Dirac Spinors. Kevin Cahill for 523 November 28, A 4-component spin-one-half Majorana of Dirac field ψ with action density

Size: px
Start display at page:

Download "Dirac Spinors. Kevin Cahill for 523 November 28, A 4-component spin-one-half Majorana of Dirac field ψ with action density"

Transcription

1 Dirac Sinors Kevin Cahi for 53 November 8, A 4-comonent sin-one-haf Majorana of Dirac fied ψ with action density (where ψ ψ iγ ) obeys the Dirac equation L ψ (γ a a + m) ψ ψ ( + m) ψ () (γ a a + m) ψ ( + m) ψ. () Two Majorana fieds of the same mass ψ and ψ have the Fourier exansions ψ (i) (x) [u (, s)a(, s, i)e ix + v (, s)a (, s, i)e ix] d 3 (3) (π) 3/ whie a Dirac fied made of them has the Fourier exansion ψ (x) ( ψ () (x) + iψ () ) (x) [u (, s)b(, s)e ix + v (, s)c (, s)e ix] d 3 (4) (π) 3/

2 in which the Dirac index runs from to 4, x x t, + m, and the annihiation a i and creation a j oerators satisfy the anticommutation reations {a(, s, i), a(, s, j)} a(, s, i) a(, s, j) + a(, s, j) a(, s, i) {a(, s, i), a (, s, j)} δ i,j δ s,s δ (3) ( ). The state, s, i a (, s, i) reresents a artice of tye i, 4-momentum, and sin s The artice annihiation b(, s) and antiartice creation c (, s) oerators are (5) in the z-direction. b(, s) (a(, s, ) + ia(, s, )) and c (, s) ( a (, s, ) + ia (, s, ) ). (6) They satisfy the anticommutation reations {b(, s), b(, s )} {c(, s) c(, s )} {b(, s), c (, s )} {b(, s), b (, s )} δ s,s δ (3) ( ) {c(, s), c (, s )}. (7) The state, s, b b (, s) reresents a artice of 4-momentum and sin s in the z-direction, whie the state, s, c c (, s) reresents an antiartice of 4-momentum and sin s in the z-direction. The Majorana fied wi satisfy the Dirac equation () if the sinors obey the rues (iγ a a + m) u(, s) ( iγ a a + m) v(, s) (8) which the sinors wi obey if their momentum-deendence is u(, s) (m iγ a a ) u(, s) and v(, s) (m + iγ a a ) v(, s). (9) For we then have (iγ a a + m) u(, s) (iγ a a + m) ( iγ b b m ) u(, s) ( γ a a γ b b + m ) u(, s) [( {γa, γ b } + [γa, γ b ] ) a b + m ] u(, s) ( η ab a b + m ) u(, s) ( ( ) + + m ) u(, s) ()

3 as we as ( iγ a a + m) v(, s) ( iγ a a + m) ( iγ b b m ) v(, s) ( γ a a γ b b + m ) v(, s) [( {γa, γ b } + [γa, γ b ] ) a b + m ] v(, s) ( η ab a b + m ) v(, s) ( ( ) + + m ) v(, s). () The zero-momentum sinors obey the rues (8) at ( iγ k + m ) u(, s) ( iγ m + m ) u(, s) ( iγ k + m ) v(, s) ( iγ m + m ) v(, s). () That is, or since γ i iγ u(, s) u(, s) and iγ v(, s) v(, s) (3) ( ) and incidentay γ i the zero-momentum sinors satisfy ( ) iγ u(, s) u(, s) u(, s) ( ) iγ v(, s) v(, s) v(, s). The natura choices are u(, +), u(, ), v(, +) ( ) σ σ, v(, ) (4) (5). (6) 3

4 They are suitaby orthonorma u (, s)u(, s ) δ s,s v (, s)v(, s ) δ s,s u (, s)v(, s ) v (, s)u(, s ). (7) Because the zero-momentum sinors are eigenvectors of γ, we can rewrite the momentum deendence (9) of the sinors as u(, s) ( iγ a a + m) u(, s) ( iγ a a iγ + m ) u(, s) ( γ a a γ + m ) u(, s) v(, s) (+iγ a a + m) v(, s) ( iγ a a ( iγ ) + m ) v(, s) ( γ a a γ + m ) v(, s). We may use the orthonormaity (7) of the zero-momentum sinors, their deendence (8) uon their momentum, and the reations γ γ and γ γ to show that the sinors u(, s) are orthonorma (8) u (, s)u(, s ) u (, s) (m i a γ a ) ( m i b γ b) u(, s )/[ ( + m)] u (, s) ( i γ + i γ + m ) ( i γ + i γ + m ) u(, s )/[ ( + m)] u (, s) [ (m + i γ ) + ( γ ) ] u(, s )/[ ( + m)] u (, s) [ m + + mi γ + ( ) ] u(, s )/[ ( + m)] u (, s) [ m + + m + ( ) ] u(, s )/[ ( + m)] u (, s)u(, s ) δ s,s. More generay, one has (9) u (, s)u(, s ) δ s,s v (, s)v(, s ) δ s,s u (, s)v(, s ) v (, s)u(, s ). () 4

5 We have seen in the notes on grou theory that the Dirac reresentation of the Lorentz grou is the direct sum of the D (/,) and D (,/) reresentations. The standard boost that takes k (m,,, ) into (, ) Lk is L() R()B()R () () in which B() is the boost in the z-direction that takes the 4-vector (m,,, ) to (,,, ) and the rotation R() rotates the z-axis into the direction ˆ. In the grou-theory notes, we saw that D (/,) (L) + m σ m( + m) and D (,/) (L) + m + σ m( + m). () Thus the 4 4 matrix that reresents the standard boost L is D(L) D (/,) (L) D (,/) (L) ( ) ( ) D D(L) (/,) (L) D (,/) + m σ (L) m( + m). (3) + m + σ As a first homework robem, show that D(L) γa a γ + m m( + m). (4) It is usefu to further scae the sinors u(, s) and v(, s) so that m m u(, s) D(L) u(, s) and v(, s) D(L) v(, s). (5) As a second homework robem, show that the sin sums of the zero-momentum sinors are u (, s)u (, s) ( ) I + iγ ( ) δ + iγ v (, s)v (, s) ( ) I iγ (6) ( ) δ iγ. 5

6 is As a third homework robem, show that the sin sums of the sinors are u (, s)u [ (, s) ( iγ a a + m) iγ ] v (, s)v [ (, s) ( iγ a a m) iγ ]. The effect of a unitary transformation U(Λ) that imements a Lorentz transformation Λ on a state, s, b (Λ) U(Λ), s, b j D (j) s s (W (Λ, )) Λ, s, b (8) in which the (j + ) (j + ) unitary matrix D (j) s s (W (Λ, )) reresents the Wigner rotation s j (7) W (Λ, ) L (Λ)ΛL() (9) where L() is the standard boost () that takes the 4-vector (m,,, ) to. Let s comute the Feynman roagator for a Dirac fied. It is defined as the mean vaue in the vacuum (of the theory without interactions (the free theory)) of the time-ordered roduct defined as T [ψ (x)ψ m(y)] θ(x y )ψ (x)ψ m(y) θ(y x )ψ m(y)ψ (x) θ(x y )ψ + (x)ψ m (y) θ(y x )ψ m + (y)ψ (x) θ(x y ){ψ + (x), ψ m (y)} θ(y x ){ψ m + (y)ψ (x)} θ(x y ){ψ + (x), ψ m (y)} θ(y x ){ψ m + (y), ψ (x)}. We can use the Fourier exansion of the Dirac fied (4) and of its adjoint ψ (x) ( ) ψ () (x) iψ () (x) (3) [u (, s)b (, s)e ix + v (, s)c(, s)e +ix] d 3 (3) (π) 3/ 6

7 as we as the sin sums (7) to comute these anticommutators: {ψ + (x), ψ m (y)} s,t s,t d 3 (π) 3/ d 3 (π) 3/ d 3 q (π) 3/ u (, s)e ix u m( q, t)e iqy {b(, s), b (q, t)} d 3 q (π) 3/ u (, s)e ix u m( q, t)e iqy δ s,t δ (3) ( q) d 3 (π) 3 u (, s)u m(, s)e i(x y) d 3 [ ( iγ a (π) 3 a + m) iγ ] m ei(x y) [ ( γ a a + m) iγ ] m and since {ψ m + (y), ψ (x)} {ψ (x), ψ + m (y)} {ψ (x), ψ + m (y)} s,t s,t d 3 (π) 3/ d 3 (π) 3/ d 3 (π) 3 ei(x y) [ ( γ a a + m) iγ ] m +(x y) d 3 q (π) 3/ v (, s)e ix v m( q, t)e iqy {c (, s), c(q, t)} d 3 q (π) 3/ v (, s)e ix v m( q, t)e iqy δ s,t δ (3) ( q) d 3 (π) 3 v (, s)v m(, s)e i(x y) d 3 [ ( iγ a (π) 3 a m) iγ ] m ei(x y) [ (γ a a m) iγ ] m d 3 (π) 3 e i(x y) [ (γ a a m) iγ ] m +(y x). (3) (33) 7

8 Putting the two anticommutators together, we find T [ψ (x)ψ m(y)] θ(x y )ψ (x)ψ m(y) θ(y x )ψ m(y)ψ (x) θ(x y ){ψ + (x), ψ m (y)} θ(y x ){ψ m + (y), ψ (x)} θ(x y ) [ ( γ a a + m) iγ ] m +(x y) θ(y x ) [ (γ a a m) iγ ] m +(y x) θ(x y ) [ ( γ a a + m) iγ ] m +(x y) + θ(y x ) [ ( γ a a + m) iγ ] m +(y x). (34) We can u the satia derivatives and the mass term across the Heaviside functions. derivatives, we note that the extra terms actuay vanish To u the time ( θ(x y )) + (x y) + ( θ(y x )) + (y x) δ(x y ) + (x y) δ(x y ) + (y x) (35) because at equa times the two invariant functions cance d 3 + (y x) e i ( x y) (π) 3 + (x y). (36) Thus where T [ψ (x)ψ m(y)] [ ( γ a a + m) iγ ] [ m θ(x y ) + (x y) + θ(y x ) + (y x) ] [ ( γ a a + m) iγ ] [ i m F (x y)] Canceing the is, we have F (x y) (37) d 4 q (π) 4 ex(iq(x y)) q + m iɛ. (38) T [ψ (x)ψ m(y)] [ ( γ a a + m) γ ] m F (x y) [ ( γ a a + m) γ ] d 4 q ex(iq(x y)) m (π) 4 q + m iɛ d 4 q [( iγ a q a + m) γ ] m e iq(x y). (π) 4 q + m iɛ 8 (39)

9 As a Thanksgiving vacation homework robem, comute the equa-time anticommutators of the Dirac fied (4) with itsef and with its adjoint (3). {ψ (t, x), ψ m (t, y)} and {ψ (t, x), ψ m(t, y)} (4) 9

Problem set 6 for Quantum Field Theory course

Problem set 6 for Quantum Field Theory course Problem set 6 or Quantum Field Theory course 2018.03.13. Toics covered Scattering cross-section and decay rate Yukawa theory and Yukawa otential Scattering in external electromagnetic ield, Rutherord ormula

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

Solutions 4: Free Quantum Field Theory

Solutions 4: Free Quantum Field Theory QFT PS4 Solutions: Free Quantum Field Theory 8//8 Solutions 4: Free Quantum Field Theory. Heisenberg icture free real scalar field We have φt, x π 3 a e iωt+i x + a e iωt i x ω i By taking an exlicit hermitian

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

Beginnings of the Helicity Basis in the (S, 0) (0, S) Representations of the Lorentz Group

Beginnings of the Helicity Basis in the (S, 0) (0, S) Representations of the Lorentz Group Beginnings of the Helicity Basis in the (S, 0 (0, S Reresentations of the Lorentz Grou Valeriy V. Dvoeglazov UAF, Universidad Autónoma de Zacatecas, México E-mail: valeri@fisica.uaz.edu.mx Abstract We

More information

Cross-sections. Kevin Cahill for 524 January 24, There are two standard ways of normalizing states. We have been using continuum normalization

Cross-sections. Kevin Cahill for 524 January 24, There are two standard ways of normalizing states. We have been using continuum normalization Cross-sections Kevin Cahill for 54 January 4, 013 1 Fermi s Golden Rule There are two standard ways of normalizing states. We have been using continuum normalization p p = δ (3) (p p). (1) The other way

More information

LSZ reduction for spin-1/2 particles

LSZ reduction for spin-1/2 particles LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory: LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

Ψ L 1 2 (1 γ 5)Ψ. Ψ R 1 2 (1 + γ 5)Ψ (2.3.1)

Ψ L 1 2 (1 γ 5)Ψ. Ψ R 1 2 (1 + γ 5)Ψ (2.3.1) .3 THE SPIN 1 FERMION FIELD We next desire to describe non-interacting (free) particles with spin 1.Aswe know these particles will obey Fermi- Dirac statistics due to the Pauli exclusion principle. Hence,

More information

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression Coherent-state path integrals A coherent state of argument α α = e α / e αa 0 = e α / (αa ) n 0 n! n=0 = e α / α n n n! n=0 (1) is an eigenstate of the annihilation operator a with eigenvalue α a α = α

More information

b n n=1 a n cos nx (3) n=1

b n n=1 a n cos nx (3) n=1 Fourier Anaysis The Fourier series First some terminoogy: a function f(x) is periodic if f(x ) = f(x) for a x for some, if is the smaest such number, it is caed the period of f(x). It is even if f( x)

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

Quantum Physics 2006/07

Quantum Physics 2006/07 Quantum Physics 6/7 Lecture 7: More on the Dirac Equation In the last lecture we showed that the Dirac equation for a free particle i h t ψr, t = i hc α + β mc ψr, t has plane wave solutions ψr, t = exp

More information

Feynman Diagrams of the Standard Model Sedigheh Jowzaee

Feynman Diagrams of the Standard Model Sedigheh Jowzaee tglied der Helmholtz-Gemeinschaft Feynman Diagrams of the Standard Model Sedigheh Jowzaee PhD Seminar, 5 July 01 Outlook Introduction to the standard model Basic information Feynman diagram Feynman rules

More information

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1.

Phys624 Formalism for interactions Homework 6. Homework 6 Solutions Restriction on interaction Lagrangian. 6.1. Homework 6 Solutions 6. - Restriction on interaction Lagrangian 6.. - Hermiticity 6.. - Lorentz invariance We borrow the following results from homework 4. Under a Lorentz transformation, the bilinears

More information

Fermi Fields without Tears

Fermi Fields without Tears Fermi Fields without Tears Peter Cahill and Kevin Cahill cahill@unm.edu http://dna.phys.unm.edu/ Abstract One can construct Majorana and Dirac fields from fields that are only slightly more complicated

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

Physics 566: Quantum Optics Quantization of the Electromagnetic Field

Physics 566: Quantum Optics Quantization of the Electromagnetic Field Physics 566: Quantum Optics Quantization of the Eectromagnetic Fied Maxwe's Equations and Gauge invariance In ecture we earned how to quantize a one dimensiona scaar fied corresponding to vibrations on

More information

Quantization of the Photon Field QED

Quantization of the Photon Field QED Quantization of the Photon Field QED 21.05.2012 0.1 Reminder: Classical Electrodynamics Before we start quantizing the hoton field, let us reflect on classical electrodynamics. The Hamiltonian is given

More information

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b) 4 Version of February 4, 005 CHAPTER. DIRAC EQUATION (0, 0) is a scalar. (/, 0) is a left-handed spinor. (0, /) is a right-handed spinor. (/, /) is a vector. Before discussing spinors in detail, let us

More information

7 Quantized Free Dirac Fields

7 Quantized Free Dirac Fields 7 Quantized Free Dirac Fields 7.1 The Dirac Equation and Quantum Field Theory The Dirac equation is a relativistic wave equation which describes the quantum dynamics of spinors. We will see in this section

More information

Quantum Field Theory Chapter 1, Homework & Solution

Quantum Field Theory Chapter 1, Homework & Solution Quantum Field Theory Chater, Homework & Solution. Show that the combination d 3 E, with E + m which occurs frequently in hase sace calculation integration is invariant under Lorentz transformation. Solution:

More information

L = e i `J` i `K` D (1/2,0) (, )=e z /2 (10.253)

L = e i `J` i `K` D (1/2,0) (, )=e z /2 (10.253) 44 Group Theory The matrix D (/,) that represents the Lorentz transformation (.4) L = e i `J` i `K` (.5) is D (/,) (, )=exp( i / /). (.5) And so the generic D (/,) matrix is D (/,) (, )=e z / (.53) with

More information

An interesting result concerning the lower bound to the energy in the Heisenberg picture

An interesting result concerning the lower bound to the energy in the Heisenberg picture Aeiron, Vol. 16, No. 2, Aril 29 191 An interesting result concerning the lower bound to the energy in the Heisenberg icture Dan Solomon Rauland-Borg Cororation 345 W Oakton Skokie, IL 676 USA Email: dan.solomon@rauland.com

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

PHYSICS 234 HOMEWORK 2 SOLUTIONS. So the eigenvalues are 1, 2, 4. To find the eigenvector for ω = 1 we have b c.

PHYSICS 234 HOMEWORK 2 SOLUTIONS. So the eigenvalues are 1, 2, 4. To find the eigenvector for ω = 1 we have b c. PHYSICS 34 HOMEWORK SOUTIONS.8.. The matrix we have to diagonalize is Ω 3 ( 4 So the characteristic equation is ( ( ω(( ω(4 ω. So the eigenvalues are,, 4. To find the eigenvector for ω we have 3 a (3 b

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

Plan for the rest of the semester. ψ a

Plan for the rest of the semester. ψ a Plan for the rest of the semester ϕ ψ a ϕ(x) e iα(x) ϕ(x) 167 Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: and

More information

Rotation Matrices. Chapter 21

Rotation Matrices. Chapter 21 Chapter 1 Rotation Matrices We have talked at great length last semester and this about unitary transformations. The putting together of successive unitary transformations is of fundamental importance.

More information

H&M Chapter 5 Review of Dirac Equation

H&M Chapter 5 Review of Dirac Equation HM Chapter 5 Review of Dirac Equation Dirac s Quandary Notation Reminder Dirac Equation for free particle Mostly an exercise in notation Define currents Make a complete list of all possible currents Aside

More information

ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ αβγδεζηθικλμνξοπρςστυφχψω +<=>± ħ

ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ αβγδεζηθικλμνξοπρςστυφχψω +<=>± ħ CHAPTER 1. SECOND QUANTIZATION In Chapter 1, F&W explain the basic theory: Review of Section 1: H = ij c i < i T j > c j + ij kl c i c j < ij V kl > c l c k for fermions / for bosons [ c i, c j ] = [ c

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

Physics 582, Problem Set 6 Solutions

Physics 582, Problem Set 6 Solutions Physics 582, Problem Set 6 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. PATH ITEGRAL QUATIZATIO OF THE FREE ELECTROMAGETIC FIELD.B. The ordering of the sub-uestions is a little confusing.

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Tutorial 5 Clifford Algebra and so(n)

Tutorial 5 Clifford Algebra and so(n) Tutorial 5 Clifford Algebra and so(n) 1 Definition of Clifford Algebra A set of N Hermitian matrices γ 1, γ,..., γ N obeying the anti-commutator γ i, γ j } = δ ij I (1) is the basis for an algebra called

More information

2 Quantization of the scalar field

2 Quantization of the scalar field 22 Quantum field theory 2 Quantization of the scalar field Commutator relations. The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = Φ(x) as operators which satisfy

More information

Generalized exterior forms, geometry and space-time

Generalized exterior forms, geometry and space-time Generalized exterior forms, geometry and sace-time P Nurowski Instytut Fizyki Teoretycznej Uniwersytet Warszawski ul. Hoza 69, Warszawa nurowski@fuw.edu.l D C Robinson Mathematics Deartment King s College

More information

IL NUOVO CIMENTO VOL. 112 B, N. 6

IL NUOVO CIMENTO VOL. 112 B, N. 6 IL NUOVO CIMENTO VOL. 112 B, N. 6 Giugno 1997 Comment on Describing Weyl neutrinos by a set of Maxwell-like equations by S. Bruce (*) V. V. DVOEGLAZOV (**) Escuela de Física, Universidad Autónoma de Zacatecas

More information

1.7 Plane-wave Solutions of the Dirac Equation

1.7 Plane-wave Solutions of the Dirac Equation 0 Version of February 7, 005 CHAPTER. DIRAC EQUATION It is evident that W µ is translationally invariant, [P µ, W ν ] 0. W is a Lorentz scalar, [J µν, W ], as you will explicitly show in homework. Here

More information

PHY 396 K. Solutions for homework set #9.

PHY 396 K. Solutions for homework set #9. PHY 396 K. Solutions for homework set #9. Problem 2(a): The γ 0 matrix commutes with itself but anticommutes with the space-indexed γ 1,2,3. At the same time, the parity reflects the space coordinates

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

i (H) 1 on the diagonal and W acts as Sn t on by permuting a j.)

i (H) 1 on the diagonal and W acts as Sn t on by permuting a j.) 1 Introduction Let G be a comact connected Lie Grou with Lie algebra g. T a maximal torus of G with Lie Algebra t. Let W = N G (T )/T be the Weyl grou of T in G. W acts on t through the Ad reresentations.

More information

HYBRID DIRAC FIELDS. Abstract

HYBRID DIRAC FIELDS. Abstract HYBRID DIRAC FIELDS O.W. Greenberg 1 Center for Theoretical Physics Department of Physics University of Maryland College Park, MD 074-4111 University of Maryland Preprint PP-03043 Abstract Hybrid Dirac

More information

Spin one matter elds. November 2015

Spin one matter elds. November 2015 Spin one matter elds M. Napsuciale, S. Rodriguez, R.Ferro-Hernández, S. Gomez-Ávila Universidad de Guanajuato Mexican Workshop on Particles and Fields November 2015 M. Napsuciale, S. Rodriguez, R.Ferro-Hernández,

More information

Section 4: The Quantum Scalar Field

Section 4: The Quantum Scalar Field Physics 8.323 Section 4: The Quantum Scalar Field February 2012 c 2012 W. Taylor 8.323 Section 4: Quantum scalar field 1 / 19 4.1 Canonical Quantization Free scalar field equation (Klein-Gordon) ( µ µ

More information

Equivalence of Wilson actions

Equivalence of Wilson actions Prog. Theor. Ex. Phys. 05, 03B0 7 ages DOI: 0.093/te/tv30 Equivalence of Wilson actions Physics Deartment, Kobe University, Kobe 657-850, Jaan E-mail: hsonoda@kobe-u.ac.j Received June 6, 05; Revised August

More information

Representations of Lorentz Group

Representations of Lorentz Group Representations of Lorentz Group based on S-33 We defined a unitary operator that implemented a Lorentz transformation on a scalar field: How do we find the smallest (irreducible) representations of the

More information

Quantum Mechanics C (130C) Winter 2014 Assignment 7

Quantum Mechanics C (130C) Winter 2014 Assignment 7 University of California at San Diego Department of Physics Prof. John McGreevy Quantum Mechanics C (130C) Winter 014 Assignment 7 Posted March 3, 014 Due 11am Thursday March 13, 014 This is the last problem

More information

Particle Notes. Ryan D. Reece

Particle Notes. Ryan D. Reece Particle Notes Ryan D. Reece July 9, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation that

More information

msqm 2011/8/14 21:35 page 189 #197

msqm 2011/8/14 21:35 page 189 #197 msqm 2011/8/14 21:35 page 189 #197 Bibliography Dirac, P. A. M., The Principles of Quantum Mechanics, 4th Edition, (Oxford University Press, London, 1958). Feynman, R. P. and A. P. Hibbs, Quantum Mechanics

More information

Quantum Field Theory

Quantum Field Theory Quantum Field Theory PHYS-P 621 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory 1 Attempts at relativistic QM based on S-1 A proper description of particle physics

More information

Introduction to Neutrino Physics. TRAN Minh Tâm

Introduction to Neutrino Physics. TRAN Minh Tâm Introduction to Neutrino Physics TRAN Minh Tâm LPHE/IPEP/SB/EPFL This first lecture is a phenomenological introduction to the following lessons which will go into details of the most recent experimental

More information

129 Lecture Notes Relativistic Quantum Mechanics

129 Lecture Notes Relativistic Quantum Mechanics 19 Lecture Notes Relativistic Quantum Mechanics 1 Need for Relativistic Quantum Mechanics The interaction of matter and radiation field based on the Hamitonian H = p e c A m Ze r + d x 1 8π E + B. 1 Coulomb

More information

Symmetry and degeneracy

Symmetry and degeneracy Symmetry and degeneracy Let m= degeneracy (=number of basis functions) of irrep i: From ( irrep) 1 one can obtain all the m irrep j by acting with off-diagonal R and orthogonalization. For instance in

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information

Quantization of a Scalar Field

Quantization of a Scalar Field Quantization of a Scalar Field Required reading: Zwiebach 0.-4,.4 Suggested reading: Your favorite quantum text Any quantum field theory text Quantizing a harmonic oscillator: Let s start by reviewing

More information

Physics 217 Solution Set #3 Fall 2016

Physics 217 Solution Set #3 Fall 2016 Physics 217 Solution Set #3 Fall 2016 1. Consider a massive spin-1/2 particle with four-momentum p µ = (E; p and helicity λ (where 2λ = ±1. The spin four-vector is defined as: s µ = 1 ( p ; E p. m p Verify

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Physics 513, Quantum Field Theory Homework 4 Due Tuesday, 30th September 2003

Physics 513, Quantum Field Theory Homework 4 Due Tuesday, 30th September 2003 PHYSICS 513: QUANTUM FIELD THEORY HOMEWORK 1 Physics 513, Quantum Fiel Theory Homework Due Tuesay, 30th September 003 Jacob Lewis Bourjaily 1. We have efine the coherent state by the relation { } 3 k η

More information

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001

Quantum Electrodynamics 1 D. E. Soper 2 University of Oregon Physics 666, Quantum Field Theory April 2001 Quantum Electrodynamics D. E. Soper University of Oregon Physics 666, Quantum Field Theory April The action We begin with an argument that quantum electrodynamics is a natural extension of the theory of

More information

A Lattice Approximation of Dirac Equation

A Lattice Approximation of Dirac Equation A Lattice Approximation of Dirac Equation Jerzy Kijowsi and Artur Thielmann Institute for Theoretical Physics Polish Academy of Sciences Al. Lotniów 3/46, 0-668 Warsaw, Poland ABSTRACT A different point

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

PHYS 301 HOMEWORK #9-- SOLUTIONS

PHYS 301 HOMEWORK #9-- SOLUTIONS PHYS 0 HOMEWORK #9-- SOLUTIONS. We are asked to use Dirichlet' s theorem to determine the value of f (x) as defined below at x = 0, ± /, ± f(x) = 0, - < x

More information

1 Introduction. 2 Relativistic Kinematics. 2.1 Particle Decay

1 Introduction. 2 Relativistic Kinematics. 2.1 Particle Decay 1 Introduction Relativistic Kinematics.1 Particle Decay Due to time dilation, the decay-time (i.e. lifetime) of the particle in its restframe is related to the decay-time in the lab frame via the following

More information

2.9 Dirac Notation Vectors ji that are orthonormal hk ji = k,j span a vector space and express the identity operator I of the space as (1.

2.9 Dirac Notation Vectors ji that are orthonormal hk ji = k,j span a vector space and express the identity operator I of the space as (1. 14 Fourier Series 2.9 Dirac Notation Vectors ji that are orthonormal hk ji k,j san a vector sace and exress the identity oerator I of the sace as (1.132) I NX jihj. (2.99) Multilying from the right by

More information

Lecture 4 - Dirac Spinors

Lecture 4 - Dirac Spinors Lecture 4 - Dirac Spinors Schrödinger & Klein-Gordon Equations Dirac Equation Gamma & Pauli spin matrices Solutions of Dirac Equation Fermion & Antifermion states Left and Right-handedness Non-Relativistic

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

MET 4302 Midterm Study Guide 19FEB18

MET 4302 Midterm Study Guide 19FEB18 The exam will be 4% short answer and the remainder (6%) longer (1- aragrahs) answer roblems and mathematical derivations. The second section will consists of 6 questions worth 15 oints each. Answer 4.

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (6.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 2 2 3 3 4 4 5 Where are we? W fi = 2π 4 LI matrix element M i (2Ei) fi 2 ρ f (E i ) LI phase

More information

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra

Chapter 1 LORENTZ/POINCARE INVARIANCE. 1.1 The Lorentz Algebra Chapter 1 LORENTZ/POINCARE INVARIANCE 1.1 The Lorentz Algebra The requirement of relativistic invariance on any fundamental physical system amounts to invariance under Lorentz Transformations. These transformations

More information

The state vectors j, m transform in rotations like D(R) j, m = m j, m j, m D(R) j, m. m m (R) = j, m exp. where. d (j) m m (β) j, m exp ij )

The state vectors j, m transform in rotations like D(R) j, m = m j, m j, m D(R) j, m. m m (R) = j, m exp. where. d (j) m m (β) j, m exp ij ) Anguar momentum agebra It is easy to see that the operat J J x J x + J y J y + J z J z commutes with the operats J x, J y and J z, [J, J i ] 0 We choose the component J z and denote the common eigenstate

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14. As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14 Majorana spinors March 15, 2012 So far, we have only considered massless, two-component

More information

Quantum Field Theory 2011 Solutions

Quantum Field Theory 2011 Solutions Quantum Field Theory 011 Solution Yichen Shi Eater 014 Note that we ue the metric convention + ++). 1. State and prove Noether theorem in the context of a claical Lagrangian field theory defined in Minkowki

More information

Matrices of Dirac Characters within an irrep

Matrices of Dirac Characters within an irrep Matrices of Dirac Characters within an irrep irrep E : 1 0 c s 2 c s D( E) D( C ) D( C ) 3 3 0 1 s c s c 1 0 c s c s D( ) D( ) D( ) a c b 0 1 s c s c 2 1 2 3 c cos( ), s sin( ) 3 2 3 2 E C C 2 3 3 2 3

More information

The analysis and representation of random signals

The analysis and representation of random signals The analysis and reresentation of random signals Bruno TOÉSNI Bruno.Torresani@cmi.univ-mrs.fr B. Torrésani LTP Université de Provence.1/30 Outline 1. andom signals Introduction The Karhunen-Loève Basis

More information

H =Π Φ L= Φ Φ L. [Φ( x, t ), Φ( y, t )] = 0 = Φ( x, t ), Φ( y, t )

H =Π Φ L= Φ Φ L. [Φ( x, t ), Φ( y, t )] = 0 = Φ( x, t ), Φ( y, t ) 2.2 THE SPIN ZERO SCALAR FIELD We now turn to applying our quantization procedure to various free fields. As we will see all goes smoothly for spin zero fields but we will require some change in the CCR

More information

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection FFTs in Graphics and Vision Spherica Convoution and Axia Symmetry Detection Outine Math Review Symmetry Genera Convoution Spherica Convoution Axia Symmetry Detection Math Review Symmetry: Given a unitary

More information

Exercises Symmetries in Particle Physics

Exercises Symmetries in Particle Physics Exercises Symmetries in Particle Physics 1. A particle is moving in an external field. Which components of the momentum p and the angular momentum L are conserved? a) Field of an infinite homogeneous plane.

More information

Landau Theory of the Fermi Liquid

Landau Theory of the Fermi Liquid Chater 5 Landau Theory of the Fermi Liquid 5. Adiabatic Continuity The results of the revious lectures, which are based on the hysics of noninteracting systems lus lowest orders in erturbation theory,

More information

11 Spinor solutions and CPT

11 Spinor solutions and CPT 11 Spinor solutions and CPT 184 In the previous chapter, we cataloged the irreducible representations of the Lorentz group O(1, 3. We found that in addition to the obvious tensor representations, φ, A

More information

The spin-statistics connection: Some pedagogical remarks in response to Neuenschwander s question

The spin-statistics connection: Some pedagogical remarks in response to Neuenschwander s question Mathematical Physics and Quantum Field Theory, Electronic Journal of Differential Equations, Conf. 04, 2000, pp. 207 213 http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

2.1 Green Functions in Quantum Mechanics

2.1 Green Functions in Quantum Mechanics Chapter 2 Green Functions and Observables 2.1 Green Functions in Quantum Mechanics We will be interested in studying the properties of the ground state of a quantum mechanical many particle system. We

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Introduction to Quantum Field Theory Quantum Electrodynamics

Introduction to Quantum Field Theory Quantum Electrodynamics Introduction to Quantum Field Theory Quantum Electrodynamics Rafael Juan Alvarez Reyes Supervisor: Vicente Delgado Universidad de La Laguna September, 2017 CONTENTS CONTENTS Contents 1 Summary 4 2 Introduction,

More information

On spinors and their transformation

On spinors and their transformation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH, Science Huβ, htt:www.scihub.orgajsir ISSN: 5-69X On sinors and their transforation Anaitra Palit AuthorTeacher, P5 Motijheel Avenue, Flat C,Kolkata

More information

Rotation Eigenvectors and Spin 1/2

Rotation Eigenvectors and Spin 1/2 Rotation Eigenvectors and Spin 1/2 Richard Shurtleff March 28, 1999 Abstract It is an easily deduced fact that any four-component spin 1/2 state for a massive particle is a linear combination of pairs

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

Elementary Par,cles Rohlf Ch , p474 et seq.

Elementary Par,cles Rohlf Ch , p474 et seq. Elementary Par,cles Rohlf Ch. 17-18, p474 et seq. The Schroedinger equa,on is non- rela,vis,c. Rela,vis,c wave equa,on (Klein- Gordon eq.) Rela,vis,c equa,on connec,ng the energy and momentum of a free

More information

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet Physics 58, Fall Semester 018 Professor Eduardo Fradkin Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 018, 5:00 pm 1 Spin waves in a quantum Heisenberg antiferromagnet In this

More information

The Lorentz and Poincaré Groups in Relativistic Field Theory

The Lorentz and Poincaré Groups in Relativistic Field Theory The and s in Relativistic Field Theory Term Project Nicolás Fernández González University of California Santa Cruz June 2015 1 / 14 the Our first encounter with the group is in special relativity it composed

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

Methods for detecting fatigue cracks in gears

Methods for detecting fatigue cracks in gears Journal of Physics: Conference Series Methods for detecting fatigue cracks in gears To cite this article: A Belšak and J Flašker 2009 J. Phys.: Conf. Ser. 181 012090 View the article online for udates

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Lecture 8 February 18, 2010

Lecture 8 February 18, 2010 Sources of Eectromagnetic Fieds Lecture 8 February 18, 2010 We now start to discuss radiation in free space. We wi reorder the materia of Chapter 9, bringing sections 6 7 up front. We wi aso cover some

More information