How to Write a Laboratory Report

Size: px
Start display at page:

Download "How to Write a Laboratory Report"

Transcription

1 How to Write a Laboratory Report For each experiment you will submit a laboratory report. Laboratory reports are to be turned in at the beginning of the lab period, one week following the completion of the experiment. As a general rule, lab reports will not be accepted late. The laboratory report is to be used to express in a written form the purpose, methods employed, results obtained and conclusions reached in your experiment. It should be very neat, concise and complete. It should be prepared using a word processor for the text, spreadsheet software for tables, and graphing software for graphs. Sample Laboratory Report On the pages that follow a sample laboratory report is shown. The large numbers shown on the report correspond to numbers in parentheses in the discussion that follows. This sample report is to be used only as a general guide. Your laboratory instructor may have additional specific instructions and requirements for your laboratory reports. Each report should be clearly identified with (1) a title, (2) your name and the name(s) of your partners, (3) the date the experiment was performed, and (4) an abstract. The abstract should be a very brief overview of the goals and the main results of the experiment. If a known physical quantity was measured in the experiment then you should state the numerical value of the result that you obtained for that quantity and also state how close your result was to the expected result. It would be a good practice to write the abstract last, after you have written the remainder of the experiment. In a section entitled Description of Experiment (5) you should describe the purpose of the experiment, the physics principles that are studied, and the procedures that were employed to complete the experiment. It is not necessary (in fact it is undesirable) to give a step-by-step account of your activities in the experiment. Rather you should summarize the main techniques that you used to get to your final result. It may be helpful to include a sketch of the experimental geometry (6). This can be done by hand or can be cut and pasted into your report. You must have a section entitled Data and Analysis (7) in which you list and describe the raw experimental data collected during the experiment. Include any tables, graphs, results of best fits etc. as is appropriate. Describe how quantities were calculated from your raw data. If it is necessary to show a formula employed during the experiment then you may simply leave some space and write the equation in by hand as is shown by Equation 3 in the sample lab report. Finally, you should have a section entitled Results and Conclusions (8) in which you state the main result(s) of the experiment and compare your result(s) to the accepted or theoretical value(s) (if available) by computing a percent discrepancy. State what you consider to be the most likely causes of these discrepancies. If possible discuss these potential reasons for error quantitatively by calculating (or estimating) how much effect each source of uncertainty may have on the final result. An example of this type of reasoning is shown in the sample lab report at (9). Data Tables (10) may be incorporated inline into your lab report or may be placed at the end (as in the example) if it is more convenient. Data tables should be identified with a descriptive header. Each column should have a heading that describes the physical quantity that is recorded in the column. The column heading should also show the units of the physical quantity and the uncertainty in the quantity (if known). Numerical values recorded in the table should be rounded to the appropriate number of significant digits Graphs (11) may be incorporated inline into your lab report or may be placed at the end (as in the example) if it is more convenient. Graphs should be prepared on the computer. You should adhere to the following guidelines when preparing a graph. 1. Title Every graph should have a title which identifies the graph by a number (i.e. Graph 1) along with some descriptive text that tells exactly what is plotted (i.e. Velocity vs. Time) and perhaps the purpose of the graph (i.e. Determination of Acceleration and Initial Velocity). 2. Axes and Axes Labels Both axes should be labeled with descriptive text that tells the name of the physical quantity that is plotted on that axis and the units of that physical quantity (i.e. Velocity (cm/s)). Numerical values of the physical quantity should be printed at the major tick marks. 3. Size and Clarity All graphs should be printed at a size that is sufficiently large so that the information can be easily read. Typically this means to make your graphs occupy most of the printed page. Choose WKU University Physics Laboratory I-3 How to Write a Lab Report

2 axes limits so that the region of interest occupies most of the graph. Choose font sizes that are sufficiently large to be easily readable. 4. Graph Modes You should adjust the graph mode so that individual data points are shown with some form of marker or with dots. Data values should never be connected with a jagged line. Show relationships that represent the best fit to data using lines with no markers. 5. Annotation Whenever a best fit is performed on a graph, the results of the fit should be clearly displayed on the graph. In the case of a linear fit one should show the values of the slope and the y- intercept. Be sure to include also the associated uncertainties and units. It is a good idea to include a measure of the goodness of fit (either the chi-squared value or the linear correlation coefficient both discussed later) on the graph. Also, if possible, describe the physical significance of the slope and intercept as is done in the graph above. Finally, be sure to place your name (and your partner s names if appropriate) and the date on the graph. 6. Uncertainty Bars Whenever the uncertainties of individual data values are known they should be represented on the graph with uncertainty bars (often called error bars) as is shown in the above graph. At the end of the laboratory report staple your DATA Sheets (12) that you used during the laboratory period to record important data and results. Here you should show an example of each calculation that is used throughout the experiment. You will want to write the equation that was used and then show the use of the equation with numerical values substituted into it. If you make a mistake then simply cross out the suspected error and write the correct result as is shown near (13). WKU University Physics Laboratory I-4 How to Write a Lab Report

3 Newton s Second Law Joe Student Partner: Sue Student January 27, 2000 Abstract The position of a system of two masses was recorded as a function of time using a spark-timer apparatus. Using these data the instantaneous velocity was approximated by calculating the average velocity over 1/30 second time intervals. The acceleration of the system, which was calculated from the slope of a graph of velocity versus time, was 59.1 ± 1.5 cm/s 2. The value of the acceleration predicted using Newton s Second Law was 60.9 ± 0.1 cm/s 2. The discrepancy between these two values for the acceleration of the mass was only 3%. WKU University Physics Laboratory I-5 Sample Lab Report

4 Newton s Second Law Description of Experiment In this experiment we verified Newton s Second Law by measuring the acceleration of a system subject to a net external force. Newton s second law states that the acceleration a of an object is directly proportional to the net force acting on the object and inversely proportional to the object s mass m. Newton s second law can be expressed as an equation using F net = m a. (1) The unbalanced force was supplied by a mass falling in the earth s gravitational field as is shown in Figure 1. Mass M rested on a smooth horizontal air track and was attached to mass m by a light tape passing over a pulley. When the system was released M was pulled along the track by the force supplied by the suspended mass m. The air track and pulley had small openings through which jets of air were ejected to create a nearly frictionless surface. The two masses were connected by a very light recording tape on which marks are made every 1/60 second by a spark timer. Figure 1 Geometry for Newton s Second Law Experiment We ignored the friction in the pulley as well as the friction between the mass and the air track. Also, the mass of the string was assumed to be negligible. With these assumptions Newton s second law was WKU University Physics Laboratory I-6 Sample Lab Report

5 applied to m and M. The resulting system of equations were solved to eliminate the tension in the string yielding m a = g (2) m + M for the predicted value of the acceleration of this system. We measured the velocity of M by measuring the distance between marks on the tape and dividing by the time interval that occurred between the creation of the marks. A graph of velocity versus time was made. The slope of this linear graph was the constant acceleration of the system. This result was compared to the value predicted from Newton s second law given by Equation 2. Data and Analysis The masses of the system shown in Figure 1 were determined to be m = ± 0.02 g and M = ± 0.02 g using a mechanical balance. The position of the marks on the spark tape were measured using a meter stick and recorded to the nearest 0.02 cm in Data Table I. This table also shows the velocity at each twelfth dot which was estimated using the formula for average velocity (3) where x i is the displacement between previous and successive dots and t i is the corresponding time (2/60 s = 1/30 s). The total elapsed time (t i ) required for the mass to move from the zeroth dot to the i th dot was determined knowing that the dots were separated in time by 1/60 second. Results and Conclusion Graph I shows a plot of the velocity versus time. The slope of this graph is the experimental value of the acceleration of the system. Using a least-squares fitting package, the acceleration was found to be a exp = slope = (59.1 ± 1.5) cm/s 2. The value of the acceleration predicted by substituting measured values of the masses and g = 980 cm/s 2 into equation (2) was (60.9 ± 0.1) cm/s 2. The percent discrepancy between the two values is only -3.0%. WKU University Physics Laboratory I-7 Sample Lab Report

6 The good agreement between the measured value of the acceleration of the system and the value predicted by Newton s provides justification for the validity of Newton s second law. Much of the difference between the measured and predicted values of acceleration can be attributed to uncertainties in the measurements in the distance between dots. This measurement uncertainty is on the order of ±0.02 cm. The displacement is then, using worse case propagation of error, uncertain by an amount ±0.04 cm. The uncertainty in the velocity calculated from equation (6) is then ±1.2 cm/s. For a typical velocity measurement this uncertainty is on the order of 2% accounting for most of the discrepancy. Additional sources of uncertainty include incorrect location of dots on the paper because the sparks may not be always perpendicular to the tape and friction along the air track and in the pulley. WKU University Physics Laboratory I-8 Sample Lab Report

7 Data Table I Position and Velocity of Falling Mass as Function of Time Dot Number Total Time Total Time Position Displacement Time Change Velocity i t i (?/60 sec) t i (sec) x i (cm) x i (cm) t i (s) v i (cm/s) ± 0.02 cm ± 0.04 cm ± 1.2 cm/s 11 11/ / / / / / / / / / / / / / / / / / / / / / / / WKU University Physics Laboratory I-9 Sample Lab Report

8 WKU University Physics Laboratory I-10 Sample Lab Report

9 WKU University Physics Laboratory I-11 Sample Lab Report

10 WKU University Physics Laboratory I-12 Sample Lab Report

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track.

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track. Experiment 4 Newton s Second Law 4.1 Objectives Test the validity of Newton s Second Law. Measure the frictional force on a body on a low-friction air track. 4.2 Introduction Sir Isaac Newton s three laws

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Semester I lab quiz Study Guide (Mechanics) Physics 135/163

Semester I lab quiz Study Guide (Mechanics) Physics 135/163 Semester I lab quiz Study Guide (Mechanics) Physics 135/163 In this guide, lab titles/topics are listed alphabetically, with a page break in between each one. You are allowed to refer to your own handwritten

More information

PHYS 2211L - Principles of Physics Laboratory I

PHYS 2211L - Principles of Physics Laboratory I PHYS 2211L - Principles of Physics Laboratory I Laboratory Advanced Sheet Acceleration Due to Gravity 1. Objectives. The objectives of this laboratory are a. To measure the local value of the acceleration

More information

Experiment 4 Free Fall

Experiment 4 Free Fall PHY9 Experiment 4: Free Fall 8/0/007 Page Experiment 4 Free Fall Suggested Reading for this Lab Bauer&Westfall Ch (as needed) Taylor, Section.6, and standard deviation rule ( t < ) rule in the uncertainty

More information

Newton's 2 nd Law. . Your end results should only be interms of m

Newton's 2 nd Law. . Your end results should only be interms of m Newton's nd Law Introduction: In today's lab you will demonstrate the validity of Newton's Laws in predicting the motion of a simple mechanical system. The system that you will investigate consists of

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Force on a Free Body Lab 5.1

Force on a Free Body Lab 5.1 Purpose To investigate the relationship among mass, force, and acceleration Required Equipment Meter stick or meter tape Masking tape Timer Discussion In this experiment, you will investigate how increasing

More information

PHYS 1111L - Introductory Physics Laboratory I

PHYS 1111L - Introductory Physics Laboratory I PHYS 1111L - Introductory Physics Laboratory I Laboratory Advanced Sheet Acceleration Due to Gravity 1. Objectives. The objectives of this laboratory are a. To measure the local value of the acceleration

More information

Introduction to Uncertainty and Treatment of Data

Introduction to Uncertainty and Treatment of Data Introduction to Uncertainty and Treatment of Data Introduction The purpose of this experiment is to familiarize the student with some of the instruments used in making measurements in the physics laboratory,

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

LAB: FORCE AND MOTION

LAB: FORCE AND MOTION LAB: FORCE AND MOTION Introduction In this lab we will apply a force to a cart and look at the motion that results. Therefore, we are asking the question: "How does the motion depend on the force?" More

More information

Force and Acceleration in Circular Motion

Force and Acceleration in Circular Motion Force and Acceleration in Circular Motion INTRODUCTION Acceleration is the time rate of change of velocity. Since velocity is a vector, it can change in two ways: its magnitude can change and its direction

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Physics 191 Free Fall

Physics 191 Free Fall Physics 191 Free Fall 2016-09-21 1 Introduction 2 2 Experimental Procedure 2 3 Homework Questions - Hand in before class! 3 4 Data Analysis 3 4.1 Prepare the data in Excel..................................

More information

The Acceleration Due to Gravity: Free Fall Name

The Acceleration Due to Gravity: Free Fall Name The Acceleration Due to Gravity: Free Fall Name I. Discussion Partner Early in the 17th century the very important discovery was made that, when the effects of air resistance are eliminated, all bodies,

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information

reflector screen 10 g masses

reflector screen 10 g masses LAB SECTION: NAME: EXPERIMENT : NEWTON S SECOND LAW Introduction: In this lab, we will minimize friction on a moving cart by using carts having small wheels with nearly frictionless bearings. You will

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

Newton s Second Law Physics Lab V

Newton s Second Law Physics Lab V Newton s Second Law Physics Lab V Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

Graphs. 1. Graph paper 2. Ruler

Graphs. 1. Graph paper 2. Ruler Graphs Objective The purpose of this activity is to learn and develop some of the necessary techniques to graphically analyze data and extract relevant relationships between independent and dependent phenomena,

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Experiment 2. F r e e F a l l

Experiment 2. F r e e F a l l Suggested Reading for this Lab Experiment F r e e F a l l Taylor, Section.6, and standard deviation rule in Taylor handout. Review Chapters 3 & 4, Read Sections 8.1-8.6. You will also need some procedures

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB. Newton's Law. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB Newton's Law Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 NEWTON S SECOND LAW Purpose: 1. To become familiar

More information

Atwood s Machine: Applying Newton s Second Law (approximately 2 hr.) (10/27/15)

Atwood s Machine: Applying Newton s Second Law (approximately 2 hr.) (10/27/15) Atwood s Machine: Applying Newton s Second Law (approximately hr.) (0/7/5) Introduction A physical law is a statement of one of the fundamental theoretical principles that underlie our understanding of

More information

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY PHYSICS 183 - LAB Experiment 6 Fall 004 WORK AND ENERGY GRAVITY In this experiment we will study the effects of the work-energy theorem, which states that the change in the kinetic energy (1/Mv ) of an

More information

EXPERIMENT 2 Acceleration of Gravity

EXPERIMENT 2 Acceleration of Gravity Name Date: Course number: Laboratory Section: Partners Names: Last Revised on Februrary 3, 08 Grade: EXPERIENT Acceleration of Gravity. Pre-Laboratory Work [0 pts]. You have just completed the first part

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

More information

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time. P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the

More information

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment

Rotational Motion. 1 Introduction. 2 Equipment. 3 Procedures. 3.1 Initializing the Software. 3.2 Single Platter Experiment Rotational Motion Introduction In this lab you will investigate different aspects of rotational motion, including moment of inertia and the conservation of energy using the smart pulley and the rotation

More information

ERROR AND GRAPHICAL ANALYSIS WORKSHEET

ERROR AND GRAPHICAL ANALYSIS WORKSHEET Student Names: Course: Section: Instructor: ERROR AND GRAPHICAL ANALYSIS WORKSHEET Instructions: For each section of this assignment, first read the relevant section in the Yellow Pages of your Lab Manual.

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion INTRODUCTION Uniform circular motion is the motion of an object traveling at a constant (uniform) speed in a circular path. Besides the speed, there are several other variables

More information

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50. 1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

More information

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley)

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley) PASCO scientific Physics Lab Manual: P09-1 Experiment P09: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P09 Cart Acceleration 1 P09_CAR1.SWS EQUIPMENT

More information

τ = (Force)(lever arm) #

τ = (Force)(lever arm) # EXPERIMENT: MOMENT OF INERTIA OBJECTIVES : 1) To familiarize yourself with the concept of the moment of inertia, I, which plays the same role in the description of the rotation of the rigid body as the

More information

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PHYSICS LAB FREE FALL. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY PHYSICS LAB FREE FALL Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision August 2003 Free Fall FREE FALL Part A Error Analysis of Reaction

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

The purpose of this laboratory exercise is to verify Newton s second law.

The purpose of this laboratory exercise is to verify Newton s second law. Newton s Second Law 3-1 Newton s Second Law INTRODUCTION Sir Isaac Newton 1 put forth many important ideas in his famous book The Principia. His three laws of motion are the best known of these. The first

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

More information

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m.

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. Newton s Second Law Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. F net = ma (1) It should come as no surprise that this force produces an

More information

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab

Lab 3 Acceleration. What You Need To Know: Physics 211 Lab b Lab 3 Acceleration Physics 211 Lab What You Need To Know: The Physics In the previous lab you learned that the velocity of an object can be determined by finding the slope of the object s position vs.

More information

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I (A short report is required for this lab. Just fill in the worksheet, make the graphs, and provide answers to the questions. Be sure to include

More information

Testing Newton s 2nd Law

Testing Newton s 2nd Law Testing Newton s 2nd Law Goal: To test Newton s 2nd law (ΣF = ma) and investigate the relationship between force, mass, and acceleration for objects. Lab Preparation To prepare for this lab you will want

More information

The Coefficient of Friction

The Coefficient of Friction The Coefficient of Friction OBJECTIVE To determine the coefficient of static friction between two pieces of wood. To determine the coefficient of kinetic friction between two pieces of wood. To investigate

More information

ATWOOD S MACHINE. 1. You will use a tape timer to measure the position of one of the masses of the Atwood s machine as it falls.

ATWOOD S MACHINE. 1. You will use a tape timer to measure the position of one of the masses of the Atwood s machine as it falls. PHYSICS C ATWOOD S MACHINE OVERVIEW Atwood s machine is a device developed in the 18 th century to illustrate Newton s laws and to measure the acceleration due to gravity. An ideal Atwood s machine consists

More information

Kinematics + Dynamics

Kinematics + Dynamics Physics 101: Lecture 04 Kinematics + Dynamics Today s lecture will cover Textbook Chapter 4 If you are new to the course, please read the course description on the course web page. Neptune Physics 101:

More information

Physics 1050 Experiment 6. Moment of Inertia

Physics 1050 Experiment 6. Moment of Inertia Physics 1050 Moment of Inertia Prelab uestions These questions need to be completed before entering the lab. Please show all workings. Prelab 1 Sketch a graph of torque vs angular acceleration. Normal

More information

P F = ma Newton's Laws Hmk

P F = ma Newton's Laws Hmk Dyn Page 1 P11-3.2 - F = ma Newton's Laws Hmk What is the force required to accelerate a 12 kg object at 5 m/s squared? What is the force required to accelerate a 17 kg object at 3 m/s squared? What is

More information

Questions on the December Assessment are broken into three categories: (Both MC and FR type questions can be in the following forms):

Questions on the December Assessment are broken into three categories: (Both MC and FR type questions can be in the following forms): December Assessment Review AP Physics C Mechanics Nuts and Bolts: Students will be provided an equation sheet and table of given values. Students should bring their own graphing calculator and a pencil.

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill In this lab, the two variables you are focusing on are time

More information

Lab #2: Newton s Second Law

Lab #2: Newton s Second Law Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #2: Newton s Second Law Introduction In today s exploration, we will investigate the consequences of what is one of the single

More information

Free-Fall Acceleration

Free-Fall Acceleration Objective To determine the acceleration due to gravity. Introduction Free-Fall Acceleration The position y of a particle moving along a straight line with a constant acceleration a is given by the following

More information

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins. Lab: Vectors Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name Partners Pre-Lab You are required to finish this section before coming to the lab. It will be checked by one of the

More information

Forces and Newton s Second Law

Forces and Newton s Second Law Forces and Newton s Second Law Goals and Introduction Newton s laws of motion describe several possible effects of forces acting upon objects. In particular, Newton s second law of motion says that when

More information

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

PHY 123 Lab 4 The Atwood Machine

PHY 123 Lab 4 The Atwood Machine PHY 123 Lab 4 The Atwood Machine The purpose of this lab is to study Newton s second law using an Atwood s machine, and to apply the law to determine the acceleration due to gravity experimentally. This

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

PHYS 2211L Final Examination Laboratory Simple Pendulum.

PHYS 2211L Final Examination Laboratory Simple Pendulum. PHYS 11L Final Examination Laboratory Simple Pendulum Study Assignment: Lesson notes: This laboratory is the final examination for PHYS 11L. You should insure that you thoroughly understand the requirements

More information

EXPERIMENT 2: FREE FALL

EXPERIMENT 2: FREE FALL LAB SECTION: NAME: EXPERIMENT : FREE FALL Introduction: In this lab, you will measure the acceleration of an object as it falls toward the earth s surface. Air resistance should not be a factor, so the

More information

Experiment 4: Motion in a Plane

Experiment 4: Motion in a Plane Experiment 4: Motion in a Plane Part 1: Projectile Motion. You will verify that a projectile s velocity and acceleration components behave as described in class. A ball bearing rolls off of a ramp, becoming

More information

PHY 123 Lab 10-Simple Harmonic Motion

PHY 123 Lab 10-Simple Harmonic Motion 1 To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 123 Lab 10-Simple Harmonic Motion The purpose of this lab is to study simple harmonic

More information

Physics 2104A. Kinematics and Dynamics. Study Guide

Physics 2104A. Kinematics and Dynamics. Study Guide Adult Basic Education Science Kinematics and Dynamics Prerequisite: Physics 1104 or Science 1206 Credit Value: 1 Text: Physics: Concepts and Connections. Nowikow et al.; Irwin, 2002 Science 10. Ritter

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

Student AP Physics 1 Date. Newton s Laws B FR

Student AP Physics 1 Date. Newton s Laws B FR Student AP Physics 1 Date Newton s Laws B FR #1 A block is at rest on a rough inclined plane and is connected to an object with the same mass as shown. The rope may be considered massless; and the pulley

More information

LAB 4: FORCE AND MOTION

LAB 4: FORCE AND MOTION Lab 4 - Force & Motion 37 Name Date Partners LAB 4: FORCE AND MOTION A vulgar Mechanik can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct

More information

Physics 11: Friction is Fun! Lab Activity

Physics 11: Friction is Fun! Lab Activity Partner s name: Physics 11: Friction is Fun! Lab Activity SELF ASSESSMENT Hypothesis Graph Discussion Conclusion Key Concept Beginning Developing Accomplished Exemplary o Outline a hypothesis o Identify

More information

Data Analysis for University Physics

Data Analysis for University Physics Data Analysis for University Physics by John Filaseta orthern Kentucky University Last updated on ovember 9, 004 Four Steps to a Meaningful Experimental Result Most undergraduate physics experiments have

More information

Vector Addition INTRODUCTION THEORY

Vector Addition INTRODUCTION THEORY Vector Addition INTRODUCTION All measurable quantities may be classified either as vector quantities or as scalar quantities. Scalar quantities are described completely by a single number (with appropriate

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations:

Figure Two. Then the two vector equations of equilibrium are equivalent to three scalar equations: 2004- v 10/16 2. The resultant external torque (the vector sum of all external torques) acting on the body must be zero about any origin. These conditions can be written as equations: F = 0 = 0 where the

More information

AP Physics Free Response Practice Kinematics

AP Physics Free Response Practice Kinematics AP Physics Free Response Practice Kinematics 1982B1. The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

More information

Multiple-Choice Answer Key

Multiple-Choice Answer Key Multiple-Choice Answer Key The following contains the answers to the multiple-choice questions in this exam. Answer Key for AP Physics 1 Practice Exam, Section I Question 1: C Question : A Question 3:

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis E X P E R I M E N T 1 Experimental Uncertainty (Error) and Data Analysis INTRODUCTION AND OBJECTIVES Laboratory investigations involve taking measurements of physical quantities, and the process of taking

More information

SDI LAB #7: NEWTON S LAWS REVISITED

SDI LAB #7: NEWTON S LAWS REVISITED SDI LAB #7: NEWTON S LAWS REVISITED NAME Last (Print Clearly) First (Print Clearly) ID Number LAB SECTION LAB TABLE POSITION I. Introduction... 1 II. Stationary Cart... 1 III. Cart in Motion... 6 I. INTRODUCTION

More information

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick.

Newton s Second Law. Computer with Capstone software, motion detector, PVC pipe, low friction cart, track, meter stick. F = m a F = m a Newton s Second Law 1 Object To investigate, understand and verify the relationship between an object s acceleration and the net force acting on that object as well as further understand

More information

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law.

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Second Law Objective In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Apparatus Table clamp, Vertical rod, Right-angle clamp, Horizontal

More information

Forces & Newton s Laws FR Practice Problems

Forces & Newton s Laws FR Practice Problems 1) A drag-racing car speeds up from rest to 22 m/s in 2 s. The car has mass 800 kg; the driver has mass 80 kg. a) Calculate the acceleration of the car. b) Calculate the net force on the car. c) Which

More information

Applications of Newton's Laws

Applications of Newton's Laws Applications of Newton's Laws Purpose: To apply Newton's Laws by applying forces to objects and observing their motion; directly measuring these forces that are applied. Apparatus: Pasco track, Pasco cart,

More information

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty

Physics 1050 Experiment 1. Introduction to Measurement and Uncertainty Introduction to Measurement and Uncertainty Prelab Questions! Q These questions need to be completed before entering the lab. Show all workings. Prelab 1: A car takes time t = 2.5 +/- 0.2 s to travel a

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 23, 2014 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Physics 11 Course Plan

Physics 11 Course Plan Physics 11 Course Plan UNITS Chapters in your Textbook Approximate Number of Classes A Significant figures, scientific notation, 2 5 and unit conversions B Kinematics (motion) 3,4 17 C Dynamics (forces)

More information

Lab 4. Friction. Goals. Introduction

Lab 4. Friction. Goals. Introduction Lab 4. Friction Goals To determine whether the simple model for the frictional force presented in the text, where friction is proportional to the product of a constant coefficient of friction, µ K, and

More information

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity.

1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Name: 1D Motion: Review Packet Problem 1: Consider the following eight velocity vs. time graphs. Positive velocity is forward velocity. Graph A Graph B Graph C Graph D Graph E Graph F Graph G Graph H (a)

More information

Constant velocity and constant acceleration

Constant velocity and constant acceleration Constant velocity and constant acceleration Physics 110 Laboratory Introduction In this experiment we will investigate two rather simple forms of motion (kinematics): motion with uniform (non-changing)

More information

Unit 2: Vector Dynamics

Unit 2: Vector Dynamics Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal

More information

Preparation for Physics. Mathematical Graphs Equations of a Line

Preparation for Physics. Mathematical Graphs Equations of a Line III-1 Mathematical Graphs and Scientific Graphs Mathematical Graphs Equations of a Line In mathematics, graphs are made while studying functions to give a feel for the shape of the graph of a function.

More information

PHYSICS LAB Experiment 4 Fall 2004 ATWOOD S MACHINE: NEWTON S SECOND LAW

PHYSICS LAB Experiment 4 Fall 2004 ATWOOD S MACHINE: NEWTON S SECOND LAW PHYSICS 83 - LAB Experiment 4 Fall 004 ATWOOD S MACHINE: NEWTON S SECOND LAW th In this experiment we will use a machine, used by George Atwood in the 8 century, to measure the gravitational acceleration,

More information

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down) Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

2. How will we adjust our fitting procedure to compensate for fact that the acceleration differs depending on the direction of motion?

2. How will we adjust our fitting procedure to compensate for fact that the acceleration differs depending on the direction of motion? The Coefficient of Kinetic Friction 1 Name: Lab Section Number: Pre-Lab Questions: 1. What type of data will we be using to determine the acceleration of the cart up and down the ramp this week? What type

More information

Data collection and processing (DCP)

Data collection and processing (DCP) This document is intended as a guideline for success in IB internal assessment. Three criteria are assessed based on lab work submitted in a report or other format. They are: DESIGN, DATA COLLECTION AND

More information

To conduct the experiment, each person in your group should be given a role:

To conduct the experiment, each person in your group should be given a role: Varying Motion NAME In this activity, your group of 3 will collect data based on one person s motion. From this data, you will create graphs comparing displacement, velocity, and acceleration to time.

More information

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch)

Speed of waves. Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Name: Speed of waves Group Members: Date: TA s Name: Apparatus: Long spring, meter stick, spring scale, stopwatch (or cell phone stopwatch) Objectives 1. To directly calculate the speed of waves in a stretched

More information