two nodal points, critical theory is as in an insulator Otherwise, new theory of coupled excitons and nodal quasiparticles L. Balents, M.P.A. Fisher, C. Nayak, Int. J. Mod. Phys. B 12, 1033 (1998).

38 Interplay of SDW and SC order in the cuprates T=0 phases of LSCO k y π/a Insulator 0 π/a k x 0 Néel 0.02 SDW SC+SDW ~ SC δ (additional commensurability effects near δ=0.125) J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001).

39 Interplay of SDW and SC order in the cuprates T=0 phases of LSCO k y π/a Insulator 0 π/a k x 0 Néel 0.02 SDW SC+SDW ~ SC δ (additional commensurability effects near δ=0.125) J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001).

40 Interplay of SDW and SC order in the cuprates T=0 phases of LSCO k y π/a Superconductor with T c,min =10 K 0 π/a k x 0 Néel 0.02 SDW SC+SDW ~ SC δ (additional commensurability effects near δ=0.125) J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, J. Kulda, Science 278, 1432 (1997). S. Wakimoto, G. Shirane et al., Phys. Rev. B 60, R769 (1999). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999) S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001).

41 Collinear magnetic (spin density wave) order Sj = N cos K. r + N sin K. r ( ) ( ) j j 1 2 Collinear spins K = ( ππ, ) ; N 2 = 0 K = ( 3π 4, π) ; N 2 = 0 K = 3π 4, π N ( ) ( 2 1) = ; N 2 1

42 Interplay of SDW and SC order in the cuprates T=0 phases of LSCO H k y π/a Superconductor with T c,min =10 K 0 π/a k x 0 Néel 0.02 SDW SC+SDW ~ SC δ Use simplest assumption of a direct second-order quantum phase transition between SC and SC+SDW phases Follow intensity of elastic Bragg spots in a magnetic field

43 Dominant effect of magnetic field: Abrikosov flux lattice r v s 1 r Spatially averaged superflow kinetic energy v H 3H ln 2 c2 s Hc2 H

44 Effect of magnetic field on SDW+SC to SC transition (extreme Type II superconductivity) Φ = N + in α 1α 2α Quantum theory for dynamic and critical spin fluctuations S b 1/ T g g2 τ r α τ α α α α ( ) = dr d Φ + c Φ + sφ + Φ + Φ v Sc = drdτ Φα ψ ( ) = Φ(, τ) Z ψ r D r e ψ ( r) ( r) δ ln Z = δψ 0 F GL S b S c ψ FGL = d r ψ + + r ia 2 ( ) ψ 2 Static Ginzburg-Landau theory for non-critical superconductivity

45 Triplon wavefunction in bare potential V 0 (x) Bare triplon potential ( r) = + v ( r) 2 V s ψ 0 Energy Spin gap 0 Vortex cores x D. P. Arovas, A. J. Berlinsky, C. Kallin, and S.-C. Zhang, Phys. Rev. Lett. 79, 2871 (1997) proposed static magnetism (with =0) localized within vortex cores

46 Wavefunction of lowest energy triplon Φ ( r) = ( r) + Φ ( r) 2 after including triplon interactions: V V g α 0 α Bare triplon potential ( r) = + v ( r) 2 V s ψ 0 Energy Spin gap 0 Vortex cores x Strongly relevant repulsive interactions between excitons imply that triplons must be extended as 0. E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, (2001). A.J. Bray and M.A. Moore, J. Phys. C 15, L7 65 (1982). J.A. Hertz, A. Fleishman, and P.W. Anderson, Phys. Rev. Lett. 43, 942 (1979).

47 Phase diagram of SC and SDW order in a magnetic field Spatially averaged superflow kinetic energy r v s 1 r v H 3H ln 2 c2 s Hc2 H The suppression of SC order appears to the SDW order as a uniform effective "doping" δ : δ eff H 3H H = C H H c2 ( ) δ ln c2 E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001).

48 Phase diagram of SC and SDW order in a magnetic field Elastic scattering intensity [, δ] I[ 0, δ ] I H [ δ ] eff H 3Hc 0, ln 2 I + a H c2 H δ H eff ( H ) = δ ( δ δc) ~ ln 1/ c ( ( δ δc )) E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001).

49 Magnetic order parameter Structure of long-range SDW order in SC+SDW phase E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001). δ 2 f0 Hln(1/ H) s s c = -0.3 Dynamic structure factor S 3 2 ( k, ω) ( 2π) δ ( ω) f δ ( k G) = + G G G reciprocal lattice vectors of vortex lattice. k measures deviation from SDW ordering wavevector K

50 Neutron scattering of La 2-xSrxCuO 4 at x=0.1 B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T. E. Mason, Nature, 415, 299 (2002). H Hc Solid line - fit to : I( H) a ln H H 2 = c2 See also S. Katano, M. Sato, K. Yamada, T. Suzuki, and T. Fukase, Phys. Rev. B 62, R14677 (2000).

51 Phase diagram of a superconductor in a magnetic field Neutron scattering observation of SDW order enhanced by superflow. δ H eff ( H ) = δ ( δ δc ) ~ ln 1/ c ( ( δ δ c )) Prediction: SDW S = fluctuations 1 triplon energy enhanced by superflow and bond order pinned by vortex Hcores 3 ( ) ( ) (no Hc2 ε H = ε 0 b ln spins in vortices). H cshould 2 H be observable in STM K. Park and S. Sachdev Physical Review B 64, (2001); E. Demler, Y. Zhang, S. Sachdev, E. Demler and and Ying S. Zhang, Sachdev, Phys. Physical Rev. Lett. Review 87, B , (2001). (2002).

52 Vortex-induced LDOS of Bi 2 Sr 2 CaCu 2 O 8+δ integrated from 1meV to 12meV 7 pa b Our interpretation: LDOS modulations are signals of bond order of period 4 revealed in vortex halo 0 pa 100Å J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002). See also: S. A. Kivelson, E. Fradkin, V. Oganesyan, I. P. Bindloss, J. M. Tranquada, A. Kapitulnik, and C. Howald, cond-mat/

53 Fourier Transform of Vortex-Induced LDOS map K-space locations of vortex induced LDOS K-space locations of Bi and Cu atoms J. Hoffman et al. Science, 295, 466 (2002). Distances in k space have units of 2π/a 0 a 0 =3.83 Å is Cu-Cu distance

54 Spectral properties of the STM signal are sensitive to the microstructure of the charge order Measured energy dependence of the Fourier component of the density of states which modulates with a period of 4 lattice spacings M. Vojta, Phys. Rev. B 66, (2002); C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, Phys. Rev. B 67, (2003). Theoretical modeling shows that this spectrum is best obtained by a modulation of bond variables, such as the exchange, kinetic or pairing energies. D. Podolsky, E. Demler, K. Damle, and B.I. Halperin, Phys. Rev. B in press, condmat/

55 I. Quantum Ising Chain Outline II. III. IV. Coupled Dimer Antiferromagnet A. Coherent state path integral B. Quantum field theory near critical point Coupled dimer antiferromagnet in a magnetic field Bose condensation of triplons Magnetic transitions in superconductors Quantum phase transition in a background Abrikosov flux lattice V. Antiferromagnets with an odd number V. Antiferromagnets with an odd number of S=1/2 spins per per unit cell. unit cell Class A A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: Z 2 gauge theory: non-collinear spins, RVB, visons, topological order, and deconfined spinons VI. Conclusions Single order parameter. Multiple order parameters.

56 V. Order in Mott insulators Magnetic order S cos (. ) sin (. ) j = N1 K r j + N2 K r j Class A. Collinear spins K = ( ππ, ) ; N 2 = 0 K = ( 3π 4, π) ; N 2 = 0 K = 3π 4, π N ( ) ( 2 1) = ; N 2 1

57 V. Order in Mott insulators Magnetic order Sj = N cos K. r + N sin K. r ( ) ( ) j j 1 2 Class A. Collinear spins Key property Order specified by a single vector N. Quantum fluctuations leading to loss of magnetic order should produce a paramagnetic state with a vector (S=1) quasiparticle excitation.

58 Class A: Collinear spins and compact U(1) gauge theory Write down path integral for quantum spin fluctuations Key ingredient: Spin Berry Phases A isa e

59 Class A: Collinear spins and compact U(1) gauge theory Write down path integral for quantum spin fluctuations Key ingredient: Spin Berry Phases A isa e

60 Class A: Collinear spins and compact U(1) gauge theory S=1/2 square lattice antiferromagnet with non-nearest neighbor exchange H = J S S i< j ij i j Include Berry phases after discretizing coherent state path integral on a cubic lattice in spacetime ( 2 ) 1 i Z = dn δ n 1 exp n n η A a ηa ± 1 on two square sublattices ; na ~ ηasa Neel order parameter; A oriented area of spherical triangle aµ a a a a+ µ a aτ g a, µ 2 a formed by na, n, a + µ and an arbitrary reference point n 0

61 ( 2 ) 1 i Z = d n δ n 1exp n n η A a a a a a+ µ a aτ g a, µ 2 a Small g Spin-wave theory about Neel state receives minor modifications from Berry phases. Large g Berry phases are crucial in determining structure of "quantum-disordered" phase with n = 0 Integrate out n a to obtain effective action for a A a µ

62 n 0 A a µ n a na + µ

63 n 0 n 0 Change in choice of n 0 is like a gauge transformation A A γ + γ aµ aµ a+ µ a γ γ a a + µ (γ a is the oriented area of the spherical triangle formed by n a and the two choices for n 0 ). n a A a µ A a µ The area of the triangle is uncertain modulo 4π, and the action is invariant under Aaµ Aaµ + 4π na + µ These principles strongly constrain the effective action for A aµ which provides description of the large g phase

64 Simplest large g effective action for the A aµ 1 1 ( ) i Z = da exp cos A A a, µ with e ~ g This is compact QED in d +1 dimensions with static charges ± 1 on two sublattices. η A aµ 2 2 µ aν ν aµ a aτ e a This theory can be reliably analyzed by a duality mapping. d=2: The gauge theory is always in a confining phase and there is bond order in the ground state. d=3: A deconfined phase with a gapless photon is possible. N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989). S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). K. Park and S. Sachdev, Phys. Rev. B 65, (2002).

65

66 For large e 2, low energy height configurations are in exact one-toone correspondence with dimer coverings of the square lattice 2+1 dimensional height model is the path integral of the Quantum Dimer Model There is no roughening transition for three dimensional interfaces, which are smooth for all couplings There is a definite average height of the interface Ground state has bond order.

67 V. Order in Mott insulators Paramagnetic states S j = 0 Class A. Bond order and spin excitons in d=2 1 = 2 ( ) S=1/2 spinons are confined by a linear potential into a S=1 spin triplon Spontaneous bond-order leads to vector S=1 spin excitations N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

68 Bond order in a frustrated S=1/2 XY magnet A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, (2002) First large scale numerical study of the destruction of Neel order in a S=1/2 antiferromagnet with full square lattice symmetry ( x x y y) ( ) i j i j i j k l i j k l = + + H 2J S S S S K S S S S S S S S ij ijkl g=

69 I. Quantum Ising Chain Outline II. III. IV. Coupled Dimer Antiferromagnet A. Coherent state path integral B. Quantum field theory near critical point Coupled dimer antiferromagnet in a magnetic field Bose condensation of triplons Magnetic transitions in superconductors Quantum phase transition in a background Abrikosov flux lattice V. Antiferromagnets with an odd number V. Antiferromagnets with an odd number of S=1/2 spins per per unit unit cell. cell Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: B Z 2 gauge theory: non-collinear spins, RVB, visons, topological order, and deconfined spinons VI. Conclusions Single order parameter. Multiple order parameters.

70 V.B Order in Mott insulators Magnetic order Sj = N cos K. r + N sin K. r Class B. Noncollinear spins ( ) ( ) j j 1 2 K = π π ( 3 4, ) (B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 61, 467 (1988)) K = π π ( 4 /3,4 3) N = N, N.N =

71 V.B Order in Mott insulators Magnetic order Sj = N cos K. r + N sin K. r Class B. Noncollinear spins Solve constraints by expressing N in terms of two complex numbers z, z 2 2 z z 2 2 N1 + in2 = i( z + z ) 2zz Order in ground state specified by a spinor, 1,2 ( ) ( ) j j 1 2 N = N, N.N = ( z z ) This spinor can become a S=1/2 spinon in paramagnetic state. (modulo an overall sign). Order parameter space: 3 2 Physical observables are invariant under the 2 gauge transformation a a S Z Z z ± z A. V. Chubukov, S. Sachdev, and T. Senthil Phys. Rev. Lett. 72, 2089 (1994)

72 V.B Order in Mott insulators Magnetic order Sj = N cos K. r + N sin K. r Class B. Noncollinear spins Vortices associated with π 1 (S 3 /Z 2 )=Z 2 (visons) ( ) ( ) j j 1 2 (A) North pole y (A) (B) (B) South pole S 3 x Such vortices (visons) can also be defined in the phase in which spins are quantum disordered. A Z 2 spin liquid with deconfined spinons must have visons supressed N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)

73 S Model effective action and phase diagram = J σ z z + h.c. K ij σ ij ij αi α j σ ij First order transition Z 2 gauge field Magnetically ordered (Derivation using Schwinger bosons on a quantum antiferromagnet: S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)). Confined spinons Free spinons and topological order P. E. Lammert, D. S. Rokhsar, and J. Toner, Phys. Rev. Lett. 70, 1650 (1993) ; Phys. Rev. E 52, 1778 (1995). (For nematic liquid crystals)

74 V.B Order in Mott insulators Paramagnetic states S j = 0 Class B. Topological order and deconfined spinons A topologically ordered state in which vortices associated with π 1 (S 3 /Z 2 )=Z 2 [ visons ] are gapped out. This is an RVB state with deconfined S=1/2 spinons z a N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991). X. G. Wen, Phys. Rev. B 44, 2664 (1991). A.V. Chubukov, T. Senthil and S. S., Phys. Rev. Lett.72, 2089 (1994). T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000). P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974). G. Misguich and C. Lhuillier, Eur. Phys. J. B 26, 167 (2002). R. Moessner and S.L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001). Recent experimental realization: Cs 2 CuCl 4 R. Coldea, D.A. Tennant, A.M. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86, 1335 (2001).

75 V.B Order in Mott insulators Paramagnetic states S j = 0 Class B. Topological order and deconfined spinons Direct description of topological order with valence bonds Number of of valence bonds cutting line line is is conserved modulo Changing sign sign of of each each such such bond bond does does not not modify state. state. This This is is equivalent to to a Z 2 gauge 2 transformation with with za za on on sites sites to to the the right right of of dashed line. line. D. Rokhsar and S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988); N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989).

76 V.B Order in Mott insulators Paramagnetic states S j = 0 Class B. Topological order and deconfined spinons Direct description of topological order with valence bonds Number of of valence bonds cutting line line is is conserved modulo Changing sign sign of of each each such such bond bond does does not not modify state. state. This This is is equivalent to to a Z 2 gauge 2 transformation with with za za on on sites sites to to the the right right of of dashed line. line. D. Rokhsar and S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988); N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989).

77 V.B Order in Mott insulators Paramagnetic states S j = 0 Class B. Topological order and deconfined spinons Direct description of topological order with valence bonds Terminating the the line line creates a plaquette with with Z 2 flux 2 flux at at the the X a vison. X D. Rokhsar and S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988); N. Read and B. Chakraborty, Phys. Rev. B 40, 7133 (1989).

78 Effect of flux-piercing on a topologically ordered quantum paramagnet N. E. Bonesteel, Phys. Rev. B 40, 8954 (1989). Φ G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre, Eur. Phys. J. B 26, 167 (2002). D = L y Ψ = a D D D L x -2 L x -1 L x 1 2 3

79 Effect of flux-piercing on a topologically ordered quantum paramagnet N. E. Bonesteel, Phys. Rev. B 40, 8954 (1989). vison G. Misguich, C. Lhuillier, M. Mambrini, and P. Sindzingre, Eur. Phys. J. B 26, 167 (2002). D = Ψ = a D Number of bonds ( ) cutting dashed line L x -2 L x -1 L x L y D D After flux insertion D 1 D ; Equivalent to inserting a vison inside hole of the torus. This leads to a ground state degeneracy.

80 I. Quantum Ising Chain II. III. IV. VI. Conclusions Coupled Dimer Antiferromagnet A. Coherent state path integral B. Quantum field theory near critical point Coupled dimer antiferromagnet in a magnetic field Bose condensation of triplons Magnetic transitions in superconductors Quantum phase transition in a background Abrikosov flux lattice V. Antiferromagnets with an odd number of S=1/2 spins per unit cell. Class A: Compact U(1) gauge theory: collinear spins, bond order and confined spinons in d=2 Class B: Z 2 gauge theory: non-collinear spins, RVB, visons, topological order, and deconfined spinons VI. Cuprates are best understood as doped class A Mott insulators. Single order parameter. Multiple order parameters.

81 Competing order parameters in the cuprate superconductors 1. Pairing order of BCS theory (SC) (Bose-Einstein) condensation of d-wave Cooper pairs Orders (possibly fluctuating) associated with proximate Mott insulator in class A 2. Collinear magnetic order (CM) 3. Bond/charge/stripe order (B) (couples strongly to half-breathing phonons) S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721 (2000); M. Vojta, Phys. Rev. B 66, (2002).

82 Evidence cuprates are in class A

83 Evidence cuprates are in class A Neutron scattering shows collinear magnetic order co-existing with superconductivity J. M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). Y.S. Lee, R. J. Birgeneau, M. A. Kastner et al., Phys. Rev. B 60, 3643 (1999). S. Wakimoto, R.J. Birgeneau, Y.S. Lee, and G. Shirane, Phys. Rev. B 63, (2001).

84 Evidence cuprates are in class A Neutron scattering shows collinear magnetic order co-existing with superconductivity Proximity of Z 2 Mott insulators requires stable hc/e vortices, vison gap, and Senthil flux memory effect S. Sachdev, Physical Review B 45, 389 (1992) N. Nagaosa and P.A. Lee, Physical Review B 45, 966 (1992) T. Senthil and M. P. A. Fisher, Phys. Rev. Lett. 86, 292 (2001). D. A. Bonn, J. C. Wynn, B. W. Gardner, Y.-J. Lin, R. Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler, Nature 414, 887 (2001). J. C. Wynn, D. A. Bonn, B. W. Gardner, Y.-J. Lin, R. Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler, Phys. Rev. Lett. 87, (2001).

85 Evidence cuprates are in class A Neutron scattering shows collinear magnetic order co-existing with superconductivity Proximity of Z 2 Mott insulators requires stable hc/e vortices, vison gap, and Senthil flux memory effect Non-magnetic impurities in underdoped cuprates acquire a S=1/2 moment

86 Effect of static non-magnetic impurities (Zn or Li) Zn Zn Zn Zn Spinon confinement implies that free S=1/2 moments form near each impurity χ impurity ( T 0) = SS ( + 1) kt 3 B

87 Spatially resolved NMR of Zn/Li impurities in the superconducting state 7 Li NMR below T c Inverse local susceptibilty in YBCO J. Bobroff, H. Alloul, W.A. MacFarlane, P. Mendels, N. Blanchard, G. Collin, and J.-F. Marucco, Phys. Rev. Lett. 86, 4116 (2001). SS ( + 1) Measured χ impurity( T 0) = with S = 1/ 2 in underdoped sample. 3kT This behavior does not emerge out of BCS theory. B A.M Finkelstein, V.E. Kataev, E.F. Kukovitskii, G.B. Teitel baum, Physica C 168, 370 (1990).

88 Evidence cuprates are in class A Neutron scattering shows collinear magnetic order co-existing with superconductivity Proximity of Z 2 Mott insulators requires stable hc/e vortices, vison gap, and Senthil flux memory effect Non-magnetic impurities in underdoped cuprates acquire a S=1/2 moment

89 Evidence cuprates are in class A Neutron scattering shows collinear magnetic order co-existing with superconductivity Proximity of Z 2 Mott insulators requires stable hc/e vortices, vison gap, and Senthil flux memory effect Non-magnetic impurities in underdoped cuprates acquire a S=1/2 moment Tests of phase diagram in a magnetic field

90 Phase diagram of a superconductor in a magnetic field Neutron scattering observation of SDW order enhanced by superflow. δ H eff ( H ) = δ ( δ δc) ~ ln 1/ c ( ( δ δc )) E. Demler, S. Sachdev, and Ying Zhang, Phys. Rev. Lett. 87, (2001).

91 Phase diagram of a superconductor in a magnetic field Neutron scattering observation of SDW order enhanced by superflow. δ H eff ( H ) = δ ( δ δc) ~ ln 1/ c ( ( δ δc )) Possible STM observation of predicted bond order in halo around vortices K. Park and S. Sachdev Physical Review B 64, (2001); E. Demler, Y. Zhang, S. Sachdev, E. Demler and and Ying S. Zhang, Sachdev, Phys. Physical Rev. Lett. Review 87, B , (2001). (2002).

92 VI. Doping Class A Doping a paramagnetic bond-ordered Mott insulator systematic Sp(N) theory of translational symmetry breaking, while preserving spin rotation invariance. T=0 d-wave superconductor Superconductor with co-existing bond-order S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). Mott insulator with bond-order

93 Vertical axis is any microscopic parameter which suppresses CM order A phase diagram Microscopic theory for the interplay of bond (B) and d-wave superconducting (SC) order Pairing order of BCS theory (SC) Collinear magnetic order (CM) Bond order (B) S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999); M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721 (2000); M. Vojta, Phys. Rev. B 66, (2002).

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Understanding correlated electron systems by a classification of Mott insulators

Understanding correlated electron systems by a classification of Mott insulators Understanding correlated electron systems by a classification of Mott insulators Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias Vojta (Karlsruhe)

More information

Magnetic phases and critical points of insulators and superconductors

Magnetic phases and critical points of insulators and superconductors Magnetic phases and critical points of insulators and superconductors Colloquium article in Reviews of Modern Physics, July 2003, cond-mat/0211005. cond-mat/0109419 Quantum Phase Transitions Cambridge

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Karlsruhe) Ying Zhang (Maryland) Talk online:

More information

Order and quantum phase transitions in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 March 26, 2003 Abstract This is a summary

More information

Vortices in the cuprate superconductors

Vortices in the cuprate superconductors Vortices in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Quantum transitions of d-wave superconductors in a magnetic field

Quantum transitions of d-wave superconductors in a magnetic field Quantum transitions of d-wave superconductors in a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 86, 479 (1999). Transparencies

More information

Tuning order in the cuprate superconductors

Tuning order in the cuprate superconductors Tuning order in the cuprate superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies online at http://pantheon.yale.edu/~subir

More information

Competing orders and quantum criticality in the high temperature superconductors

Competing orders and quantum criticality in the high temperature superconductors Competing orders and quantum criticality in the high temperature superconductors Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479

More information

Tuning order in the cuprate superconductors by a magnetic field

Tuning order in the cuprate superconductors by a magnetic field Tuning order in the cuprate superconductors by a magnetic field Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Competing orders and quantum criticality in the cuprate superconductors

Competing orders and quantum criticality in the cuprate superconductors Competing orders and quantum criticality in the cuprate superconductors Subir Sachdev Science 286, 2479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies online at http://pantheon.yale.edu/~subir

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science 286, 2479 (1999). Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Quantum phase transitions in antiferromagnets and d-wave superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors Quantum phase transitions in antiferromagnets and d-wave superconductors Chiranjeeb Buragohain Eugene Demler (Harvard) Kwon Park Anatoli Polkovnikov Subir Sachdev Matthias Vojta (Augsburg) Ying Zhang Science

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University See also: Quantum phase transitions of correlated electrons in two dimensions, cond-mat/0109419. Quantum Phase

More information

Subir Sachdev Harvard University

Subir Sachdev Harvard University Quantum phase transitions of correlated electrons and atoms Subir Sachdev Harvard University Course at Harvard University: Physics 268r Classical and Quantum Phase Transitions. MWF 10 in Jefferson 256

More information

Quantum phase transitions of correlated electrons in two dimensions

Quantum phase transitions of correlated electrons in two dimensions Quantum phase transitions of correlated electrons in two dimensions Subir Sachdev Science 86, 479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies online at http://pantheon.yale.edu/~subir

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Tuning order in cuprate superconductors

Tuning order in cuprate superconductors Tuning order in cuprate superconductors arxiv:cond-mat/0201401 v1 23 Jan 2002 Subir Sachdev 1 and Shou-Cheng Zhang 2 1 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120,

More information

Quantum theory of vortices in d-wave superconductors

Quantum theory of vortices in d-wave superconductors Quantum theory of vortices in d-wave superconductors Physical Review B 71, 144508 and 144509 (2005), Annals of Physics 321, 1528 (2006), Physical Review B 73, 134511 (2006), cond-mat/0606001. Leon Balents

More information

Dual vortex theory of doped antiferromagnets

Dual vortex theory of doped antiferromagnets Dual vortex theory of doped antiferromagnets Physical Review B 71, 144508 and 144509 (2005), cond-mat/0502002, cond-mat/0511298 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Detecting boson-vortex duality in the cuprate superconductors

Detecting boson-vortex duality in the cuprate superconductors Detecting boson-vortex duality in the cuprate superconductors Physical Review B 71, 144508 and 144509 (2005), cond-mat/0602429 Leon Balents (UCSB) Lorenz Bartosch (Harvard) Anton Burkov (Harvard) Predrag

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Talks online at http://sachdev.physics.harvard.edu What is a phase transition? A change in the collective properties of a macroscopic number of atoms What is a quantum

More information

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors Quantum phase transitions in Mott insulators and d-wave superconductors Subir Sachdev Science 286, 2479 (1999). Quantum Phase Transitions Cambridge University Press Transparencies on-line at http://pantheon.yale.edu/~subir

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/0408329, cond-mat/0409470, and to appear Leon Balents (UCSB)

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Quantum theory of vortices and quasiparticles in d-wave superconductors

Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Quantum theory of vortices and quasiparticles in d-wave superconductors Physical Review B 73, 134511 (2006), Physical Review B 74,

More information

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum disordering magnetic order in insulators, metals, and superconductors Quantum disordering magnetic order in insulators, metals, and superconductors Perimeter Institute, Waterloo, May 29, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Cenke Xu, Harvard arxiv:1004.5431

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Quantum Criticality and Black Holes

Quantum Criticality and Black Holes Quantum Criticality and Black Holes ubir Sachde Talk online at http://sachdev.physics.harvard.edu Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states

More information

Electronic quasiparticles and competing orders in the cuprate superconductors

Electronic quasiparticles and competing orders in the cuprate superconductors Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard Gapless nodal quasiparticles in d-wave superconductors

More information

Emergent gauge fields and the high temperature superconductors

Emergent gauge fields and the high temperature superconductors HARVARD Emergent gauge fields and the high temperature superconductors Unifying physics and technology in light of Maxwell s equations The Royal Society, London November 16, 2015 Subir Sachdev Talk online:

More information

Quantum Melting of Stripes

Quantum Melting of Stripes Quantum Melting of Stripes David Mross and T. Senthil (MIT) D. Mross, TS, PRL 2012 D. Mross, TS, PR B (to appear) Varieties of Stripes Spin, Charge Néel 2π Q c 2π Q s ``Anti-phase stripes, common in La-based

More information

A New look at the Pseudogap Phase in the Cuprates.

A New look at the Pseudogap Phase in the Cuprates. A New look at the Pseudogap Phase in the Cuprates. Patrick Lee MIT Common themes: 1. Competing order. 2. superconducting fluctuations. 3. Spin gap: RVB. What is the elephant? My answer: All of the above!

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Quantum Choreography: Exotica inside Crystals

Quantum Choreography: Exotica inside Crystals Quantum Choreography: Exotica inside Crystals U. Toronto - Colloquia 3/9/2006 J. Alicea, O. Motrunich, T. Senthil and MPAF Electrons inside crystals: Quantum Mechanics at room temperature Quantum Theory

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Quantum phase transitions and the Luttinger theorem.

Quantum phase transitions and the Luttinger theorem. Quantum phase transitions and the Luttinger theorem. Leon Balents (UCSB) Matthew Fisher (UCSB) Stephen Powell (Yale) Subir Sachdev (Yale) T. Senthil (MIT) Ashvin Vishwanath (Berkeley) Matthias Vojta (Karlsruhe)

More information

arxiv:cond-mat/ v6 [cond-mat.supr-con] 30 Jun 2003

arxiv:cond-mat/ v6 [cond-mat.supr-con] 30 Jun 2003 Order and quantum phase transitions in the cuprate superconductors Subir Sachdev Department of Physics, Yale University, P.O. Box 208120, New Haven CT 06520-8120 arxiv:cond-mat/0211005v6 [cond-mat.supr-con]

More information

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain Damping of collective modes and quasiparticles in d-wave superconductors C. Buragohain Y. Zhang Subir Sachdev M. Vojta Transparencies on-line at http://pantheon.yale.edu/~subir Review article: cond-mat/000550

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu arxiv:0809.0694 Yang Qi Harvard Cenke Xu Harvard Max Metlitski Harvard Ribhu Kaul Microsoft Roger Melko

More information

Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor

Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor B. Lake 1, H.M. Rønnow 2, N.B. Christensen 3, G. Aeppli 4,3, K. Lefmann 3, D.F. McMorrow 3, P. Vorderwisch

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu Quantum criticality in the cuprate superconductors Talk online: sachdev.physics.harvard.edu The cuprate superconductors Destruction of Neel order in the cuprates by electron doping, R. K. Kaul, M. Metlitksi,

More information

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum phase transitions of insulators, superconductors and metals in two dimensions Quantum phase transitions of insulators, superconductors and metals in two dimensions Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Phenomenology of the cuprate superconductors (and other

More information

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu Quantum phases of antiferromagnets and the underdoped cuprates Talk online: sachdev.physics.harvard.edu Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and

More information

From the pseudogap to the strange metal

From the pseudogap to the strange metal HARVARD From the pseudogap to the strange metal S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, PRB 94, 115147 (2016) S. Sachdev and S. Chatterjee, arxiv:1703.00014 APS March meeting March 13, 2017

More information

Emergent light and the high temperature superconductors

Emergent light and the high temperature superconductors HARVARD Emergent light and the high temperature superconductors Pennsylvania State University State College, January 21, 2016 Subir Sachdev Talk online: sachdev.physics.harvard.edu Maxwell's equations:

More information

Topological order in insulators and metals

Topological order in insulators and metals HARVARD Topological order in insulators and metals 34th Jerusalem Winter School in Theoretical Physics New Horizons in Quantum Matter December 27, 2016 - January 5, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu

More information

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8 Eduardo Fradkin University of Illinois at Urbana-Champaign Seminar at the Department of Physics Harvard

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

The underdoped cuprates as fractionalized Fermi liquids (FL*)

The underdoped cuprates as fractionalized Fermi liquids (FL*) The underdoped cuprates as fractionalized Fermi liquids (FL*) R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, Physical Review B 75, 235122 (2007) R. K. Kaul, Y. B. Kim, S. Sachdev, and T.

More information

Theory of the Nernst effect near the superfluid-insulator transition

Theory of the Nernst effect near the superfluid-insulator transition Theory of the Nernst effect near the superfluid-insulator transition Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP), Marcus Mueller (Harvard), Subir Sachdev (Harvard), Dam Son

More information

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

The Role of Charge Order in the Mechanism of High Temperature Superconductivity The Role of Charge Order in the Mechanism of High Temperature Superconductivity Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Steven Kivelson, UCLA/Stanford Enrico Arrigoni,

More information

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality HARVARD Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality Indian Institute of Science Education and Research, Pune Subir Sachdev November 15, 2017 Talk online: sachdev.physics.harvard.edu

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

How spin, charge and superconducting orders intertwine in the cuprates

How spin, charge and superconducting orders intertwine in the cuprates How spin, charge and superconducting orders intertwine in the cuprates Eduardo Fradkin University of Illinois at Urbana-Champaign Talk at the Kavli Institute for Theoretical Physics Program on Higher temperature

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

The bosonic Kondo effect:

The bosonic Kondo effect: The bosonic Kondo effect: probing spin liquids and multicomponent cold gases Serge Florens Institut für Theorie der Kondensierten Materie (Karlsruhe) with: Lars Fritz, ITKM (Karlsruhe) Matthias Vojta,

More information

Z 2 topological order near the Neel state on the square lattice

Z 2 topological order near the Neel state on the square lattice HARVARD Z 2 topological order near the Neel state on the square lattice Institut für Theoretische Physik Universität Heidelberg April 28, 2017 Subir Sachdev Talk online: sachdev.physics.harvard.edu Shubhayu

More information

A quantum dimer model for the pseudogap metal

A quantum dimer model for the pseudogap metal A quantum dimer model for the pseudogap metal College de France, Paris March 27, 2015 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD Andrea Allais Matthias Punk Debanjan Chowdhury (Innsbruck)

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Neutron scattering from quantum materials

Neutron scattering from quantum materials Neutron scattering from quantum materials Bernhard Keimer Max Planck Institute for Solid State Research Max Planck UBC UTokyo Center for Quantum Materials Detection of bosonic elementary excitations in

More information

Exotic phases of the Kondo lattice, and holography

Exotic phases of the Kondo lattice, and holography Exotic phases of the Kondo lattice, and holography Stanford, July 15, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. The Anderson/Kondo lattice models Luttinger s theorem 2. Fractionalized

More information

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta C. Buragohain K. Damle M. Vojta Subir Sachdev Phys. Rev. Lett. 78, 943 (1997). Phys. Rev. B 57, 8307 (1998). Science 286, 2479 (1999). cond-mat/9912020 Quantum Phase Transitions, Cambridge University Press

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Mean field theories of quantum spin glasses

Mean field theories of quantum spin glasses Mean field theories of quantum spin glasses Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Talk online: Sachdev Classical Sherrington-Kirkpatrick model H = JS S i j ij i j J ij : a

More information

Topological order in quantum matter

Topological order in quantum matter HARVARD Topological order in quantum matter Stanford University Subir Sachdev November 30, 2017 Talk online: sachdev.physics.harvard.edu Mathias Scheurer Wei Wu Shubhayu Chatterjee arxiv:1711.09925 Michel

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

Unusual ordered phases of magnetized frustrated antiferromagnets

Unusual ordered phases of magnetized frustrated antiferromagnets Unusual ordered phases of magnetized frustrated antiferromagnets Credit: Francis Pratt / ISIS / STFC Oleg Starykh University of Utah Leon Balents and Andrey Chubukov Novel states in correlated condensed

More information

Topological order in the pseudogap metal

Topological order in the pseudogap metal HARVARD Topological order in the pseudogap metal High Temperature Superconductivity Unifying Themes in Diverse Materials 2018 Aspen Winter Conference Aspen Center for Physics Subir Sachdev January 16,

More information

Impurity effects in high T C superconductors

Impurity effects in high T C superconductors Impurity effects in high T C superconductors J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. Blanchard Laboratoire de Physique des Solides, Université Paris XI, Orsay G. Collin J.F. Marucco, V. Guillen

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT). Ideas on non-fermi liquid metals and quantum criticality T. Senthil (MIT). Plan Lecture 1: General discussion of heavy fermi liquids and their magnetism Review of some experiments Concrete `Kondo breakdown

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

The Hubbard model in cold atoms and in the high-tc cuprates

The Hubbard model in cold atoms and in the high-tc cuprates The Hubbard model in cold atoms and in the high-tc cuprates Daniel E. Sheehy Aspen, June 2009 Sheehy@LSU.EDU What are the key outstanding problems from condensed matter physics which ultracold atoms and

More information

Braid Group, Gauge Invariance and Topological Order

Braid Group, Gauge Invariance and Topological Order Braid Group, Gauge Invariance and Topological Order Yong-Shi Wu Department of Physics University of Utah Topological Quantum Computing IPAM, UCLA; March 2, 2007 Outline Motivation: Topological Matter (Phases)

More information

Talk online: sachdev.physics.harvard.edu

Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Particle theorists Condensed matter theorists Quantum Entanglement Hydrogen atom: Hydrogen molecule: = _ = 1 2 ( ) Superposition of two electron states leads to

More information

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions Niels Bohr Institute, Copenhagen, May 6, 2010 Talk online: sachdev.physics.harvard.edu HARVARD Max Metlitski,

More information

Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models

Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Collaborators Eddy Ardonne, UIUC Paul Fendley,

More information

Intertwined Orders in High Temperature Superconductors

Intertwined Orders in High Temperature Superconductors Intertwined Orders in High Temperature Superconductors! Eduardo Fradkin University of Illinois at Urbana-Champaign! Talk at SCES@60 Institute for Condensed Matter Theory University of Illinois at Urbana-Champaign

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Inhomogeneous spin and charge densities in d-wave superconductors

Inhomogeneous spin and charge densities in d-wave superconductors Inhomogeneous spin and charge densities in d-wave superconductors Arno P. Kampf Paris, June 2009 Collaborative Research Center SFB 484 Cooperative Phenomena in Solids: Metal-Insulator-Transitions and Ordering

More information

Can superconductivity emerge out of a non Fermi liquid.

Can superconductivity emerge out of a non Fermi liquid. Can superconductivity emerge out of a non Fermi liquid. Andrey Chubukov University of Wisconsin Washington University, January 29, 2003 Superconductivity Kamerling Onnes, 1911 Ideal diamagnetism High Tc

More information

Quantum Criticality: Competing Ground States in Low Dimensions

Quantum Criticality: Competing Ground States in Low Dimensions Quantum Criticality: Competing Ground States in Low Dimensions Subir Sachdev arxiv:cond-mat/0009456 v3 6 Nov 2000 Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120, USA

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov 1. Introduction Excitations and broken symmetry 2. Spin waves in the Heisenberg model

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

arxiv: v4 [cond-mat.str-el] 26 Oct 2011

arxiv: v4 [cond-mat.str-el] 26 Oct 2011 Quantum phase transitions of antiferromagnets and the cuprate superconductors Subir Sachdev arxiv:1002.3823v4 [cond-mat.str-el] 26 Oct 2011 Abstract I begin with a proposed global phase diagram of the

More information

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor Quantum Magnetism P. Mendels Lab. Physique des solides, UPSud philippe.mendels@u-psud.fr From basics to recent developments: a flavor Quantum phase transitions Model physics for fermions, bosons, problems

More information

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Spinons and triplons in spatially anisotropic triangular antiferromagnet Spinons and triplons in spatially anisotropic triangular antiferromagnet Oleg Starykh, University of Utah Leon Balents, UC Santa Barbara Masanori Kohno, NIMS, Tsukuba PRL 98, 077205 (2007); Nature Physics

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay I- Similarities between phase diagram and quantum critical points Quantum Criticality in 3 Families of Superconductors L. Taillefer,

More information