Rutherford s Scattering Explanation

Size: px
Start display at page:

Download "Rutherford s Scattering Explanation"

Transcription

1 Exploration: Rutherford s Scattering Explanation The purpose of this exploration is to become familiar with Rutherford s analysis that formed a crucial part of his idea of a nuclear atom. To assist you as you work through this exercise, click on the toolbox to the right to open the Scattering applet. If you need help understanding the simulation and variables, see the Help menu for assistance. The Simulation Model This simulation shows only the near-the-nucleus approach of the incident alpha particle and is based on the assumption that the majority of atom is empty space in which the electrons are believed to exist. 1. Suggest some reasons why the electrons can be ignored in this scattering experiment. 2. What is the range of impact parameters available in this simulation? 3. How does this compare with the size of a gold nucleus? Use the scale ruler to measure the gold nucleus. 4. How does the maximum range of impact parameters compare with the size of a gold atom (radius 135 pm)? Click Auto fire. Let the simulation run until the scattering pattern is clear. 5. State the characteristics of the scattering pattern that agree with the evidence from Rutherford s experiment. 1

2 6. What evidence is not shown in this model? Force and Distance 7. What type of force acts between the alpha particle and the nucleus? Set the alpha particle energy at 15 MeV. Make sure that Random alpha particle position is not checked and the impact parameter is set to 0.0 fm. Click the Fire button. 8. Where along the path of the alpha particle is the electric force at its maximum value? 9. Use the Scale ruler to measure the distance between the centres of the alpha particle and the gold nucleus when the force is at its maximum. 10. Calculate the force at this distance and draw a diagram labeled with force arrows. 11. Predict the change in the magnitude of the electric force from the starting position of the alpha particle until it has rebounded completely back. Describe in words and include a sketch of a force versus distance graph (no numbers required). 12. Check your prediction by selecting Show Graph in the Options menu. If you are asked to produce a graph for a report, select the Table icon in the title bar of the graph display. Click the copy data icon, paste the evidence into a spreadsheet program and generate a graph of electric force versus distance. 2

3 13. Set the impact parameter to 5.0 fm and fire the alpha particle. Sketch the result and draw vector arrows to label the direction of the electric force at three positions of the alpha particle approaching at about five nuclear radii, at the closest approach and recoiling at about five nuclear radii. The calculation of force at various distances in #13 requires a two-dimensional vector analysis. Rutherford and his associates were able to do these tedious force calculations manually without the help of computers (as in this simulation). 14. How would your sketch in #13 change if the nuclear charge were much smaller? Check your prediction using aluminium as the element. 15. Suggest a method that Rutherford may have used to estimate the nuclear charge. Rutherford initially estimated the nuclear charge to be approximately ½ Ae (where A is the atomic mass). 16. Evaluate his prediction for the different elements in this simulation. While Rutherford was continuing to do additional experiments, other scientists were starting to investigate the suggestion by van den Broek (in 1913) that the nuclear charge may be the same magnitude as the atomic number. Rutherford was aware of this and used the developing information to revise his own work. 3

4 Energy Factors Rutherford had some control over the kinetic energy of the alpha particles; however, he expressed regret that he could not obtain alpha particles with as high an energy as he wanted to use. 17. Using the range of energy available and a random alpha particle position checked, compare the scattering patterns of low, medium and high energy alpha particles. Describe this in words or sketches (you could run several different simulations simultaneously in separate windows). 18. How does your answer to the previous question suggest an approximate method of determining the nuclear size? 19. For a particular approach (such as an impact parameter of 0.0 fm) and recoil of an alpha particle, predict qualitatively the changes in kinetic energy, potential energy and total energy. 20. Run a simulation for a single alpha particle and check your prediction by selecting Show Graph in the Options menu. If you are asked to produce a graph for a report, select the Table icon in the title bar of the graph display. Click the copy data icon, paste the evidence into a spreadsheet program and generate a graph of energy versus distance showing three lines corresponding to E k, E p, and E total. 21. Using the law of conservation of mechanical energy, show that the minimum distance, r, can be calculated using the equation: r = kq 1q 2. Verify the units on both sides of this max E k equation. 4

5 22. Use the equation in the previous question to calculate the minimum distance for a 15 MeV alpha particle. Compare your answer to #9 above and evaluate. 23. Run some simulations using the maximum energy of alpha particle, 0 fm for the impact parameter and four different elements. What surprising result did you obtain in these simulations (similar results also obtained by Rutherford)? What should be done next? Evaluation of Rutherford s Nuclear Hypothesis Scientific theories and other theoretical knowledge must satisfy a number of criteria (see CRYSTAL-AB site). Explaining the known evidence is easier than predicting the results of future experiments. A theory can always be adjusted to fit the known evidence, but predicting future results is a difficult test. Once Rutherford had the idea of a nucleus from the results of early experiments, he did some detailed mathematical analyses to predict what factors should affect the scattering pattern. He predicted that the number of scattered particles should be proportional to the thickness of the foil and the square of the nuclear charge, and inversely proportional to the fourth power of the velocity. These specific predictions were subsequently tested and verified by Geiger and Marsden in a series of experiments. The description of Rutherford s work given above is an excellent example of a common type of scientific reasoning known as hypothetico-deductive reasoning (see CRYSTAL-AB site). In this type of reasoning a hypothesis based on previous evidence is used to make a specific prediction that is then tested in an experiment, and finally the experimental result is compared with the prediction. The hypothesis is either verified or falsified based on the agreement between the predicted outcome and experimental result. 5

State the main interaction when an alpha particle is scattered by a gold nucleus

State the main interaction when an alpha particle is scattered by a gold nucleus Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particle physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Rutherford

More information

Read Sections 3.4 and 3.5 before viewing the slide show.

Read Sections 3.4 and 3.5 before viewing the slide show. Read Sections 3.4 and 3.5 before viewing the slide show. Unit 10 Development of the Structure of the Atom Rutherford s Gold Foil Experiment (3.4) Scattering simulation Status in Early 1900 s Atoms are

More information

Atomic Physics 1. Outline how the Bohr model of the hydrogen atom accounts for the spectrum of hydrogen (3)

Atomic Physics 1. Outline how the Bohr model of the hydrogen atom accounts for the spectrum of hydrogen (3) Name: Date: 1. This question is about models of the hydrogen atom. Atomic Physics 1 Outline how the Bohr model of the hydrogen atom accounts for the spectrum of hydrogen.......... (3) The diagram below

More information

Level 2 Physics, 2011

Level 2 Physics, 2011 90256 902560 2SUPERVISOR S Level 2 Physics, 2011 90256 Demonstrate understanding of atoms and radioactivity 2.00 pm Wednesday ednesday 16 1 November 2011 Credits: Two Check that the National Student Number

More information

Work hard. Be nice. Name: Period: Date: UNIT 2: Atomic Concepts Lesson 3: Some go through and some don t

Work hard. Be nice. Name: Period: Date: UNIT 2: Atomic Concepts Lesson 3: Some go through and some don t Name: Period: Date: UNIT 2: Atomic Concepts Lesson 3: Some go through and some don t Do Now: By the end of today, you will have an answer to: How did the gold foil experiment lead to the modern model of

More information

Lab #10 Atomic Radius Rubric o Missing 1 out of 4 o Missing 2 out of 4 o Missing 3 out of 4

Lab #10 Atomic Radius Rubric o Missing 1 out of 4 o Missing 2 out of 4 o Missing 3 out of 4 Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations 4.7 Relationships Among Elements Lab #10 Background Information The periodic table is a wonderful source of information about all of the elements

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism) The Atom What was know about the atom in 1900? First, the existence of atoms was not universally accepted at this time, but for those who did think atoms existed, they knew: 1. Atoms are small, but they

More information

In 1931 scientists thought that atoms contained only protons and electrons.

In 1931 scientists thought that atoms contained only protons and electrons. 1 The diagram shows the structure of an atom. Not drawn to scale In 1931 scientists thought that atoms contained only protons and electrons. Suggest what happened in 1932 to change the idea that atoms

More information

CLASS 12th. Modern Physics-II

CLASS 12th. Modern Physics-II CLASS 12th Modern Physics-II 1. Thomson s Atom Model From the study of discharge of electricity through gases, it became clear that an atom consists of positive and negative charges. As the atom is electrically

More information

1. The Basic X-Y Scatter Plot

1. The Basic X-Y Scatter Plot 1. The Basic X-Y Scatter Plot EXCEL offers a wide range of plots; however, this discussion will be restricted to generating XY scatter plots in various formats. The easiest way to begin is to highlight

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

5-Sep-15 PHYS101-2 GRAPHING

5-Sep-15 PHYS101-2 GRAPHING GRAPHING Objectives 1- To plot and analyze a graph manually and using Microsoft Excel. 2- To find constants from a nonlinear relation. Exercise 1 - Using Excel to plot a graph Suppose you have measured

More information

TAP 522-3: Rutherford scattering: directions of forces

TAP 522-3: Rutherford scattering: directions of forces TP 522-3: Rutherford scattering: directions of forces Scattering of alpha particles Rutherford did not have a particle accelerator. Instead he used alpha particles, typically of energy 5 MeV, from radioactive

More information

Math 261 Sampling Distributions Lab Spring 2009

Math 261 Sampling Distributions Lab Spring 2009 Math 261 Sampling Distributions Lab Spring 2009 Name: Purpose After completing this lab, you should be able to distinguish between the distribution of the population, distribution of the sample, and the

More information

Name... Class... Date... In this activity you will have an opportunity to explore the nuclear model of the atom by building your own.

Name... Class... Date... In this activity you will have an opportunity to explore the nuclear model of the atom by building your own. Model of an atom Specification references: C1.1.4 Relative electrical charges of subatomic particles C1.1.5 Size and mass of atoms WS 1.2 Aims In this activity you will have an opportunity to explore the

More information

Physics 1050 Experiment 6. Moment of Inertia

Physics 1050 Experiment 6. Moment of Inertia Physics 1050 Moment of Inertia Prelab uestions These questions need to be completed before entering the lab. Please show all workings. Prelab 1 Sketch a graph of torque vs angular acceleration. Normal

More information

Investigating Factors that Influence Climate

Investigating Factors that Influence Climate Investigating Factors that Influence Climate Description In this lesson* students investigate the climate of a particular latitude and longitude in North America by collecting real data from My NASA Data

More information

3/29/2010. Structure of the Atom. Knowledge of atoms in 1900 CHAPTER 6. Evidence in 1900 indicated that the atom was not a fundamental unit:

3/29/2010. Structure of the Atom. Knowledge of atoms in 1900 CHAPTER 6. Evidence in 1900 indicated that the atom was not a fundamental unit: 3/9/010 CHAPTER 6 Rutherford Scattering 6.1 The Atomic Models of Thomson and Rutherford 6. Definition of Cross Section 6. Rutherford Scattering 6.3 Structure of the Nucleus The opposite of a correct statement

More information

AQA GCSE Physics. 61 minutes. 61 marks. Q1 to Q5 to be worked through with tutor. Q6 to Q9 to be worked through independently.

AQA GCSE Physics. 61 minutes. 61 marks. Q1 to Q5 to be worked through with tutor. Q6 to Q9 to be worked through independently. AQA GCSE Physics Atomic Structure 4.4.: Atomic Structure Name: Class: Date: Time: 6 minutes Marks: 6 marks Comments: Q to Q5 to be worked through with tutor. Q6 to Q9 to be worked through independently.

More information

Question Answer Marks Guidance 1 a. 2 ignore reference to plum pudding model. allow discovered that atoms have electrons

Question Answer Marks Guidance 1 a. 2 ignore reference to plum pudding model. allow discovered that atoms have electrons 1 a 3 Chlorine atom Oxide ion Number of protons 17 8 Number of neutrons 0 8 Number of electrons 17 10 chlorine - number of protons and number of neutrons correct (1) oxide ion number of neutrons correct

More information

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3)

1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (3) 1 (a) Sketch the electric field surrounding the gold nucleus drawn below. (b) The spreadsheet shown approximately models the behaviour of an alpha particle as it approaches a gold nucleus. The proton number

More information

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement Experiment 0 ~ Introduction to Statistics and Excel Tutorial Many of you already went through the introduction to laboratory practice and excel tutorial in Physics 1011. For that reason, we aren t going

More information

II) ACTIVITY: Discovering the periodic trend for atomic radius within the groups of elements.

II) ACTIVITY: Discovering the periodic trend for atomic radius within the groups of elements. CH 11 T8 PERIODIC TRENDS 1: GROUP ATOMIC RADIUS 1 You have mastered this topic when you can: 1) define or explain these terms: PERIODIC TREND and ATOMIC RADIUS. 2) analyze data and communicate results

More information

Answer all the questions. State how Rutherford's work contributed to the development of the atomic model.

Answer all the questions. State how Rutherford's work contributed to the development of the atomic model. Answer all the questions. 1. What is the approximate size of an atom? A 3 10 1 metres B 3 10 5 metres C 3 10 9 metres D 3 10 13 metres Your answer 2. Rutherford was a scientist who helped to develop the

More information

2011 Assessment Report. Physics Level 2

2011 Assessment Report. Physics Level 2 National Certificate of Educational Achievement 2011 Assessment Report Physics Level 2 90254 Demonstrate understanding of waves 90255 Demonstrate understanding of mechanics 90256 Demonstrate understanding

More information

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi.

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. 1 Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. State the composition of the nucleus of bismuth-214. [2] (b) Bismuth-214 decays by β-decay

More information

Using Tables and Graphing Calculators in Math 11

Using Tables and Graphing Calculators in Math 11 Using Tables and Graphing Calculators in Math 11 Graphing calculators are not required for Math 11, but they are likely to be helpful, primarily because they allow you to avoid the use of tables in some

More information

Episode 522: The size of the nucleus

Episode 522: The size of the nucleus Episode 522: The size of the nucleus Having established the existence of the nucleus, you can now consider experimental evidence for its size, starting from the Rutherford experiment. Summary Discussion

More information

Alchemy Unit Investigation III. Lesson 7: Life on the Edge

Alchemy Unit Investigation III. Lesson 7: Life on the Edge Alchemy Unit Investigation III Lesson 7: Life on the Edge The Big Question How does the atomic structure of atoms account for the trends in periodicity of the elements? You will be able to: Explain how

More information

Using Microsoft Excel

Using Microsoft Excel Using Microsoft Excel Objective: Students will gain familiarity with using Excel to record data, display data properly, use built-in formulae to do calculations, and plot and fit data with linear functions.

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Introduction Photometry is the measurement of the intensity or brightness of an astronomical

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

II) ACTIVITY: Discovering the periodic trend for atomic radius within the periods of elements.

II) ACTIVITY: Discovering the periodic trend for atomic radius within the periods of elements. CH 11 T9 PERIODIC TRENDS 2: PERIOD ATOMIC RADIUS 1 You have mastered this topic when you can: 1) define or explain these terms: PERIODIC TREND and ATOMIC RADIUS. 2) analyze data and communicate results

More information

2013 Purdue University 1

2013 Purdue University 1 Lab #11 Collisions: Rutherford Scattering OBJECTIVES In this lab you will: Use the energy and momentum principles to analyze the problem of Rutherford scattering, and estimate the initial conditions to

More information

Calculating Bond Enthalpies of the Hydrides

Calculating Bond Enthalpies of the Hydrides Proposed Exercise for the General Chemistry Section of the Teaching with Cache Workbook: Calculating Bond Enthalpies of the Hydrides Contributed by James Foresman, Rachel Fogle, and Jeremy Beck, York College

More information

Name... Class... Date...

Name... Class... Date... 1 Who was the first scientist to suggest that different elements contain different types of atoms? A Marsden B Geiger C Thomson D Dalton Your answer 2 Which one of the following is the smallest in size?

More information

State the main interaction when an alpha particle is scattered by a gold nucleus

State the main interaction when an alpha particle is scattered by a gold nucleus Q1.(a) Scattering experiments are used to investigate the nuclei of gold atoms. In one experiment, alpha particles, all of the same energy (monoenergetic), are incident on a foil made from a single isotope

More information

Physics 476LW Advanced Physics Laboratory Atomic Spectroscopy

Physics 476LW Advanced Physics Laboratory Atomic Spectroscopy Physics 476LW Atomic Spectroscopy 1 Introduction The description of atomic spectra and the Rutherford-Geiger-Marsden experiment were the most significant precursors of the so-called Bohr planetary model

More information

Introduction to Computer Tools and Uncertainties

Introduction to Computer Tools and Uncertainties Experiment 1 Introduction to Computer Tools and Uncertainties 1.1 Objectives To become familiar with the computer programs and utilities that will be used throughout the semester. To become familiar with

More information

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Purpose: Materials: WARNING! Section: Partner 2: Partner 1: Partner 1: Partner 2: Section: PLEASE NOTE: You will need this particular lab report later in the semester again for the homework of the Rolling Motion Experiment. When you get back this graded report,

More information

Center of Mass. Evaluation copy

Center of Mass. Evaluation copy Center of Mass Experiment 19 INTRODUCTION In the most of the previous experiments you have examined the motion of a single object as it underwent a variety of motions. You learned that an object subject

More information

You will toggle between Rutherford atom and plum pudding atom.

You will toggle between Rutherford atom and plum pudding atom. Rutherford Experiment a phet Inquiry Materials needed: computer, ruler, protractor Prelab Read your physics text Rutherford s gold foil experiment on page #412. In 1910 when this experiment was first conducted,

More information

Star Cluster Photometry and the H-R Diagram

Star Cluster Photometry and the H-R Diagram Star Cluster Photometry and the H-R Diagram Contents Introduction Star Cluster Photometry... 1 Downloads... 1 Part 1: Measuring Star Magnitudes... 2 Part 2: Plotting the Stars on a Colour-Magnitude (H-R)

More information

Chemistry 14CL. Worksheet for the Molecular Modeling Workshop. (Revised FULL Version 2012 J.W. Pang) (Modified A. A. Russell)

Chemistry 14CL. Worksheet for the Molecular Modeling Workshop. (Revised FULL Version 2012 J.W. Pang) (Modified A. A. Russell) Chemistry 14CL Worksheet for the Molecular Modeling Workshop (Revised FULL Version 2012 J.W. Pang) (Modified A. A. Russell) Structure of the Molecular Modeling Assignment The molecular modeling assignment

More information

Boyle s Law: A Multivariable Model and Interactive Animated Simulation

Boyle s Law: A Multivariable Model and Interactive Animated Simulation Boyle s Law: A Multivariable Model and Interactive Animated Simulation Using tools available in Excel, we will turn a multivariable model into an interactive animated simulation. Projectile motion, Boyle's

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

Name: Period Date: CHEMISTRY LAB #6 Simulation of Rutherford s Gold Foil Experiment: Prelab Reading and Assignment 90 MINUTES

Name: Period Date: CHEMISTRY LAB #6 Simulation of Rutherford s Gold Foil Experiment: Prelab Reading and Assignment 90 MINUTES Name: Period Date: CHEMISTRY LAB #6 Simulation of Rutherford s Gold Foil Experiment: Prelab Reading and Assignment 90 MINUTES PURPOSE: To recreate Rutherford s ground-breaking research to understand the

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 1991-2001 -o-o-o- 3.6 Radiation 1992 Q35 A typical reaction produced in the core of a nuclear reactor can be described by the following equation: (a) State the name

More information

Visit for more fantastic resources. OCR. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. OCR. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. OCR A Level A Level Physics Particle physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. In 1911 the

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Activity 06.3a Periodic Trends Inquiry

Activity 06.3a Periodic Trends Inquiry Background In this investigation you will examine several periodic trends, including atomic radius, ionization energy and ionic radius. You will be asked to interact with select atoms as you investigate

More information

The structure of Atom III

The structure of Atom III The structure of Atom III Atomic Structure If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement

More information

Module 2A Turning Multivariable Models into Interactive Animated Simulations

Module 2A Turning Multivariable Models into Interactive Animated Simulations Module 2A Turning Multivariable Models into Interactive Animated Simulations Using tools available in Excel, we will turn a multivariable model into an interactive animated simulation. Projectile motion,

More information

EXPERIMENT 4 ONE DIMENSIONAL MOTION

EXPERIMENT 4 ONE DIMENSIONAL MOTION EXPERIMENT 4 ONE DIMENSIONAL MOTION INTRODUCTION This experiment explores the meaning of displacement; velocity, acceleration and the relationship that exist between them. An understanding of these concepts

More information

UNIT VIII ATOMS AND NUCLEI

UNIT VIII ATOMS AND NUCLEI UNIT VIII ATOMS AND NUCLEI Weightage Marks : 06 Alpha-particles scattering experiment, Rutherford s model of atom, Bohr Model, energy levels, Hydrogen spectrum. Composition and size of Nucleus, atomic

More information

Newton's 2 nd Law. . Your end results should only be interms of m

Newton's 2 nd Law. . Your end results should only be interms of m Newton's nd Law Introduction: In today's lab you will demonstrate the validity of Newton's Laws in predicting the motion of a simple mechanical system. The system that you will investigate consists of

More information

Changes of State & Particle Model

Changes of State & Particle Model Changes of State & Particle Model Question Paper Level GCSE (9-1) Subject Combined Science: Trilogy - Physics Exam Board AQA Topic 6.3 Particle Model of Matter Sub-Topic Changes of State & Particle Model

More information

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1]

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1] 1 (a) Fig. 6.1 shows the quark composition of some particles. proton neutron A B u u d u d d u d u u u u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig. 6.1. (ii) State

More information

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics Name: Date:. Isotopes provide evidence for the existence of A. protons. B. electrons. C. nuclei. Topic 7 &3 Review Atomic, Nuclear, and Quantum Physics D. neutrons.. The atomic line spectra of elements

More information

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures Kinematics Lab 1 Introduction An object moving in one dimension and undergoing constant or uniform acceleration has a position given by: x(t) =x 0 +v o t +1/2at 2 where x o is its initial position (its

More information

Exercises for Windows

Exercises for Windows Exercises for Windows CAChe User Interface for Windows Select tool Application window Document window (workspace) Style bar Tool palette Select entire molecule Select Similar Group Select Atom tool Rotate

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

The Configuration of the Atom: Rutherford s Model

The Configuration of the Atom: Rutherford s Model CHAPTR 2 The Configuration of the Atom: Rutherford s Model Problem 2.2. (a) When α particles with kinetic energy of 5.00 MeV are scattered at 90 by gold nuclei, what is the impact parameter? (b) If the

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

More information

(Directions for Excel Mac: 2011) Most of the global average warming over the past 50 years is very likely due to anthropogenic GHG increases

(Directions for Excel Mac: 2011) Most of the global average warming over the past 50 years is very likely due to anthropogenic GHG increases (Directions for Excel Mac: 2011) Most of the global average warming over the past 50 years is very likely due to anthropogenic GHG increases How does the IPCC know whether the statement about global warming

More information

EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS

EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS MOTIONS WITH CONSTANT ACCELERATION 117 Textbook Reference: Walker, Chapter

More information

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA

M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA M61 1 M61.1 PC COMPUTER ASSISTED DETERMINATION OF ANGULAR ACCELERATION USING TORQUE AND MOMENT OF INERTIA PRELAB: Before coming to the lab, you must write the Object and Theory sections of your lab report

More information

Particles and Waves Final Revision Exam Questions Part 1

Particles and Waves Final Revision Exam Questions Part 1 Particles and Waves Final Revision Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN Version 2013 P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model 1 Section

More information

PHYSICS CET-2014 MODEL QUESTIONS AND ANSWERS NUCLEAR PHYSICS

PHYSICS CET-2014 MODEL QUESTIONS AND ANSWERS NUCLEAR PHYSICS PHYSICS CET-2014 MODEL QUESTIONS AND ANSWERS NUCLEAR PHYSICS IMPORTANT FORMULE TO BE REMEMBERED IMPORTANT FORMULE TO BE REMEMBERED 1. Identify the correct statement with regards to nuclear density a) It

More information

R. Ashby Duplication by permission only.

R. Ashby Duplication by permission only. CH 11 T12 PERIODIC TRENDS 5: 1 st IONIZATION ENERGY 1 You have mastered this topic when you can: 1) define or describe IONIZATION ENERGY. 2) describe and provide a theoretical explanation for the periodic

More information

Radioactivity 1. How: We randomize and spill a large set of dice, remove those showing certain numbers, then repeat.

Radioactivity 1. How: We randomize and spill a large set of dice, remove those showing certain numbers, then repeat. PHYS 1301 Radioactivity 1 Why: To illustrate the notion of half-life of a decaying system. What: We will remove members of a population using a certain rule at each stage and from the decay in the population

More information

Rhonda Alexander IC Science Robert E. Lee

Rhonda Alexander IC Science Robert E. Lee Rhonda Alexander IC Science Robert E. Lee Atom The smallest particle of an element that retains all of the chemical properties of the element. The Theory & Evidence for John Dalton s Atomic Theory: Around

More information

Graphs. 1. Graph paper 2. Ruler

Graphs. 1. Graph paper 2. Ruler Graphs Objective The purpose of this activity is to learn and develop some of the necessary techniques to graphically analyze data and extract relevant relationships between independent and dependent phenomena,

More information

Interactive Periodic Trends: A Graphical Experience

Interactive Periodic Trends: A Graphical Experience CHM 101 Name Interactive Periodic Trends: A Graphical Experience This activity explores a variety of properties of the chemical elements as they vary based on position on the periodic table. You should

More information

Contents. 13. Graphs of Trigonometric Functions 2 Example Example

Contents. 13. Graphs of Trigonometric Functions 2 Example Example Contents 13. Graphs of Trigonometric Functions 2 Example 13.19............................... 2 Example 13.22............................... 5 1 Peterson, Technical Mathematics, 3rd edition 2 Example 13.19

More information

BOND LENGTH WITH HYPERCHEM LITE

BOND LENGTH WITH HYPERCHEM LITE BOND LENGTH WITH HYPERCHEM LITE LAB MOD2.COMP From Gannon University SIM INTRODUCTION The electron cloud surrounding the nucleus of the atom determines the size of the atom. Since this distance is somewhat

More information

The Nucleus Came Next

The Nucleus Came Next The Nucleus Came Next Ernest Rutherford The New Zealand born British chemist and physicist who became known as the father of nuclear physics. He discovered the atomic nucleus, and thereby pioneered the

More information

2: SIMPLE HARMONIC MOTION

2: SIMPLE HARMONIC MOTION 2: SIMPLE HARMONIC MOTION Motion of a mass hanging from a spring If you hang a mass from a spring, stretch it slightly, and let go, the mass will go up and down over and over again. That is, you will get

More information

Lab Activity: The Central Limit Theorem

Lab Activity: The Central Limit Theorem Lab Activity: The Central Limit Theorem In this lab activity, you will explore the properties of the Central Limit Theorem. Student Learning Outcomes By the end of this chapter, you should be able to do

More information

The term valent means outermost, therefore only the electrons on the outermost shell are called valent.

The term valent means outermost, therefore only the electrons on the outermost shell are called valent. The atom is the smallest basic unit of an element which possesses the properties of the element. Structure of the Atom The term valent means outermost, therefore only the electrons on the outermost shell

More information

GraspIT AQA Atomic Structure Questions

GraspIT AQA Atomic Structure Questions A. Atomic structure Atoms and isotopes 1. a) The diagram shows an atom of Beryllium. Name the parts labelled a, b and c. (3) electron (1) neutron (1) proton (1) b) What is the atomic mass of this atom?

More information

Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates

Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates 9.1 Multivariable Functions and Contour Graphs Although Excel can easily draw 3-dimensional surfaces, they are often difficult to mathematically

More information

Electric Field Mapping

Electric Field Mapping Name: Date: PC1143 Physics III Electric Field Mapping 5 Laboratory Worksheet Part A: Parallel Electrodes Distance between parallel electrodes: d = Attach your plots of equipotential lines and electric

More information

WISE Regression/Correlation Interactive Lab. Introduction to the WISE Correlation/Regression Applet

WISE Regression/Correlation Interactive Lab. Introduction to the WISE Correlation/Regression Applet WISE Regression/Correlation Interactive Lab Introduction to the WISE Correlation/Regression Applet This tutorial focuses on the logic of regression analysis with special attention given to variance components.

More information

Changes in Energy and Momentum

Changes in Energy and Momentum Changes in Energy and Momentum Name: Group Members: Date: TA s Name: Learning Objectives: 1. Understanding the relationship between force, distance and changes in kinetic energy. 2. Understanding the relationship

More information

Lab 1: Dynamic Simulation Using Simulink and Matlab

Lab 1: Dynamic Simulation Using Simulink and Matlab Lab 1: Dynamic Simulation Using Simulink and Matlab Objectives In this lab you will learn how to use a program called Simulink to simulate dynamic systems. Simulink runs under Matlab and uses block diagrams

More information

Geology Geomath Computer Lab Quadratics and Settling Velocities

Geology Geomath Computer Lab Quadratics and Settling Velocities Geology 351 - Geomath Computer Lab Quadratics and Settling Velocities In Chapter 3 of Mathematics: A simple tool for geologists, Waltham takes us through a brief review of quadratic equations and their

More information

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in Chemical Kinetics I: The Dry Lab Up until this point in our study of physical chemistry we have been interested in equilibrium properties; now we will begin to investigate non-equilibrium properties and

More information

X-RAY SPECTRA. Theory:

X-RAY SPECTRA. Theory: 12 Oct 18 X-ray.1 X-RAY SPECTRA In this experiment, a number of measurements involving x-rays will be made. The spectrum of x-rays emitted from a molybdenum target will be measured, and the experimental

More information

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown.

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown. 1. This question is about quantum aspects of the electron. The wavefunction ψ for an electron confined to move within a box of linear size L = 1.0 10 10 m, is a standing wave as shown. State what is meant

More information

3 Charged Particle Motion in a Magnetic Field

3 Charged Particle Motion in a Magnetic Field 3 Charged Particle Motion in a Magnetic Field When you have completed the Particle Annihilation section and read all the text (especially section 2.2), click the Next button in the Particle Annihilation

More information

(b) Which of these particles has the largest mass? (1) (c) The maximum range of a beta particle in air is about (1)

(b) Which of these particles has the largest mass? (1) (c) The maximum range of a beta particle in air is about (1) 1 Unstable nuclei can emit particles. (a) Which of these particles has the largest charge? A alpha particle B C beta particle neutron D proton (b) Which of these particles has the largest mass? A alpha

More information

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Print Your Name Print Your Partners' Names Instructions April 20, 2016 Before lab,

More information

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183

Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Final Exam: Thursday 05/02 7:00 9:00 pm in STEW 183 Covers all readings, lectures, homework from Chapters 17 through 30 Be sure to bring your student ID card, calculator, pencil, and up to three onepage

More information

UNM Physics 262, Problem Set 11, Fall 2006

UNM Physics 262, Problem Set 11, Fall 2006 Instructor: Dr. Landahl Issued: November 15, 2006 Due: Nov 22, 2006 UNM Physics 262, Problem Set 11, Fall 2006 Do all of the exercises and problems listed below. Hand in your problem set in the rolling

More information

PHYSICS (SPECIFICATION A) PA10

PHYSICS (SPECIFICATION A) PA10 Surname Centre Number Other Names Candidate Number Leave blank Candidate Signature General Certificate of Education June 2004 Advanced Level Examination PHYSICS (SPECIFICATION A) Unit 10 The Synoptic Unit

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials OBJECTIVE Electric Fields and Equipotentials To study and describe the two-dimensional electric field. To map the location of the equipotential surfaces around charged electrodes. To study the relationship

More information