Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Size: px
Start display at page:

Download "Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation"

Transcription

1 Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

2 1992 Q35 A typical reaction produced in the core of a nuclear reactor can be described by the following equation: (a) State the name given to the above type of reaction. (b) Large amounts of kinetic energy are released in this reaction. Explain how this kinetic energy is produced Q37 In a famous experiment to investigate the structure of the atom, a beam of radiation is directed at a thin, gold foil target as shown in the diagram below. The experiment shows that most of the radiation passes through the gold foil but some "bounces back" without passing through the foil. (a) State the type of radiation used. (b) Explain how the results of the experiment suggest that the mass of the atom is concentrated at its centre (nucleus) Q37 Energy is produced within the Sun by fusion reactions. (a) State what is meant by a fusion reaction. (b) Explain briefly why a fusion reaction releases energy.

3 1999 Q36 Energy is released from stars as a result of nuclear reactions. One of these reactions is represented by the statement given below. (a) What type of nuclear reaction is described by this statement? (b) Explain why this reaction results in the release of energy. You should make reference to an equation in your explanation Q37 Ernest Rutherford arranged for alpha particles to be fired at a thin gold foil. Apparatus similar to that shown below was used. (a) Most of the alpha particles passed straight through the foil. What does this suggest about the structure of atoms of gold? (b) A small but significant number of alpha particles were scattered through angles greater than 90º. What two features about the nucleus does this suggest? 2001 Q37 A gamma ray source is stored in a lead container. The corrected count rate just outside the container due to the radiation from the source is 250 counts per minute. Without the lead container, the corrected count rate at the same distance from the source is 1000 counts per minute. The lead wall of the container has a thickness of 22.4 mm. Calculate the half-value thickness of the lead.

4 1991 Q12 (a) The following describes a typical fission reaction. (i) Determine x, Y and z in. the equation. (You may have to refer to the Data Booklet.) (ii) Account for the release of energy in this fission process. (b) Radiation from a nuclear reactor can affect human tissue. A health physicist is investigating the effect of a neutron beam and a gamma my beam on some human tissue. A lead shield of half value thickness 12 mm can be placed in the gamma ray beam. The health physicist records the following data: (i) Using the values from the table, calculate the thickness of the lead shield used. (ii) Show that the dose equivalent rate of the neutron beam is 4 times that of the shielded gamma ray beam.

5 1992 Q11 Smoke detectors are important in giving early warning of fire starting in the home. (a) The simplified layout of one type of smoke detector is illustrated below. The following is an extract from the manufacturer's data sheet. "The detector uses a low energy source of ionising radiation, 30 kbq Americium 241, which causes ionisation of the air molecules, and hence a small current between the electrodes. When smoke particles enter the space between the electrodes, they impede the flow of ions and the current is reduced. When the current falls below a certain value, the buzzer sounds." (i) The symbol for the radioactive source used is What information is given by the numbers 95 and 241? (ii) What is meant by "30 kbq"? (iii) Explain what is meant by "ionising radiation". (iv) The equation for the decay of this source is Identify the type of radiation emitted in this decay and explain why this particular type of radiation is used in the smoke detector. (v) The half-life of Americium 241 is 458 years. Discuss the advantage of using this source compared to one with a half-life of 5 years. (b) The workers in the factory assembling this type of smoke detector will experience a higher radiation dose equivalent than that due to background radiation alone. (i) State one factor contributing to background radiation. (ii) It is recommended that the workers assembling the smoke detectors should not receive a dose equivalent rate greater than 5.0 msv per year above the background level. A worker in a factory making smoke detectors assembles detectors in a year. An absorbed dose of 1.2x10-8 Gy is received by the worker in assembling one detector and the quality factor of the radiation is 20. Show, by calculation, whether the permissible level of 5.0 msv per year will be exceeded for the worker.

6 1993 Q11 (a) A certain radioactive source emits only gamma radiation. A technician is asked to determine the half-value thickness of lead for the radiation from this source. The technician sets up the apparatus shown below and keeps the distance between the source and the gamma ray detector the same throughout the experiment. The technician measures the count rate several times for a certain thickness of lead sheet, and obtains an average value for the count rate. The measurements are repeated with several different thicknesses of lead sheet and also with no lead present. The source and the lead are then removed and the background count rate is measured. The technician corrects each average count rate for background and records the results as shown in the table. (i) Draw a graph of corrected average count rate against thickness of lead sheet, using the squareruled paper provided. Find the half-value thickness of lead for this source. (ii) On the same axes, sketch a graph which might be obtained if the average count rate was not corrected for background radiation. (b) 21 years later, another technician repeats the experiment with the same source. The gamma ray source has a half-life of 5.25 years. What corrected average count rate would be recorded with no lead sheet between the source and the detector?

7 1994 Q11 A nuclear medicine laboratory contains a small radioactive source in a scaled container. The following information is displayed on the label. (a) When the source has the activity stated on the label, how many nuclei decay in one minute? (b) A technician needs to work at a distance of 1 m from a freshly prepared source. For what period of time can the technician work at this distance so that the absorbed dose does not exceed 50 µgy? (c) Lead shielding is used around the source to reduce the dose equivalent rate at a distance of 1 m to 2.5 µsvh -1. (i) On the square ruled paper provided, draw a graph to show how the dose equivalent rate at a distance of one metre varies with the thickness of lead shielding. (ii) Use your graph to estimate the thickness of lead needed to provide the required level of shielding.

8 (d) A gamma ray source is often transported in a cardboard container carried by two Porters. The source is inside a small lead pot surrounded by, a large volume of polystyrene packaging. The lead pot provides shielding. What other feature of this packaging system reduces the dose equivalent rate for the porters? Give a reason for your answer Q11 The following statement represents a nuclear reaction which may form the basis of a nuclear power station of the future. (a) State the name given to the above type of nuclear reaction. (b) Explain, using E = mc 2, how this nuclear reaction results in the production of energy. (c) Using the information given below, and any other data required from the Data Sheet, calculate the energy released in the above nuclear reaction. (d) Calculate how many of the reactions of the type represented above would occur each second to produce a power of 25 MW.

9 1996 Q10 In investigating the effect of different types of radiation on the human body, the data in the table below was obtained for one particular type of body tissue. (a) Show, using the data in the table, which radiation is likely to be the most harmful to this tissue. (b) (i) The maximum permitted dose equivalent for this tissue is 5 msv. Calculate the time the tissue can be exposed to fast neutrons without exceeding this limit. (ii) A sample of this tissue has a mass of 25 grams. How much energy will it absorb from fast neutrons in 2 hours? (c) The effect of radiation on tissue can be reduced by putting shielding material between the source of radiation and the tissue. The effectiveness of this shielding material can be described by the halfvalue thickness of the material. (i) Explain the meaning of "half-value thickness". (ii) The half-value thickness for a particular material is 7 mm. A block of this material of thickness 3.5 cm is inserted between the source and the tissue. What fraction of the radiation which is directed at the tissue is received by the tissue?

10 1996 Q11 (a) Two possible nuclear reactions involving uranium are represented by the statements shown below. The masses of the nuclei and particles involved in the reactions are as follows. (i) What type of nuclear reaction is described by statements A and B? (ii) Show by calculation how much mass is "Lost" in each of reactions A and B. (iii) Explain which of the reactions A and B releases the greater amount of energy. (b) A third possible nuclear reaction involving is represented by the following statement. (i) The symbol for the uranium nucleus is What information about the particles in the nucleus is provided by the numbers 92 and 235? (ii) Determine the number represented by y.

11 1997 Q11 (a) The diagram shows the apparatus used by Rutherford to investigate the scattering of alpha particles by a gold foil. From the observations made as the microscope and screen were moved from P to Q, Rutherford deduced that an atom has a nucleus which is: (A) positively charged; (B) massive; (C) much smaller than the volume of the atom. Explain how the observations from the scattering experiment led to these three deductions. (b) A pupil reads in a textbook about the possible effects of a source of gamma rays and neutrons on one type of body tissue. A table in the textbook provided information relating to the radiations and absorbed doses for this body tissue. This table is shown below. (i) Calculate the total dose equivalent received by the body tissue. (ii) Calculate the thickness of lead which would have to surround the above source to reduce the absorbed dose from the gamma rays to 25 µgy. The half-value thickness of lead for the gamma radiation is 8 mm.

12 1998 Q11 (a) The first three stages in a radioactive decay series are shown below. (i) What particle is emitted when Thorium (Th) decays to Palladium (Pa)? (ii) How many neutrons are in the nuclide represented by (iii) In the next stage of the above decay series, an alpha particle is emitted. Copy and complete this stage of the radioactivity decay series shown below, giving values for a, b, c and d, and naming the element X.

13 (b) The following graph shows how the effective dose equivalent rate due to background radiation varies with height above sea level. (i) Name two sources of background radiation. (ii) The graph shows that there is an increase in effective dose equivalent rate at altitudes greater than 4 km. Suggest a reason for this increase. (iii) An aircraft makes a 7 hour flight at a cruising altitude of 10 km. (A) Calculate the effective dose equivalent received by a passenger during this flight. (B) A regular traveller makes 40 similar flights in one year and spends the rest of the year at sea level. Calculate the effective dose equivalent of background radiation received by this traveller in that year.

14 1999 Q12 (a) The radiology department in a hospital uses radioactive iodine to examine the functioning of the thyroid gland in a patient. Radioactive iodine is produced by a nuclear reaction when the nuclei of Tellurium atoms absorb neutrons. The statement for this reaction is shown below. State the type of radiation emitted in this reaction. (b) The thyroid gland of the patient receives an absorbed dose of 750 µgy of radiation from the radioactive iodine. (i) Calculate the total energy absorbed if the gland has a mass of 0.04 kg. (ii) The average dose equivalent rate for the gland is 12.5 µsvh -1. The radioactive iodine is present in the gland of the patient for 120 hours. What is the quality factor of the radiation? (c) A source of gamma radiation is stored inside a cabinet in a room where background radiation is negligible. The count rate outside the cabinet is 1200 counts per minute. The cabinet is now lined with lead 24 mm thick. The lead has a half-value thickness of 8 mm for the radiation. What is the new count rate outside the cabinet?

15 2000 Q12 (a) Part of a radioactive decay series is shown below. (i) In what way is the nuclide represented by different from the nuclide represented by (ii) Write down one decay from the above series which involves the emission of a beta particle. (iii) Why is it not possible to tell from the decay series above whether gamma radiation is emitted at any stage? (b) A particular nuclear reaction can be described by the following statement. (i) State the name given to the above type of nuclear reaction. (ii) The masses of the nuclides and particle involved in the nuclear reaction are as shown in the table. Calculate the energy available from the above reaction.

16 2001 Q12 (a) Three stages of a radioactive decay series are shown below. (i) Name the type of radiation involved in stage 1. (ii) Name the type of radiation involved in stage 2. (iii) In stage 3, what are the numerical values of x and y? (b) A sample of body tissue is exposed to two types of radiation for the same length of time. Information on these radiations and the absorbed dose is shown below. (i) Calculate the total dose equivalent received by this tissue. (ii) Which of the above radiations is potentially the more harmful? You must justify your answer.

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation

Higher -o-o-o- Past Paper questions o-o-o- 3.6 Radiation Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.6 Radiation 2000 Q29 Radium (Ra) decays to radon (Rn) by the emission of an alpha particle. Some energy is also released by this decay. The decay

More information

Page 2. Draw one line from each type of radiation to what the radiation consists of. Type of radiation. What radiation consists of

Page 2. Draw one line from each type of radiation to what the radiation consists of. Type of radiation. What radiation consists of (a) Draw one line from each type of radiation to what the radiation consists of. Type of radiation What radiation consists of Electron from the nucleus Alpha Two protons and two neutrons Beta Electromagnetic

More information

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks)

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Q1. The diagram shows an atom. How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Page 1 of 53 Q2. The picture shows a man at work in a factory

More information

Radioactivity Questions NAT 5

Radioactivity Questions NAT 5 Radioactivity Questions NAT 5 1) Label the particles X, Y and Z from the diagram of the model of the atom below. 2) A Physics teacher demonstrates alpha, beta and gamma radiation during a lesson. She then

More information

Particles and Waves Final Revision Exam Questions Part 1

Particles and Waves Final Revision Exam Questions Part 1 Particles and Waves Final Revision Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN Version 2013 P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model 1 Section

More information

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1

Radioactivity. (b) Fig shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 112 (a) What is meant by radioactive decay? Radioactivity [2] (b) Fig. 12.1 shows two samples of the same radioactive substance. The substance emits β-particles. Fig. 12.1 Put a tick alongside any of the

More information

CfE Higher Physics. Particles and Waves

CfE Higher Physics. Particles and Waves Wallace Hall Academy CfE Higher Physics Particles and Waves Exam Questions Part 1 Cover image: cutaway diagram of CERN, CERN P&W: Exam Questions Part 1 Version 2013 Contents Section 1: The Standard Model

More information

Core Questions Physics unit 4 - Atomic Structure

Core Questions Physics unit 4 - Atomic Structure Core Questions Physics unit 4 - Atomic Structure No. Question Answer 1 What did scientists think about atoms before the discovery of the They were tiny spheres that could not be broken up electron? 2 Which

More information

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi.

Bi β + Po Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. 1 Bismuth-214 is radioactive. It has a half-life of 20 minutes. (a) The nuclide notation for bismuth-214 is Bi. State the composition of the nucleus of bismuth-214. [2] (b) Bismuth-214 decays by β-decay

More information

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only.

The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. ATOMS AND NUCLEAR RADIATION PART II Q1. The detector and counter are used in an experiment to show that a radioactive source gives out alpha and beta radiation only. Two different types of absorber are

More information

Homework 5: Radiation. 1. Which sign is used to indicate the presence of radioactive material?

Homework 5: Radiation. 1. Which sign is used to indicate the presence of radioactive material? Homework 5: Radiation 1. Which sign is used to indicate the presence of radioactive material? 2. sample of tissue is irradiated using a radioactive source. student makes the following statements. The equivalent

More information

Waves & Radiation exam questions

Waves & Radiation exam questions National 5 Physics Waves & Radiation exam questions these questions have been collated from previous Standard Grade (Credit) and Intermediate 2 exams Thurso High School 1. A mountain climber carries a

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

(2) (1) Describe how beta radiation is produced by a radioactive isotope (1) (Total 4 marks)

(2) (1) Describe how beta radiation is produced by a radioactive isotope (1) (Total 4 marks) 1 (a) (i) Describe the structure of alpha particles. (ii) What are beta particles? (b) Describe how beta radiation is produced by a radioactive isotope....... (Total 4 marks) Page 1 of 25 2 Atoms are very

More information

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom

5 Atomic Physics. 1 of the isotope remains. 1 minute, 4. Atomic Physics. 1. Radioactivity 2. The nuclear atom 5 Atomic Physics 1. Radioactivity 2. The nuclear atom 1. In a fission reactor, which particle causes a Uranium-235 nucleus to split? A. alpha-particle B. gamma ray C. neutron D. proton 2. A radioactive

More information

... (1) The diagram shows how aluminium sheet is rolled to form foil of constant thickness. rollers source of radiation

... (1) The diagram shows how aluminium sheet is rolled to form foil of constant thickness. rollers source of radiation PACK G QUESTIONS 1. The three main types of radioactive emission are called alpha, beta and gamma. The diagram shows the penetrations of alpha, beta and gamma radiation. thin paper card aluminium lead

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars.

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. 1 (a) Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. (i) Explain briefly the difference between nuclear fission and nuclear fusion.

More information

Atomic Structure and Radioactivity

Atomic Structure and Radioactivity Atomic Structure and Radioactivity Models of the atom know: Plum pudding model of the atom and Rutherford and Marsden s alpha experiments, being able to explain why the evidence from the scattering experiment

More information

P4 Quick Revision Questions

P4 Quick Revision Questions P4 Quick Revision Questions H = Higher tier only SS = Separate science only P3 for AQA GCSE examination 2018 onwards Question 1... of 50 What are the components of an atom, their location and their charge?

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom.

AnswerIT! Atoms and isotopes. Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. AnswerIT! Atoms and isotopes Structure of an atom Mass number, atomic number and isotopes Development of the model of the atom. Atoms and isotopes - AnswerIT 1. The diameter of an atom is about 0.000 000

More information

(a) (i) State the proton number and the nucleon number of X.

(a) (i) State the proton number and the nucleon number of X. PhysicsAndMathsTutor.com 1 1. Nuclei of 218 84Po decay by the emission of an particle to form a stable isotope of an element X. You may assume that no emission accompanies the decay. (a) (i) State the

More information

Draw one line from each type of radiation to what the radiation consists of.

Draw one line from each type of radiation to what the radiation consists of. ATOMS AND NUCLEAR RADIATION PART I Q1. Alpha, beta and gamma are types of nuclear radiation. (a) Draw one line from each type of radiation to what the radiation consists of. Type of radiation What radiation

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Physics (B): Physics in Context

Physics (B): Physics in Context Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

Higher Physics. Particles and Waves

Higher Physics. Particles and Waves Perth Academy Physics Department Higher Physics Particles and Waves Particles and Waves Homework Standard Model 1 Electric Fields and Potential Difference 2 Radioactivity 3 Fusion & Fission 4 The Photoelectric

More information

6-4 Atomic structure Physics

6-4 Atomic structure Physics 6-4 Atomic structure Physics.0 Figure shows a helium atom. Figure. Use the words in the box to label the diagram. electron neutron proton.2 An alpha particle is the same as the nucleus of a helium atom.

More information

Level 2 Physics, 2011

Level 2 Physics, 2011 90256 902560 2SUPERVISOR S Level 2 Physics, 2011 90256 Demonstrate understanding of atoms and radioactivity 2.00 pm Wednesday ednesday 16 1 November 2011 Credits: Two Check that the National Student Number

More information

Use the graph to show that, after a time of 500 s, about nuclei are decaying every second.

Use the graph to show that, after a time of 500 s, about nuclei are decaying every second. 1 The graph below shows the number of radioactive nuclei remaining in a sample of material against time. The radioactive isotope decays to a non-radioactive element. (a) Use the graph to show that, after

More information

Scientists thought that all the parts in atoms were evenly spread The experiment showed that atoms must be mostly empty...

Scientists thought that all the parts in atoms were evenly spread The experiment showed that atoms must be mostly empty... 1. Rutherford's team fired small particles at gold leaf very few particles bounced back nearly all the particles went straight through Scientists thought that all the parts in atoms were evenly spread.

More information

PARTICLE RELATIVE MASS RELATIVE CHARGE. proton 1 +1

PARTICLE RELATIVE MASS RELATIVE CHARGE. proton 1 +1 Q1. (a) Atoms are made up of three types of particle called protons, neutrons and electrons. Complete the table below to show the relative mass and charge of a neutron and an electron. The relative mass

More information

Q1. Describe, in as much detail as you can, the life history of a star like our Sun

Q1. Describe, in as much detail as you can, the life history of a star like our Sun Q1. Describe, in as much detail as you can, the life history of a star like our Sun..................................... (Total 6 marks) Q2. The energy radiated by a main sequence star like the Sun is

More information

UNIQUE SCIENCE ACADEMY

UNIQUE SCIENCE ACADEMY UNIQUE SIENE EMY Test (Unit 25) Name :... Paper: Physics ate :... ode: 5054 lass: II Time llowed: 5Minutes Maximum Marks: 25 1 Theory Section: [Total 17 Marks] 1 doctor uses a radioactive isotope, iodine-11,

More information

Unit 13: Nuclear Practice Packet Regents Chemistry: Practice Packet: Unit 13 Nuclear Chemistry

Unit 13: Nuclear Practice Packet Regents Chemistry: Practice Packet: Unit 13 Nuclear Chemistry Unit 13: Nuclear Practice Packet Regents Chemistry: Practice Packet: Unit 13 Nuclear Chemistry 1 Unit 13: Nuclear Practice Packet Lesson 1: Radioactive Decay Objective: Construct nuclear equations for

More information

AEPHY: Nuclear Physics Practise Test

AEPHY: Nuclear Physics Practise Test AEPHY: Nuclear Physics Practise Test Name: OVERALL: Additional 1 mark for units and significant figures. 1. Complete the table below: (2 marks) (63 marks + overall = 64 marks) Element Nuclide Atomic Number

More information

PHYA5/1R (JUN15PHYA51R01) General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A

PHYA5/1R (JUN15PHYA51R01) General Certificate of Education Advanced Level Examination June Unit 5 Nuclear and Thermal Physics Section A Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination June 2015 Question 1 2 Mark Physics

More information

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle model Particle

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5: Approved specimen question paper. Version 1.3

GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 5: Approved specimen question paper. Version 1.3 GCE AS and A Level Physics A AS exams 2009 onwards A2 exams 2010 onwards Unit 5: Approved specimen question paper Version 1.3 Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature

More information

Q1. The diagram represents an atom of lithium.

Q1. The diagram represents an atom of lithium. Q1. The diagram represents an atom of lithium. Complete the diagram by writing in the spaces the name of each type of particle. Use only words given in the box. Each word may be used once or not at all.

More information

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp. 286-301 in BC Science 10) Natural background radiation: It has the ability to interact with an

More information

National 5- Nuclear Chemistry past paper revision

National 5- Nuclear Chemistry past paper revision National 5- Nuclear Chemistry past paper revision 1. The diagram shows the paths of alpha, beta and gamma radiations as they pass through an electric field. Which line in the table correctly identifies

More information

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content

4.4.1 Atoms and isotopes The structure of an atom Mass number, atomic number and isotopes. Content 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Unit 13: Nuclear Chemistry

Unit 13: Nuclear Chemistry Name Unit 13: Nuclear Chemistry Skills: 1. Review Atomic Structure 2. Determining Nuclear Stability 3. Naming and Drawing Hydrocarbons 4. Using N + O to Write Decay Equations Period 5. Solve Various Half

More information

IGCSE Physics 0625 notes: unit 5 Atomic Physics: Revised on 01 December

IGCSE Physics 0625 notes: unit 5 Atomic Physics: Revised on 01 December IGCSE Physics 0625 notes: unit 5 Atomic Physics: Revised on 01 December 2011 1 TOPIC 5 ATOMIC PHYSICS Radioactivity or radioactive decay: 1. It is the process in which certain unstable atomic nuclei (plural

More information

National 5. Waves and Radiation. Summary Notes. Name:

National 5. Waves and Radiation. Summary Notes. Name: National 5 Waves and Radiation Summary Notes Name: Wave Parameters and Behaviours Transverse Waves A water wave is a transverse wave. The direction of vibration is at right angles to the direction of wave

More information

EXAMINATION QUESTIONS (6)

EXAMINATION QUESTIONS (6) 1. What is a beta-particle? A a helium nucleus B a high-energy electron C four protons D two neutrons EXAMINATION QUESTIONS (6) 2. The diagram shows part of a circuit used to switch street lamps on and

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

... (1) What differences are there between the nucleus of a protactinium 234 (Pa 234 ) atom and the nucleus of a thorium 234 (Th 234 ) atom?...

... (1) What differences are there between the nucleus of a protactinium 234 (Pa 234 ) atom and the nucleus of a thorium 234 (Th 234 ) atom?... Q1. When atoms of uranium 238 (U 234 ) decay they produce another radionuclide called thorium 234 (Th 234 ) Thorium 234 (Th 234 ) decays by emitting beta radiation. What does beta radiation consist of?...

More information

Radioactive Decay. Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element.

Radioactive Decay. Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element. Radioactive Decay Radioactive Decay Scientists have discovered that when atoms of one kind of element emit radiation, they can change into atoms of a NEW element. Why would an atom emit radiation in the

More information

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics

Name Date Class NUCLEAR CHEMISTRY. Standard Curriculum Core content Extension topics 28 NUCLEAR CHEMISTRY Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name:

Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Year 11 Physics booklet Topic 1 Atomic structure and radioactivity Name: Atomic structure and radioactivity Give a definition for each of these key words: Atom Isotope Proton Neutron Electron Atomic nucleus

More information

PHYSICS A Unit 5 Nuclear and Thermal Physics Section A PHYA5/1

PHYSICS A Unit 5 Nuclear and Thermal Physics Section A PHYA5/1 Surname Other Names Centre Number Candidate Number Candidate Signature General Certificate of Education Advanced Level Examination June 2015 PHYSICS A Unit 5 Nuclear and Thermal Physics Section A PHYA5/1

More information

Supervised assessment: Ionising radiation

Supervised assessment: Ionising radiation Physics 27 Sample assessment instrument and indicative Supervised assessment: Ionising radiation This sample is intended to inform the design of assessment instruments in the senior phase of learning.

More information

Part 12- Physics Paper 1 Atomic Structure Knowledge Questions

Part 12- Physics Paper 1 Atomic Structure Knowledge Questions Part 12- Physics Paper 1 Atomic Structure Knowledge Questions Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle model Particle Model of Matter

More information

RADIOACTIVITY. Nature of Radioactive Emissions

RADIOACTIVITY. Nature of Radioactive Emissions 1 RADIOACTIVITY Radioactivity is the spontaneous emissions from the nucleus of certain atoms, of either alpha, beta or gamma radiation. These radiations are emitted when the nuclei of the radioactive substance

More information

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance P7. Atoms and radiation a radiation from U consists = particles, radiation from lamp = electromagnetic waves, radiation from U is ionising, radiation from lamp is non-ionising b radioactive atoms have

More information

Chemistry Review Unit 1 Study Guide

Chemistry Review Unit 1 Study Guide 1. Draw and label a Bohr model of a C 14 atom. 2. Describe the following about a proton a. mass: the mass of a proton is 1 atomic mass unit (AMU) b. charge: protons have a positive charge c. location:

More information

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1]

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1] 1 (a) Fig. 6.1 shows the quark composition of some particles. proton neutron A B u u d u d d u d u u u u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig. 6.1. (ii) State

More information

What do the nuclei of different molybdenum isotopes have in common?

What do the nuclei of different molybdenum isotopes have in common? Q1.(a) There are many isotopes of the element molybdenum (Mo). What do the nuclei of different molybdenum isotopes have in common? The isotope molybdenum-99 is produced inside some nuclear power stations

More information

PHYSICS B (ADVANCED PHYSICS) 2864/01 Field and Particle Pictures

PHYSICS B (ADVANCED PHYSICS) 2864/01 Field and Particle Pictures THIS IS A LEGACY SPECIFICATION ADVANCED GCE PHYSICS B (ADVANCED PHYSICS) 2864/01 Field and Particle Pictures *CUP/T64120* Candidates answer on the question paper OCR Supplied Materials: Data, Formulae

More information

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0

RADIOACTIVITY Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 NAME SCHOOL INDEX NUMBER DATE RADIOACTIVITY 1. 1995 Q32 P1 A radioactive carbon 14 decay to Nitrogen by beta emission as below 14 x 0 C N + e 6 7 y Determine the values of x and y in the equation (2 marks)

More information

NUCLEAR PHYSICS: solutions to higher level questions

NUCLEAR PHYSICS: solutions to higher level questions NUCLEAR PHYSICS: solutions to higher level questions 2015 Question 12 (d) (i) What is meant by the term radioactive? (Spontaneous) disintegration of a nucleus with the emission of radiation (ii) Name a

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Radioactivity a Atomic models Describe the structure of an atom (in terms of nucleus and electrons). State where most of the mass of an atom is found. State the sizes of atoms and small molecules. Describe

More information

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. Nuclear Radiation Natural Radioactivity A person working with radioisotopes wears protective clothing and gloves and stands behind a shield. 1 Radioactive Isotopes A radioactive isotope has an unstable

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Radiation and the Universe D questions

Radiation and the Universe D questions Radiation and the Universe D questions Name: Q1.(a) The names of three types of radiation are given in List A. Some properties of these three types of radiation are given in List B. Draw one line from

More information

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896.

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Ch. 10 - Radioactivity Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Radioactivity the process in which an unstable atomic nucleus emits charged particles and energy

More information

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive?

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive? Unit 6 Nuclear Radiation Parent Guide What is radioactivity and why are things radioactive? The nucleus of an atom is comprised of subatomic particles called protons and neutrons. Protons have a positive

More information

The Case of Melting Ice

The Case of Melting Ice Nuclear Chemistry A is for Atom - 1953 (15 minutes) http://www.youtube.com/watch?v=fn1oslamdgw part 1 (7:15) http://www.youtube.com/watch?v=cggskffgg7g part 2 (7:29) The Case of Melting Ice Frosty the

More information

Section 3: Nuclear Radiation Today

Section 3: Nuclear Radiation Today : Nuclear Radiation Today Preview Key Ideas Bellringer Where is Radiation? Beneficial Uses of Nuclear Radiation Risks of Nuclear Radiation Nuclear Power Key Ideas Where are we exposed to radiation? What

More information

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics Name: Date:. Isotopes provide evidence for the existence of A. protons. B. electrons. C. nuclei. Topic 7 &3 Review Atomic, Nuclear, and Quantum Physics D. neutrons.. The atomic line spectra of elements

More information

GraspIT AQA Atomic Structure Questions

GraspIT AQA Atomic Structure Questions A. Atomic structure Atoms and isotopes 1. a) The diagram shows an atom of Beryllium. Name the parts labelled a, b and c. (3) electron (1) neutron (1) proton (1) b) What is the atomic mass of this atom?

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

NATIONAL 5 PHYSICS RADIATION

NATIONAL 5 PHYSICS RADIATION NATIONAL 5 PHYSICS RADIATION THE ATOM All matter consists of atoms, however atoms themselves are made up of several different particles. In the middle of an atom is a very small, very dense object called

More information

Fission is the process by which energy is released in the nuclear reactor. Figure 1. Figure 2

Fission is the process by which energy is released in the nuclear reactor. Figure 1. Figure 2 Q1.Electricity is generated in a nuclear power station. Fission is the process by which energy is released in the nuclear reactor. (a) Figure 1 shows the first part of the nuclear fission reaction. Complete

More information

Scientists sometimes replace one scientific model with a different model.

Scientists sometimes replace one scientific model with a different model. ATOMS AND ISOTOPES Q1. Scientists sometimes replace one scientific model with a different model. For example, in the early 20th Century the plum pudding model of the atom was replaced by the nuclear model

More information

y loo Physics Essentials Workbook Stage 2 Physics Exercises

y loo Physics Essentials Workbook Stage 2 Physics Exercises 238 Physics Essentials Workbook Stage 2 Physics 15.1 2 Exercises P Explain why stable nuclei of high mass have a higher proportion of neutrons than stable nuclei of low mass. 2 Name four types of spontaneous

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

(b) Which of these particles has the largest mass? (1) (c) The maximum range of a beta particle in air is about (1)

(b) Which of these particles has the largest mass? (1) (c) The maximum range of a beta particle in air is about (1) 1 Unstable nuclei can emit particles. (a) Which of these particles has the largest charge? A alpha particle B C beta particle neutron D proton (b) Which of these particles has the largest mass? A alpha

More information

21/11/ /11/2017 Atomic Structure AQA Physics topic 4

21/11/ /11/2017 Atomic Structure AQA Physics topic 4 Atomic Structure AQA Physics topic 4 4.1 Atoms and Isotopes The structure of the atom ELECTRON negative, mass nearly nothing The nucleus is around 10,000 times smaller then the atom! NEUTRON neutral, same

More information

Atomic Structure & Nuclear Chemistry Unit 3 Notes

Atomic Structure & Nuclear Chemistry Unit 3 Notes Atomic Structure & Nuclear Chemistry Unit 3 Notes Academic Chemistry Name 52 24 Cr Mass Number Symbol Atomic Number Unit #3 Test Date You can never learn less, you can only learn more. R. Buckminster Fuller

More information

4.4 Atomic structure Notes

4.4 Atomic structure Notes 4.4 Atomic structure Notes Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes

More information

1.1 Introduction to Waves

1.1 Introduction to Waves 1.1 Introduction to Waves National 5 WAVES AND RADIATION Self Checks 1 Explain why, during a thunder storm, you see the lightning before you hear the thunder. 2. What is the speed of:- Sound in air Light

More information

Physics. Waves and Radiation. Homework Exercises. National 4 / 5

Physics. Waves and Radiation. Homework Exercises. National 4 / 5 Physics National 4 / 5 Waves and Radiation Summary Homework 1: Homework 2: Homework 3: Homework 4: Waves I -Wave definitions - Speed, distance, time calculations - Types of wave Waves II - Frequency calculations

More information

Year 9 AQA GCSE Physics Revision Booklet

Year 9 AQA GCSE Physics Revision Booklet Year 9 AQA GCSE Physics Revision Booklet Atomic Structure and Radioactivity Models of the atom know: Plum pudding model of the atom and Rutherford and Marsden s alpha experiments, being able to explain

More information

Name Date Class NUCLEAR CHEMISTRY

Name Date Class NUCLEAR CHEMISTRY 25 NUCLEAR CHEMISTRY SECTION 25.1 NUCLEAR RADIATION (pages 799 802) This section describes the nature of radioactivity and the process of radioactive decay. It characterizes alpha, beta, and gamma radiation

More information

Chapter 4: Atomic structure

Chapter 4: Atomic structure Chapter : Atomic structure Lesson.1 Atomic structure 1 88 electrons 2 92 protons, 238 92 = 16 neutrons 3 The number of electrons is the same; the number of protons is the same; the number of neutrons is

More information

Card #1/28. Card #2/28. Science Revision P2. Science Revision P2. Science Revision P2. Card #4/28. Topic: F = ma. Topic: Resultant Forces

Card #1/28. Card #2/28. Science Revision P2. Science Revision P2. Science Revision P2. Card #4/28. Topic: F = ma. Topic: Resultant Forces Card #1/28 Card #2/28 Topic: Resultant Forces Topic: F = ma Topic: Distance-TIme Graphs Card #3/28 Card #4/28 Topic: Velocity-Time Graphs Card #2/28 Card #1/28 Card #4/28 Card #3/28 Card #5/28 Card #6/28

More information

GCSE Physics. The PiXL Club Ltd, Company number

GCSE Physics.   The PiXL Club Ltd, Company number he PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club The PiXL Club he PiXL

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Recap I Lecture 41 Matthias Liepe, 2012

Recap I Lecture 41 Matthias Liepe, 2012 Recap I Lecture 41 Matthias Liepe, 01 Recap II Nuclear Physics The nucleus Radioactive decay Fission Fusion Particle Physics: What is the Higgs? Today: Nuclear Physics: The Nucleus Positive charge and

More information

Teacher: Mr. gerraputa. Name: Which two radioisotopes have the same decay mode?

Teacher: Mr. gerraputa. Name: Which two radioisotopes have the same decay mode? Teacher: Mr. gerraputa Print Close Name: 1 Which two radioisotopes have the same decay mode? 37 Ca and 53 Fe 220 Fr and 60 Co 37 K and 42 K 99 Tc and 19 Ne 1 5. 3 Exactly how much time must elapse before

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3009W1 SEMESTER 2 EXAMINATION 2014-2015 APPLIED NUCLEAR PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two

More information

da u g ht er + radiation

da u g ht er + radiation RADIOACTIVITY The discovery of radioactivity can be attributed to several scientists. Wilhelm Roentgen discovered X-rays in 1895 and shortly after that Henri Becquerel observed radioactive behavior while

More information

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation.

Nuclear Chemistry. Background Radiation. Three-fourths of all exposure to radiation comes from background radiation. Chapter 11 Nuclear Chemistry Background Radiation Three-fourths of all exposure to radiation comes from background radiation. Most of the remaining one-fourth comes from medical irradiation such as X-rays.

More information

RADIOACTIVITY The knowledge and understanding for this unit is given below.

RADIOACTIVITY The knowledge and understanding for this unit is given below. RADIOACTIVITY The knowledge and understanding for this unit is given below. Ionising radiations 1. Describe a simple model of the atom which includes protons, s and electrons. 2. State that radiation energy

More information