Electric Field Mapping

Size: px
Start display at page:

Download "Electric Field Mapping"

Transcription

1 Name: Date: PC1143 Physics III Electric Field Mapping 5 Laboratory Worksheet Part A: Parallel Electrodes Distance between parallel electrodes: d = Attach your plots of equipotential lines and electric field here. Question A-1: (1) Draw the best smooth curves through the points at the same potential. These are the equipotential lines. (2) Draw the electric field lines. Starting at the positive electrode on your diagram, draw a line to the negative electrode in such a way that the line always crosses an equipotential line at right angles. Draw 6 9 field lines through the region between the electrodes and the regions above and below their ends. Use arrows on the lines to show the direction of the electric field. Page 1 of 6

2 Electric Field Mapping Laboratory Worksheet Page 2 of 6 Analysis A-1: Estimate an experimental value for the electric field strength E in the central region between the electrodes and its associated uncertainty with the appropriate number of significant figures. Show a sample calculation and be sure to attach a copy of the spreadsheet to your laboratory report. Experimental value: E = ± Part B: Concentric Electrodes Radius of the central cylindrical pole: a = Inner radius of the ring electrode: b = Attach your plots of equipotential lines and electric field here. Question B-1: (1) Draw the best smooth curve through the points at the same potential in the interior region. (2) Draw 8 electric field lines in the interior region. Use arrows on the lines to show the direction of the electric field.

3 Electric Field Mapping Laboratory Worksheet Page 3 of 6 Question B-2: Show that the electric potential in the interior region between a positively charged cylinder with radius a and a negatively charged cylindrical shell with inner radius b (b > a) is given by ( r V (r) = V a V m ln (1) a) where V a is the electric potential at r = a and V m is a constant. Analysis B-1: Determine the average radius for each equipotential line and tabulate the values of the potential with the average radii. Measure the radius from the center of the positive electrode, so that the outer radius of the positive electrode is at r = a and the inner radius of the ground electrode is at r = b. Show a sample calculation. Electric Potential V (V) Average Radius r (cm) #1 #2 #3 #4 #5

4 Electric Field Mapping Laboratory Worksheet Page 4 of 6 Analysis B-2: Perform a linear least squares fit to your data with the electric potential V as the vertical axis and ln(r/a) as the horizontal axis. Plot a graph of electric potential V against ln(r/a). Also show on the graph the straight line that was obtained by the linear least fit to the data as well as the error-bar of your data. Be sure to attach a copy of the graph (with the spreadsheet) to your laboratory report. Gradient: ± y-intercept: ± Correlation coefficient: Analysis B-3: The gradient of the plot V against ln(r/a) is V m. Determine a theoretical value for V m from the equation (1) directly using the fact that V (r = b) = 0. Also, determine the experimental value for the constant V m from your results of your linear least squares fit above. Compare it with the theoretical value using percentage discrepancy. Show your work. Theoretical value: Experimental value: ± % discrepancy = % Analysis B-4: Tabulate the electric field strength at the radii of the equipotentials. Show a sample calculation. Electric Field Strength E (V/cm) #1 #2 #3 #4 #5

5 Electric Field Mapping Laboratory Worksheet Page 5 of 6 Part C: Circular Electrodes Distance between two side poles from center to center: L = Attach your plots of equipotential lines and electric field here. Question C-1: (1) Draw the best smooth curve through the points at the same potential. (2) Draw 8 electric field lines, starting at 8 symmetric points on the positive electrode. Use arrows on the lines to show the direction of the electric field. Analysis C-1: Determine the distance of each equipotential line from the surface of the negative electrode along the central axis from the negative electrode to the positive. Tabulate the electric potential at the distance from the surface of the negative electrode. Electric Potential V (V) Distance x (cm) 0

6 Electric Field Mapping Laboratory Worksheet Page 6 of 6 Analysis C-2: Along the central axis from the negative electrode to the positive, the electric field should follow a straight line, although it is not constant in magnitude. We can find an approximate value for the field at points along this central axis by using E V/ x for closely spaced points. Determine the electric field strength at the midpoint for each pair of adjacent equipotential lines along the central axis from the negative electrode to the positive. Show your work. Midpoint Distance x (cm) Electric Field Strength E (V/cm) 6 Laboratory Report Submit a laboratory report within ONE week after your laboratory session. Important: Before leaving the laboratory, have a demonstrator initial on your data table(s)! Last updated: Wednesday 14 th January, :43pm (KHCM)

PC1222 Fundamentals of Physics II. Basic Circuits. Data Table 1

PC1222 Fundamentals of Physics II. Basic Circuits. Data Table 1 Name: Date: PC1222 Fundamentals of Physics II Basic Circuits 5 Laboratory Worksheet Part A: Ohm s Law and Resistances Resistance Colour Codes 1st 2nd 3rd 4th Resistance R (Ω) Current I (A) Voltage V (V)

More information

Electric Field Mapping

Electric Field Mapping PC1143 Physics III Electric Field Mapping 1 Objectives Map the electric fields and potentials resulting from three different configurations of charged electrodes rectangular, concentric, and circular.

More information

Direct Current Circuits

Direct Current Circuits Name: Date: PC1143 Physics III Direct Current Circuits 5 Laboratory Worksheet Part A: Single-Loop Circuits R 1 = I 0 = V 1 = R 2 = I 1 = V 2 = R 3 = I 2 = V 3 = R 12 = I 3 = V 12 = R 23 = V 23 = R 123

More information

Pre-lab Quiz / PHYS 224 Electric Field and Electric Potential (B) Your name Lab section

Pre-lab Quiz / PHYS 224 Electric Field and Electric Potential (B) Your name Lab section Pre-lab Quiz / PHYS 224 Electric Field and Electric Potential (B) Your name Lab section 1. What do you investigate in this lab? 2. For two concentric conducting rings, the inner radius of the larger ring

More information

AP Physics C. Electric Potential and Capacitance. Free Response Problems

AP Physics C. Electric Potential and Capacitance. Free Response Problems AP Physics C Electric Potential and Capacitance Free Response Problems 1. Two stationary point charges + are located on the y-axis at a distance L from the origin, as shown above. A third charge +q is

More information

x y

x y (a) The curve y = ax n, where a and n are constants, passes through the points (2.25, 27), (4, 64) and (6.25, p). Calculate the value of a, of n and of p. [5] (b) The mass, m grams, of a radioactive substance

More information

Equipotentials and Electric Fields

Equipotentials and Electric Fields Equipotentials and Electric Fields PURPOSE In this lab, we will investigate the relationship between the equipotential surfaces and electric field lines in the region around several different electrode

More information

LESSON 14: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 2017

LESSON 14: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 2017 LESSON 4: VOLUME OF SOLIDS OF REVOLUTION SEPTEMBER 27, 27 We continue to expand our understanding of solids of revolution. The key takeaway from today s lesson is that finding the volume of a solid of

More information

Electric Field Mapping

Electric Field Mapping Electric Field Mapping Objectives To determine the equipotential lines and the corresponding electric field lines for a variety of arrangements of conductors in a plane. Theory The concept of an electric

More information

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions

PSI AP Physics C Sources of Magnetic Field. Multiple Choice Questions PSI AP Physics C Sources of Magnetic Field Multiple Choice Questions 1. Two protons move parallel to x- axis in opposite directions at the same speed v. What is the direction of the magnetic force on the

More information

Year 10 Homework Sheet Straight Line Graphs I

Year 10 Homework Sheet Straight Line Graphs I Year 10 Homework Sheet Straight Line Graphs I Equation Gradient Y intercept Example: y = 2x + 3 G = 2 Y intercept = 3 1. y = 2x + 3 G = Y intercept = 2. y = 3x + 4 G = Y intercept = 3. y = x + 5 G = Y

More information

K/U /39 T/I /50 C /102 A

K/U /39 T/I /50 C /102 A Name: Partner: K/U /39 T/I /50 C /102 A Purpose: What is the relationship between the magnitude of the force causing the acceleration and the frequency of revolution of an object in uniform circular motion?

More information

PC1141 Physics I Circular Motion

PC1141 Physics I Circular Motion PC1141 Physics I Circular Motion 1 Purpose Demonstration the dependence of the period in circular motion on the centripetal force Demonstration the dependence of the period in circular motion on the radius

More information

Homework 4: Hard-Copy Homework Due Wednesday 2/17

Homework 4: Hard-Copy Homework Due Wednesday 2/17 Homework 4: Hard-Copy Homework Due Wednesday 2/17 Special instructions for this homework: Please show all work necessary to solve the problems, including diagrams, algebra, calculus, or whatever else may

More information

Exp. #2-3 : Measurement of Equipotential Lines by Using Conducting Plates

Exp. #2-3 : Measurement of Equipotential Lines by Using Conducting Plates PAGE 1/11 Exp. #2-3 : Measurement of Equipotential Lines by Using Conducting Plates Student ID Major Name Team # Experiment Lecturer Student's Mentioned Items Experiment Class Date Submission Time Submission

More information

Electric Potential. Electric field from plane of charge (Serway Example 24.5)

Electric Potential. Electric field from plane of charge (Serway Example 24.5) Physics Topics Electric Potential If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Electric field from plane of

More information

Tuesday, September 29, Page 453. Problem 5

Tuesday, September 29, Page 453. Problem 5 Tuesday, September 9, 15 Page 5 Problem 5 Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region bounded by y = x, y = x 5 about the x-axis. Solution.

More information

Electric Potential. Electric field from plane of charge (Serway Example 24.5)

Electric Potential. Electric field from plane of charge (Serway Example 24.5) Physics Topics Electric Potential If necessary, review the following topics and relevant textbook sections from Serway / Jewett Physics for Scientists and Engineers, 9th Ed. Electric field from plane of

More information

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1

Physics 212. Lecture 7. Conductors and Capacitance. Physics 212 Lecture 7, Slide 1 Physics 212 Lecture 7 Conductors and Capacitance Physics 212 Lecture 7, Slide 1 Conductors The Main Points Charges free to move E = 0 in a conductor Surface = Equipotential In fact, the entire conductor

More information

HIGH VOLTAGE TECHNIQUES Basic Electrode Systems (3)

HIGH VOLTAGE TECHNIQUES Basic Electrode Systems (3) HIGH VOLTAGE TECHNIQES Basic Electrode Systems (3) Assistant Professor Suna BOLAT KRÖGER Eastern Mediterranean niversity Department of Electric & Electronic Engineering 1 Basic electrode systems Different

More information

Problem Solving 3: Calculating the Electric Field of Highly Symmetric Distributions of Charge Using Gauss s Law

Problem Solving 3: Calculating the Electric Field of Highly Symmetric Distributions of Charge Using Gauss s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 3: Calculating the Electric Field of Highly Symmetric Distributions of Charge Using Gauss s Law REFERENCE: Section 4.2, 8.02

More information

Topic 1 Measurements and Errors (Practice)

Topic 1 Measurements and Errors (Practice) Topic 1 Measurements and Errors (Practice) Name: 1. Data analysis question. The photograph below shows a magnified image of a dark central disc surrounded by concentric dark rings. These rings were produced

More information

Experiment III Electric Flux

Experiment III Electric Flux Experiment III Electric Flux When a charge distribution is symmetrical, we can use Gauss Law, a special law for electric fields. The Gauss Law method of determining the electric field depends on the idea

More information

Find the rectangular coordinates for each of the following polar coordinates:

Find the rectangular coordinates for each of the following polar coordinates: WORKSHEET 13.1 1. Plot the following: 7 3 A. 6, B. 3, 6 4 5 8 D. 6, 3 C., 11 2 E. 5, F. 4, 6 3 Find the rectangular coordinates for each of the following polar coordinates: 5 2 2. 4, 3. 8, 6 3 Given the

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2. PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field

More information

PHYSICS LAB Experiment 3 Fall 2004 CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION

PHYSICS LAB Experiment 3 Fall 2004 CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION In this experiment we will explore the relationship between force and acceleration for the case of uniform circular motion. An object which experiences a constant

More information

PC1141 Physics I Compound Pendulum

PC1141 Physics I Compound Pendulum PC1141 Physics I Compound Pendulum 1 Purpose Determination of the acceleration due to gravity 2 Equipment Kater pendulum Photogate timer Vernier caliper Meter stick 3 Theory One of the most important physical

More information

CHARGE TO MASS RATIO FOR THE ELECTRON

CHARGE TO MASS RATIO FOR THE ELECTRON CHARGE TO MASS RATIO FOR THE ELECTRON OBJECTIVE: To measure the ratio of the charge of an electron to its mass. METHOD: A stream of electrons is accelerated by having them "fall" through a measured potential

More information

o Two-wire transmission line (end view is shown, the radius of the conductors = a, the distance between the centers of the two conductors = d)

o Two-wire transmission line (end view is shown, the radius of the conductors = a, the distance between the centers of the two conductors = d) Homework 2 Due Monday, 14 June 1. There is a small number of simple conductor/dielectric configurations for which we can relatively easily find the capacitance. Students of electromagnetics should be sure

More information

Investigation 3.1.1: Analyzing Uniform Circular Motion

Investigation 3.1.1: Analyzing Uniform Circular Motion Student Worksheet Investigation 3.1.1: Analyzing Uniform Circular Motion LSM 3.1-1 Questioning Hypothesizing Predicting Planning Conducting I N Q U I R Y S K I L L S Recording Analyzing Evaluating Communicating

More information

PHY132 Practicals Week 6 Student Guide

PHY132 Practicals Week 6 Student Guide PHY132 Practicals Week 6 Student Guide Concepts of this Module Electric Potential Electric Field Background A field is a function, f (x,y,z), that assigns a value to every point in space (or some region

More information

College Physics II Lab 5: Equipotential Lines

College Physics II Lab 5: Equipotential Lines INTRODUCTION College Physics II Lab 5: Equipotential Lines Peter Rolnick and Taner Edis Spring 2018 Introduction You will learn how to find equipotential lines in a tray of tap water. (Consult section

More information

Electric Fields. Goals. Introduction

Electric Fields. Goals. Introduction Lab 2. Electric Fields Goals To understand how contour lines of equal voltage, which are easily measured, relate to the electric field produced by electrically charged objects. To learn how to identify

More information

How to Write a Laboratory Report

How to Write a Laboratory Report How to Write a Laboratory Report For each experiment you will submit a laboratory report. Laboratory reports are to be turned in at the beginning of the lab period, one week following the completion of

More information

Rotational Inertia (approximately 2 hr) (11/23/15)

Rotational Inertia (approximately 2 hr) (11/23/15) Inertia (approximately 2 hr) (11/23/15) Introduction In the case of linear motion, a non-zero net force will result in linear acceleration in accordance with Newton s 2 nd Law, F=ma. The moving object

More information

PHY 123 Lab 6 - Angular Momentum

PHY 123 Lab 6 - Angular Momentum 1 PHY 123 Lab 6 - Angular Momentum (updated 10/17/13) The purpose of this lab is to study torque, moment of inertia, angular acceleration and the conservation of angular momentum. If you need the.pdf version

More information

PHYSICS LAB Experiment 4 Fall 2004 ATWOOD S MACHINE: NEWTON S SECOND LAW

PHYSICS LAB Experiment 4 Fall 2004 ATWOOD S MACHINE: NEWTON S SECOND LAW PHYSICS 83 - LAB Experiment 4 Fall 004 ATWOOD S MACHINE: NEWTON S SECOND LAW th In this experiment we will use a machine, used by George Atwood in the 8 century, to measure the gravitational acceleration,

More information

PHYS102 EXAM #1 February 17, MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS102 EXAM #1 February 17, MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS02 EXAM # February 7, 2005 Last Name First Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) A spherical metallic shell carries a charge

More information

If you don t understand a question or how to answer it, read the lab write-up or your lab report to refresh your memory.

If you don t understand a question or how to answer it, read the lab write-up or your lab report to refresh your memory. Experiment IX The Culminating Lab What will happen in the culminating lab? For the Culminating Lab, you will be given 20 questions, which you have to answer. You will be allowed to bring a calculator and

More information

Phy207 Exam III (Form1) Professor Zuo Spring Semester 15

Phy207 Exam III (Form1) Professor Zuo Spring Semester 15 Phy207 Exam III (Form1) Professor Zuo Spring Semester 15 On my honor, I have neither received nor given aid on this examination Signature: Name: ID number: #1 14 #15/16 Total Enter your name and Form 1

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination University of Illinois at Chicago Department of Physics Electricity & Magnetism Qualifying Examination January 7, 28 9. am 12: pm Full credit can be achieved from completely correct answers to 4 questions.

More information

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a

(a) Consider a sphere of charge with radius a and charge density ρ(r) that varies with radius as. ρ(r) = Ar n for r a Physics 7B Midterm 2 - Fall 207 Professor R. Birgeneau Total Points: 00 ( Problems) This exam is out of 00 points. Show all your work and take particular care to explain your steps. Partial credit will

More information

Section 1.4 Circles. Objective #1: Writing the Equation of a Circle in Standard Form.

Section 1.4 Circles. Objective #1: Writing the Equation of a Circle in Standard Form. 1 Section 1. Circles Objective #1: Writing the Equation of a Circle in Standard Form. We begin by giving a definition of a circle: Definition: A Circle is the set of all points that are equidistant from

More information

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS MATH 3 FALL 0 FINAL EXAM - PRACTICE EXAM SOLUTIONS () You cut a slice from a circular pizza (centered at the origin) with radius 6 along radii at angles 4 and 3 with the positive horizontal axis. (a) (3

More information

Level 3 Calculus, 2018

Level 3 Calculus, 2018 91578 915780 3SUPERVISOR S Level 3 Calculus, 2018 91578 Apply differentiation methods in solving problems 9.30 a.m. Tuesday 13 November 2018 Credits: Six Achievement Achievement with Merit Achievement

More information

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment Rotational Motion Introduction In this lab you will investigate different aspects of rotational motion, including moment of inertia and the conservation of energy using the smart pulley and the rotation

More information

Electric Fields and Potentials

Electric Fields and Potentials Electric Fields and Potentials INTRODUCTION This experiment is intended to illustrate the concepts of electric fields and electric potentials and how they are related to the charge distribution that produces

More information

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch)

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Name: Speed of waves Group Members: Date: TA s Name: Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Objectives 1. To directly calculate the speed of waves in a stretched

More information

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory

Radioactivity. PC1144 Physics IV. 1 Objectives. 2 Equipment List. 3 Theory PC1144 Physics IV Radioactivity 1 Objectives Investigate the analogy between the decay of dice nuclei and radioactive nuclei. Determine experimental and theoretical values of the decay constant λ and the

More information

Name: Section #: Date: The Pendulum

Name: Section #: Date: The Pendulum ASU University Physics Labs - Mechanics Lab 9 p. 1 Name: Section #: Date: Part 1 The Pendulum For Part 1 of the experiment, make a sketch of the graph you think will be produced by the simple pendulum

More information

PHYSICS - CLUTCH 1E CH 12: TORQUE & ROTATIONAL DYNAMICS.

PHYSICS - CLUTCH 1E CH 12: TORQUE & ROTATIONAL DYNAMICS. !! www.clutchprep.com INTRO TO TORQUE TORQUE is a twist that a Force gives an object around an axis of rotation. - For example, when you push on a door, it rotates around its hinges. - When a Force acts

More information

PHYSICS - CLUTCH CH 12: TORQUE & ROTATIONAL DYNAMICS.

PHYSICS - CLUTCH CH 12: TORQUE & ROTATIONAL DYNAMICS. !! www.clutchprep.com TORQUE & ACCELERATION (ROTATIONAL DYNAMICS) When a Force causes rotation, it produces a Torque. Think of TORQUE as the equivalent of FORCE! FORCE (F) TORQUE (τ) - Causes linear acceleration

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Gravitation_AHL_P1. 1. [1 mark]

Gravitation_AHL_P1. 1. [1 mark] Gravitation_AHL_P1 1. [1 mark] The diagram shows 5 gravitational equipotential lines. The gravitational potential on each line is indicated. A point mass m is placed on the middle line and is then released.

More information

Concepts in Physics Lab 9: Equipotential Lines

Concepts in Physics Lab 9: Equipotential Lines INTRODUCTION Concepts in Physics Lab 9: Equipotential Lines Taner Edis Fall 2018 Introduction We will play around with electrical energy, seeing how very abstract, invisible concepts like electrical energy

More information

II) ACTIVITY: Discovering the periodic trend for atomic radius within the groups of elements.

II) ACTIVITY: Discovering the periodic trend for atomic radius within the groups of elements. CH 11 T8 PERIODIC TRENDS 1: GROUP ATOMIC RADIUS 1 You have mastered this topic when you can: 1) define or explain these terms: PERIODIC TREND and ATOMIC RADIUS. 2) analyze data and communicate results

More information

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00

Preliminary Exam: Electromagnetism, Thursday January 12, :00-12:00 1 Preliminary Exam: Electromagnetism, Thursday January 12, 2017. 9:00-12:00 Answer a total of any THREE out of the four questions. For your answers you can use either the blue books or individual sheets

More information

Measurement of electric potential fields

Measurement of electric potential fields Measurement of electric potential fields Matthew Krupcale, Oliver Ernst Department of Physics, Case Western Reserve University, Cleveland Ohio, 44106-7079 18 November 2012 Abstract In electrostatics, Laplace

More information

Final exam practice UCLA: Math 3B, Fall 2016

Final exam practice UCLA: Math 3B, Fall 2016 Instructor: Noah White Date: Monday, November 28, 2016 Version: practice. Final exam practice UCLA: Math 3B, Fall 2016 This exam has 7 questions, for a total of 84 points. Please print your working and

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

Physics 2112 Unit 6: Electric Potential

Physics 2112 Unit 6: Electric Potential Physics 2112 Unit 6: Electric Potential Today s Concept: Electric Potential (Defined in terms of Path Integral of Electric Field) Unit 6, Slide 1 Stuff you asked about: I am very confused about the integrals

More information

Physics 191 Free Fall

Physics 191 Free Fall Physics 191 Free Fall 2016-09-21 1 Introduction 2 2 Experimental Procedure 2 3 Homework Questions - Hand in before class! 3 4 Data Analysis 3 4.1 Prepare the data in Excel..................................

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

AMPERE'S LAW. B dl = 0

AMPERE'S LAW. B dl = 0 AMPERE'S LAW The figure below shows a basic result of an experiment done by Hans Christian Oersted in 1820. It shows the magnetic field produced by a current in a long, straight length of current-carrying

More information

No prep assignment to do, but here are four questions anyway.

No prep assignment to do, but here are four questions anyway. Preparation Assignments for Homework #3 Due at the start of class. Reading Assignments Please see the handouts for each lesson for the reading assignments. 3,4 February Lesson 2.5 No prep assignment to

More information

TSOKOS CHAP 1 TEST REVIEW

TSOKOS CHAP 1 TEST REVIEW IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS TSOKOS CHAP TEST REVIEW ORDERS OF MAGNITUDE AND UNITS 2. The resistie force F acting on a sphere of radius r moing at speed through

More information

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law

Problem Solving 6: Ampere s Law and Faraday s Law. Part One: Ampere s Law MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: 8.02 Problem Solving 6: Ampere s Law and Faraday s Law Section Table Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Rutherford s Scattering Explanation

Rutherford s Scattering Explanation Exploration: Rutherford s Scattering Explanation The purpose of this exploration is to become familiar with Rutherford s analysis that formed a crucial part of his idea of a nuclear atom. To assist you

More information

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB WEEK 1. Introduction D. E. McLaughlin January 2011 The purpose of this lab is to introduce you to some astronomical terms

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

August 7, 2007 NUMERICAL SOLUTION OF LAPLACE'S EQUATION

August 7, 2007 NUMERICAL SOLUTION OF LAPLACE'S EQUATION August 7, 007 NUMERICAL SOLUTION OF LAPLACE'S EQUATION PURPOSE: This experiment illustrates the numerical solution of Laplace's Equation using a relaxation method. The results of the relaxation method

More information

3x 2 + 3y 2 +18x + 6y 60 = 0. 1) C(3,1), r = 30

3x 2 + 3y 2 +18x + 6y 60 = 0. 1) C(3,1), r = 30 1. Find the center and radius of the circle with the following equation: x 2 + y 2 +18x + 6y 60 = 0. 1) C(,1), r = 0 2) C(,1), r = 0 ) C(, 1), r = 0 4) C(, 1), r = 0 5) C(9,), r = 110 6) C(9,), r =110

More information

Physics 8.02 Exam Two Equation Sheet Spring 2004

Physics 8.02 Exam Two Equation Sheet Spring 2004 Physics 8.0 Exam Two Equation Sheet Spring 004 closed surface EdA Q inside da points from inside o to outside I dsrˆ db 4o r rˆ points from source to observer V moving from a to b E ds 0 V b V a b E ds

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

PH 1120 Term D, 2017

PH 1120 Term D, 2017 PH 1120 Term D, 2017 Study Guide 4 / Objective 13 The Biot-Savart Law \ / a) Calculate the contribution made to the magnetic field at a \ / specified point by a current element, given the current, location,

More information

PHY152H1S Practicals 4 and 5: Electric Potential, Electric Field

PHY152H1S Practicals 4 and 5: Electric Potential, Electric Field PHY152H1S Practicals 4 and 5: Electric Potential, Electric Field Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left

More information

Mathematics Standard level Paper 2

Mathematics Standard level Paper 2 Mathematics Standard level Paper 2 Wednesday 11 May 2016 (morning) Candidate session number 1 hour 30 minutes Instructions to candidates Write your session number in the boxes above. Do not open this examination

More information

a. On the circle below draw vectors showing all the forces acting on the cylinder after it is released. Label each force clearly.

a. On the circle below draw vectors showing all the forces acting on the cylinder after it is released. Label each force clearly. 1976 Mech 1 A small block of mass m slides on a horizontal frictionless surface as it travels around the inside of a hoop of radius R. The coefficient of friction between the block and the wall is µ; therefore,

More information

Physics Assessment Unit A2 3

Physics Assessment Unit A2 3 New Specification Centre Number 71 Candidate Number ADVANCED General Certificate of Education 2010 Physics Assessment Unit A2 3 Practical Techniques (Internal Assessment) Session 1 [AY231] AY231 WEDNESDAY

More information

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 A rod of charge per unit length λ is surrounded by a conducting, concentric cylinder

More information

Physics 2401 Summer 2, 2008 Exam III

Physics 2401 Summer 2, 2008 Exam III Physics 2401 Summer 2, 2008 Exam e = 1.60x10-19 C, m(electron) = 9.11x10-31 kg, ε 0 = 8.845x10-12 C 2 /Nm 2, k e = 9.0x10 9 Nm 2 /C 2, m(proton) = 1.67x10-27 kg. n = nano = 10-9, µ = micro = 10-6, m =

More information

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM

PHYSICS LAB Experiment 9 Fall 2004 THE TORSION PENDULUM PHYSICS 83 - LAB Experiment 9 Fall 004 THE TORSION PENDULUM In this experiment we will study the torsion constants of three different rods, a brass rod, a thin steel rod and a thick steel rod. We will

More information

Mathematics (JAN11MM1B01) General Certificate of Education Advanced Subsidiary Examination January Unit Mechanics 1B TOTAL

Mathematics (JAN11MM1B01) General Certificate of Education Advanced Subsidiary Examination January Unit Mechanics 1B TOTAL Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials Mathematics Unit Mechanics 1B Wednesday 19 January 2011 General Certificate of Education Advanced

More information

CHAPTER 1, TEST REVIEW

CHAPTER 1, TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: XX Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 1. Which of the following is equivalent to the joule? A. N m 2 B. N m 2 C. kg m s 2 D. kg m 2 s 2 CHAPTER

More information

Solution Set One. 4 Problem #4: Force due to Self-Capacitance Charge on Conductors Repulsive Force... 11

Solution Set One. 4 Problem #4: Force due to Self-Capacitance Charge on Conductors Repulsive Force... 11 : olution et One Northwestern University, Electrodynamics I Wednesday, January 13, 2016 Contents 1 Problem #1: General Forms of Gauss and tokes Theorems. 2 1.1 Gauss Theorem - Ordinary Product............................

More information

General Least Squares Fitting

General Least Squares Fitting Chapter 1 General Least Squares Fitting 1.1 Introduction Previously you have done curve fitting in two dimensions. Now you will learn how to extend that to multiple dimensions. 1.1.1 Non-linear Linearizable

More information

University Physics (Prof. David Flory) Chapt_31 Tuesday, July 31, 2007

University Physics (Prof. David Flory) Chapt_31 Tuesday, July 31, 2007 Name: Date: 1. Suppose you are looking into one end of a long cylindrical tube in which there is a uniform electric field, pointing away from you. If the magnitude of the field is decreasing with time

More information

Chapter 18 Solutions Set Up: (a) The proton has charge and mass Let point a be at the negative plate and

Chapter 18 Solutions Set Up: (a) The proton has charge and mass Let point a be at the negative plate and Chapter 18 Solutions *18.1. Set Up: Since the charge is positive the force on it is in the same direction as the electric field. Since the field is uniform the force is constant is upward is to the right,

More information

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs

Sample Questions to the Final Exam in Math 1111 Chapter 2 Section 2.1: Basics of Functions and Their Graphs Sample Questions to the Final Eam in Math 1111 Chapter Section.1: Basics of Functions and Their Graphs 1. Find the range of the function: y 16. a.[-4,4] b.(, 4],[4, ) c.[0, ) d.(, ) e.. Find the domain

More information

Description / Instructions: Covers 9th edition chapters and

Description / Instructions: Covers 9th edition chapters and Description / Instructions: Covers 9th edition chapters 21-1 -- 21-6 and 22-1 -- 22-4. Question 1 Figure 21-14 shows four situations in which charged particles are fixed in place on an axis. In which situations

More information

Physics 9 Summer 2010 Midterm

Physics 9 Summer 2010 Midterm Physics 9 Summer 2010 Midterm For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back. Please sit every other seat, and please don t cheat! If something isn

More information

GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields

GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields Surname Other Names Centre Number 2 Candidate Number GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields P.M. WEDNESDAY, 16 January 2013 1½ hours ADDITIONAL MATERIALS In addition to this examination

More information

To study the acoustic normal modes of air-filled cavities of rectangular and cylindrical geometry.

To study the acoustic normal modes of air-filled cavities of rectangular and cylindrical geometry. Physics 180D Experiment #1 OBJECTIVE: To study the acoustic normal modes of air-filled cavities of rectangular and cylindrical geometry. Using speakers driven by a variable oscillator, the resonant frequencies

More information

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA PRELAB: Before coming to the lab, you must write the Object and Theory sections of your lab report

More information

Magnetic Fields Due to Currents

Magnetic Fields Due to Currents PHYS102 Previous Exam Problems CHAPTER 29 Magnetic Fields Due to Currents Calculating the magnetic field Forces between currents Ampere s law Solenoids 1. Two long straight wires penetrate the plane of

More information

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M.

Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M. PhD QUALIFYING EXAMINATION PART A Tuesday, January 3, 212, 1: 5: PM Work each problem on a separate sheet(s) of paper and put your identifying number on each page Do not use your name Each problem has

More information

PHY 123 Lab 9 Simple Harmonic Motion

PHY 123 Lab 9 Simple Harmonic Motion PHY 123 Lab 9 Simple Harmonic Motion (updated 11/17/16) The purpose of this lab is to study simple harmonic motion of a system consisting of a mass attached to a spring. You will establish the relationship

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information