David Weenink. First semester 2007

Size: px
Start display at page:

Download "David Weenink. First semester 2007"

Transcription

1 Institute of Phonetic Sciences University of Amsterdam First semester 2007

2

3 Digital s What is a digital filter? An algorithm that calculates with sample values Formant /machine H 1 (z) that: Given input value x n Calculates output value y n (no delay) One value per sampling period T (the clock)

4 Digital s What is a digital filter? An algorithm that calculates with sample values Formant /machine H 1 (z) that: Given input value x n Calculates output value y n (no delay) One value per sampling period T (the clock)

5 Digital s What is a digital filter? An algorithm that calculates with sample values Formant /machine H 1 (z) that: Given input value x n Calculates output value y n (no delay) One value per sampling period T (the clock)

6 Digital s What is a digital filter? An algorithm that calculates with sample values Formant /machine H 1 (z) that: Given input value x n Calculates output value y n (no delay) One value per sampling period T (the clock)

7 Usage? Formant Pre-emphasis od speech signals Formant synthesis ing in the time domain...

8 Simple Integrator : y n = 0.5x n + 0.5x n 1 (n = 1, 2,... ) x 1 =1.00 Formant y 1 =0.50 x 1 y 1 Calculations y 1 = 0.5x x 0 = = 0.5 y 2 = 0.5x x 1 = = 0.5 y 3 = 0.5x x 2 = = 0 y 4 = 0.5x x 3 = = 0

9 Simple Integrator : y n = 0.5x n + 0.5x n 1 (n = 1, 2,... ) x 2 =0 Formant y 2 =0.50 x 2 y 2 Calculations y 1 = 0.5x x 0 = = 0.5 y 2 = 0.5x x 1 = = 0.5 y 3 = 0.5x x 2 = = 0 y 4 = 0.5x x 3 = = 0

10 Simple Integrator : y n = 0.5x n + 0.5x n 1 (n = 1, 2,... ) x 3 =0 Formant y 3 =0 x 3 y 3 Calculations y 1 = 0.5x x 0 = = 0.5 y 2 = 0.5x x 1 = = 0.5 y 3 = 0.5x x 2 = = 0 y 4 = 0.5x x 3 = = 0

11 Simple Integrator : y n = 0.5x n + 0.5x n 1 (n = 1, 2,... ) x 4 =0 Formant y 4 =0 x 4 y 4 Calculations y 1 = 0.5x x 0 = = 0.5 y 2 = 0.5x x 1 = = 0.5 y 3 = 0.5x x 2 = = 0 y 4 = 0.5x x 3 = = 0

12 Simple Integrator : y n = 0.5x n + 0.5x n 1 (n = 1, 2,... ) x 4 =0 y 4 =0 Formant x 4 y 4 Calculations y 1 = 0.5x x 0 = = 0.5 y 2 = 0.5x x 1 = = 0.5 y 3 = 0.5x x 2 = = 0 y 4 = 0.5x x 3 = = 0 If x n = (1, 0, 0, 0,... ) then y n = (0.5, 0.5, 0, 0,... ) (Impulse response)

13 Simple Differentiator : y n = 0.5x n 0.5x n 1 (n = 1, 2,... ) x 1 =1.00 Formant y 1 =0.50 x 1 y 1 Calculations y 1 = 0.5x 1 0.5x 0 = = 0.5 y 2 = 0.5x 2 0.5x 1 = = 0.5 y 3 = 0.5x 3 0.5x 2 = = 0 y 4 = 0.5x 4 0.5x 3 = = 0

14 Simple Differentiator : y n = 0.5x n 0.5x n 1 (n = 1, 2,... ) x 2 =0 Formant y 2 =-0.50 x 2 y 2 Calculations y 1 = 0.5x 1 0.5x 0 = = 0.5 y 2 = 0.5x 2 0.5x 1 = = 0.5 y 3 = 0.5x 3 0.5x 2 = = 0 y 4 = 0.5x 4 0.5x 3 = = 0

15 Simple Differentiator : y n = 0.5x n 0.5x n 1 (n = 1, 2,... ) x 3 =0 Formant y 3 =0 x 3 y 3 Calculations y 1 = 0.5x 1 0.5x 0 = = 0.5 y 2 = 0.5x 2 0.5x 1 = = 0.5 y 3 = 0.5x 3 0.5x 2 = = 0 y 4 = 0.5x 4 0.5x 3 = = 0

16 Simple Differentiator : y n = 0.5x n 0.5x n 1 (n = 1, 2,... ) x 4 =0 Formant y 4 =0 x 4 y 4 Calculations y 1 = 0.5x 1 0.5x 0 = = 0.5 y 2 = 0.5x 2 0.5x 1 = = 0.5 y 3 = 0.5x 3 0.5x 2 = = 0 y 4 = 0.5x 4 0.5x 3 = = 0

17 Simple Differentiator : y n = 0.5x n 0.5x n 1 (n = 1, 2,... ) x 4 =0 y 4 =0 Formant x 4 y 4 Calculations y 1 = 0.5x 1 0.5x 0 = = 0.5 y 2 = 0.5x 2 0.5x 1 = = 0.5 y 3 = 0.5x 3 0.5x 2 = = 0 y 4 = 0.5x 4 0.5x 3 = = 0 If x n = (1, 0, 0, 0,... ) then y n = (0.5, 0.5, 0, 0,... ) (Impulse response)

18 Pre-Emphasis 1 : y n = x n ax n 1, where a [0, 1] What is the spectrum? take Z-transform on the left and the right sample sequences: k y kz k = k {x k ax k 1 }z k Formant Y (z) = {x k z k a k x k 1z k = {x k z k a k x k 1z k+1 1 = {x k z k az 1 k x k 1z (k 1) = X (z) az 1 X (z) The simplification: Y (z) = (1 az 1 )X (z) We define H(z) = Y (z)/x (z) as the filter s spectrum

19 Pre-Emphasis 2 : y n = x n ax n 1, where a [0, 1] Spectrum: H(z) = 1 az 1, this equals the sum of the spectrum of δ(n), H(z) = 1, and the spectrum of aδ(n 1), H(z) = az 1! 1em] H(z) shows the filter s amplitude response. We now write z = e +2πifT (f values are equidistant ) H(f ) = H(f )H (f ) = (1 ae 2πifT )(1 ae +2πifT ) = 1 + a 2 a(e +2πifT + e 2πifT ) = 1 + a 2 2a cos 2πfT Formant

20 Pre-Emphasis Response 20 log H(f ) = 20 log 1 + a 2 2a cos 2πfT 6 = 10 log(1 + a 2 2a cos 2πfT ) Formant Amplitude (db) F s Frequency (Hz) a = 0.50 (dotted) a = 0.80 (dashed) a = 0.95 (plain) Extremes: 20 log H(F s /2)/H(0) = 20 log 1+a 1 a

21 Digital ing in the Time-Domain Most general linear digital filter formula: y n = M k=0 a kx n k + N j=1 b jy n j Output is linear combinantion of M + 1 inputs x k and N outputs y j. Formant Special Cases Finite Impulse response (FIR) filter, all b j = 0. y n = M k=0 a kx n k Non-recursive, output stops exactly M samples after the last input. Also called: Moving Average (MA) filter. Infinite Impulse Response (IIR) filter, some b j 0. Impulse response may be infinite. Auto Regressive (AR) filter if M = 0 ARMA if N 0 and M 0

22 Digital ing in the Time-Domain Most general linear digital filter formula: y n = M k=0 a kx n k + N j=1 b jy n j Output is linear combinantion of M + 1 inputs x k and N outputs y j. Formant Special Cases Finite Impulse response (FIR) filter, all b j = 0. y n = M k=0 a kx n k Non-recursive, output stops exactly M samples after the last input. Also called: Moving Average (MA) filter. Infinite Impulse Response (IIR) filter, some b j 0. Impulse response may be infinite. Auto Regressive (AR) filter if M = 0 ARMA if N 0 and M 0

23 Digital ing in the Time-Domain Most general linear digital filter formula: y n = M k=0 a kx n k + N j=1 b jy n j Output is linear combinantion of M + 1 inputs x k and N outputs y j. Formant Special Cases Finite Impulse response (FIR) filter, all b j = 0. y n = M k=0 a kx n k Non-recursive, output stops exactly M samples after the last input. Also called: Moving Average (MA) filter. Infinite Impulse Response (IIR) filter, some b j 0. Impulse response may be infinite. Auto Regressive (AR) filter if M = 0 ARMA if N 0 and M 0

24 Digital Layout Example Layout of the filter: y n = P 3 k=0 a kx n k + P 3 j=1 b jy n j = a 0x n + a 1x n 1 + a 2x n 2 + a 3x n 3 + b 1y n 1 + b 2y n 2 + b 3y n 3 Formant

25 Digital Frequency Response y n = M k=0 a kx n k + N j=1 b jy n j has : Formant Y (z) = P M k=0 a kz k 1 P N j=1 b j z j Numerator and denumerator are polynomials in z. A polynomial may become zero for certain combination of its coefficients. Numerator: no problem, i.e. H(z 0 ) = 0 Denumerator: unstable filter.

26 IIR Example: Formant Formant (1) y n q p = x n py n 1 qy n 2 = e 2πBT = 2 q cos 2πFT

27 The Formant y n = x n py n 1 qy n 2 A second order recursive filter with response: H(f ) = pz 1 + qz 2 = z 2 z 2 + pz + q Denominator is second degree polynomial in z. Zeros: z 1,2 = p 2 ± p 2 4 q H(f ) = 1 (z z 1 )(z z 2 ) Interesting (resonance) when zeros lie within the unit circle. Then p2 4 q < 0 and z 1,2 = p 2 ± i q p2 4 We see that z 1 = z2 Formant

28 The Formant Frequency Response F s /2 z 1 z 2 Formant F s Given p and q, z 1 and z 2 are fixed. 1 To get the frequency response H(f ) = z z 1 (z z 2 we let z trace the upper part of the unit circle. When we start at z = 0 and end in z = 1 the response follows the curve on the right. When z is close to z 1, z z 1 is very small and 1 the response z z 1 very large. We have resonance. z = 0 means frequency f = 0. z = 1 means f = F s /2

29 Relations Between p, q and F, B p and q and F Solve re iφ = z 1 = p 2 + i p 2 4 q cos φ = p 2 q Because φ = 2πFT we get F = 1 p 2πT arccos 2 q Formant F, B and p, q F & B (p,q): F = 1 2πT arccos p 2 q B = 1 πt ln q p & q (F, B): q = e 2πBT p = 2 q cos 2πFT

30 More Formants: Serial Formant For the total filter response: H(z) = Y (z) X (z) = H 2(z)Y 1 (z) X (z) = H 2 (z)h 1 (z) If H 1 (z) and H 2 (z) only have poles than H(z) has only poles.

31 More Formants: Parallel Formant For the total filter response: H(z) = Y (z) X (z) = Y 1(z)+Y 2 (z) X (z = H 1 (z) + H 2 (z) If H 1 (z) and H 2 (z) only have poles than H(z) has poles and also may have zeros. These zeros depend on H 1 (z) and H 2 (z) and are fixed. This is not desireable.

Damped Oscillators (revisited)

Damped Oscillators (revisited) Damped Oscillators (revisited) We saw that damped oscillators can be modeled using a recursive filter with two coefficients and no feedforward components: Y(k) = - a(1)*y(k-1) - a(2)*y(k-2) We derived

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Recursive, Infinite Impulse Response (IIR) Digital Filters:

Recursive, Infinite Impulse Response (IIR) Digital Filters: Recursive, Infinite Impulse Response (IIR) Digital Filters: Filters defined by Laplace Domain transfer functions (analog devices) can be easily converted to Z domain transfer functions (digital, sampled

More information

Lecture 3 Matlab Simulink Minimum Phase, Maximum Phase and Linear Phase Systems

Lecture 3 Matlab Simulink Minimum Phase, Maximum Phase and Linear Phase Systems Lecture 3 Matlab Simulink Minimum Phase, Maximum Phase and Linear Phase Systems Lester Liu October 31, 2012 Minimum Phase, Maximum Phase and Linear Phase LTI Systems In this section, we will explore the

More information

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5.

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5. . Typical Discrete-Time Systems.1. All-Pass Systems (5.5).. Minimum-Phase Systems (5.6).3. Generalized Linear-Phase Systems (5.7) .1. All-Pass Systems An all-pass system is defined as a system which has

More information

w n = c k v n k (1.226) w n = c k v n k + d k w n k (1.227) Clearly non-recursive filters are a special case of recursive filters where M=0.

w n = c k v n k (1.226) w n = c k v n k + d k w n k (1.227) Clearly non-recursive filters are a special case of recursive filters where M=0. Random Data 79 1.13 Digital Filters There are two fundamental types of digital filters Non-recursive N w n = c k v n k (1.226) k= N and recursive N M w n = c k v n k + d k w n k (1.227) k= N k=1 Clearly

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Poles and Zeros in z-plane

Poles and Zeros in z-plane M58 Mixed Signal Processors page of 6 Poles and Zeros in z-plane z-plane Response of discrete-time system (i.e. digital filter at a particular frequency ω is determined by the distance between its poles

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 02 DSP Fundamentals 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Chapter 3 Data Acquisition and Manipulation

Chapter 3 Data Acquisition and Manipulation 1 Chapter 3 Data Acquisition and Manipulation In this chapter we introduce z transf orm, or the discrete Laplace Transform, to solve linear recursions. Section 3.1 z-transform Given a data stream x {x

More information

SPEECH ANALYSIS AND SYNTHESIS

SPEECH ANALYSIS AND SYNTHESIS 16 Chapter 2 SPEECH ANALYSIS AND SYNTHESIS 2.1 INTRODUCTION: Speech signal analysis is used to characterize the spectral information of an input speech signal. Speech signal analysis [52-53] techniques

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

Chapter 9. Linear Predictive Analysis of Speech Signals 语音信号的线性预测分析

Chapter 9. Linear Predictive Analysis of Speech Signals 语音信号的线性预测分析 Chapter 9 Linear Predictive Analysis of Speech Signals 语音信号的线性预测分析 1 LPC Methods LPC methods are the most widely used in speech coding, speech synthesis, speech recognition, speaker recognition and verification

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

Lecture 7 - IIR Filters

Lecture 7 - IIR Filters Lecture 7 - IIR Filters James Barnes (James.Barnes@colostate.edu) Spring 204 Colorado State University Dept of Electrical and Computer Engineering ECE423 / 2 Outline. IIR Filter Representations Difference

More information

Discrete Time Systems

Discrete Time Systems Discrete Time Systems Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz 1 LTI systems In this course, we work only with linear and time-invariant systems. We talked about

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Prof. ark Fowler Note Set #28 D-T Systems: DT Filters Ideal & Practical /4 Ideal D-T Filters Just as in the CT case we can specify filters. We looked at the ideal filter for the

More information

# FIR. [ ] = b k. # [ ]x[ n " k] [ ] = h k. x[ n] = Ae j" e j# ˆ n Complex exponential input. [ ]Ae j" e j ˆ. ˆ )Ae j# e j ˆ. y n. y n.

# FIR. [ ] = b k. # [ ]x[ n  k] [ ] = h k. x[ n] = Ae j e j# ˆ n Complex exponential input. [ ]Ae j e j ˆ. ˆ )Ae j# e j ˆ. y n. y n. [ ] = h k M [ ] = b k x[ n " k] FIR k= M [ ]x[ n " k] convolution k= x[ n] = Ae j" e j ˆ n Complex exponential input [ ] = h k M % k= [ ]Ae j" e j ˆ % M = ' h[ k]e " j ˆ & k= k = H (" ˆ )Ae j e j ˆ ( )

More information

Time Series Analysis: 4. Linear filters. P. F. Góra

Time Series Analysis: 4. Linear filters. P. F. Góra Time Series Analysis: 4. Linear filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Linear filters in the Fourier domain Filtering: Multiplying the transform by a transfer function. g n DFT G

More information

Your solutions for time-domain waveforms should all be expressed as real-valued functions.

Your solutions for time-domain waveforms should all be expressed as real-valued functions. ECE-486 Test 2, Feb 23, 2017 2 Hours; Closed book; Allowed calculator models: (a) Casio fx-115 models (b) HP33s and HP 35s (c) TI-30X and TI-36X models. Calculators not included in this list are not permitted.

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

Introduction to DSP Time Domain Representation of Signals and Systems

Introduction to DSP Time Domain Representation of Signals and Systems Introduction to DSP Time Domain Representation of Signals and Systems Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt Digital Signal Processing (ECE407)

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Lecture 04: Discrete Frequency Domain Analysis (z-transform)

Lecture 04: Discrete Frequency Domain Analysis (z-transform) Lecture 04: Discrete Frequency Domain Analysis (z-transform) John Chiverton School of Information Technology Mae Fah Luang University 1st Semester 2009/ 2552 Outline Overview Lecture Contents Introduction

More information

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)}

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)} 1 VI. Z Transform Ch 24 Use: Analysis of systems, simple convolution, shorthand for e jw, stability. A. Definition: X(z) = x(n) z z - transforms Motivation easier to write Or Note if X(z) = Z {x(n)} z

More information

Enhanced Steiglitz-McBride Procedure for. Minimax IIR Digital Filters

Enhanced Steiglitz-McBride Procedure for. Minimax IIR Digital Filters Enhanced Steiglitz-McBride Procedure for Minimax IIR Digital Filters Wu-Sheng Lu Takao Hinamoto University of Victoria Hiroshima University Victoria, Canada Higashi-Hiroshima, Japan May 30, 2018 1 Outline

More information

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters. INTRODUCTION 2. IIR FILTER DESIGN 3. ANALOG FILTERS 4. THE BUTTERWORTH ANALOG FILTER 5. THE CHEBYSHEV-I

More information

Discrete-time signals and systems

Discrete-time signals and systems Discrete-time signals and systems 1 DISCRETE-TIME DYNAMICAL SYSTEMS x(t) G y(t) Linear system: Output y(n) is a linear function of the inputs sequence: y(n) = k= h(k)x(n k) h(k): impulse response of the

More information

The Impulse Signal. A signal I(k), which is defined as zero everywhere except at a single point, where its value is equal to 1

The Impulse Signal. A signal I(k), which is defined as zero everywhere except at a single point, where its value is equal to 1 The Impulse Signal A signal I(k), which is defined as zero everywhere except at a single point, where its value is equal to 1 I = [0 0 1 0 0 0]; stem(i) Filter Impulse through Feedforward Filter 0 0.25.5.25

More information

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes Engineering Applications of z-transforms 21.4 Introduction In this Section we shall apply the basic theory of z-transforms to help us to obtain the response or output sequence for a discrete system. This

More information

Transform Analysis of Linear Time-Invariant Systems

Transform Analysis of Linear Time-Invariant Systems Transform Analysis of Linear Time-Invariant Systems Discrete-Time Signal Processing Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC Transform

More information

CMPT 889: Lecture 5 Filters

CMPT 889: Lecture 5 Filters CMPT 889: Lecture 5 Filters Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 7, 2009 1 Digital Filters Any medium through which a signal passes may be regarded

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

Z Transform (Part - II)

Z Transform (Part - II) Z Transform (Part - II). The Z Transform of the following real exponential sequence x(nt) = a n, nt 0 = 0, nt < 0, a > 0 (a) ; z > (c) for all z z (b) ; z (d) ; z < a > a az az Soln. The given sequence

More information

Roll No. :... Invigilator s Signature :.. CS/B.Tech (EE-N)/SEM-6/EC-611/ DIGITAL SIGNAL PROCESSING. Time Allotted : 3 Hours Full Marks : 70

Roll No. :... Invigilator s Signature :.. CS/B.Tech (EE-N)/SEM-6/EC-611/ DIGITAL SIGNAL PROCESSING. Time Allotted : 3 Hours Full Marks : 70 Name : Roll No. :.... Invigilator s Signature :.. CS/B.Tech (EE-N)/SEM-6/EC-611/2011 2011 DIGITAL SIGNAL PROCESSING Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks.

More information

Digital Filters. Linearity and Time Invariance. Linear Time-Invariant (LTI) Filters: CMPT 889: Lecture 5 Filters

Digital Filters. Linearity and Time Invariance. Linear Time-Invariant (LTI) Filters: CMPT 889: Lecture 5 Filters Digital Filters CMPT 889: Lecture 5 Filters Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 7, 29 Any medium through which a signal passes may be regarded as

More information

Analog LTI system Digital LTI system

Analog LTI system Digital LTI system Sampling Decimation Seismometer Amplifier AAA filter DAA filter Analog LTI system Digital LTI system Filtering (Digital Systems) input output filter xn [ ] X ~ [ k] Convolution of Sequences hn [ ] yn [

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. I Reading:

More information

Discrete Time Systems

Discrete Time Systems 1 Discrete Time Systems {x[0], x[1], x[2], } H {y[0], y[1], y[2], } Example: y[n] = 2x[n] + 3x[n-1] + 4x[n-2] 2 FIR and IIR Systems FIR: Finite Impulse Response -- non-recursive y[n] = 2x[n] + 3x[n-1]

More information

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13)

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) LECTURE NOTES ON DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) FACULTY : B.V.S.RENUKA DEVI (Asst.Prof) / Dr. K. SRINIVASA RAO (Assoc. Prof) DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

More information

( ) John A. Quinn Lecture. ESE 531: Digital Signal Processing. Lecture Outline. Frequency Response of LTI System. Example: Zero on Real Axis

( ) John A. Quinn Lecture. ESE 531: Digital Signal Processing. Lecture Outline. Frequency Response of LTI System. Example: Zero on Real Axis John A. Quinn Lecture ESE 531: Digital Signal Processing Lec 15: March 21, 2017 Review, Generalized Linear Phase Systems Penn ESE 531 Spring 2017 Khanna Lecture Outline!!! 2 Frequency Response of LTI System

More information

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections Discrete-Time Signals and Systems The z-transform and Its Application Dr. Deepa Kundur University of Toronto Reference: Sections 3. - 3.4 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE EEE 43 DIGITAL SIGNAL PROCESSING (DSP) 2 DIFFERENCE EQUATIONS AND THE Z- TRANSFORM FALL 22 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME

CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME Shri Mata Vaishno Devi University, (SMVDU), 2013 Page 13 CHAPTER 2 RANDOM PROCESSES IN DISCRETE TIME When characterizing or modeling a random variable, estimates

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

PS403 - Digital Signal processing

PS403 - Digital Signal processing PS403 - Digital Signal processing 6. DSP - Recursive (IIR) Digital Filters Key Text: Digital Signal Processing with Computer Applications (2 nd Ed.) Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley

More information

(Refer Slide Time: )

(Refer Slide Time: ) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi FIR Lattice Synthesis Lecture - 32 This is the 32nd lecture and our topic for

More information

Lecture 3 - Design of Digital Filters

Lecture 3 - Design of Digital Filters Lecture 3 - Design of Digital Filters 3.1 Simple filters In the previous lecture we considered the polynomial fit as a case example of designing a smoothing filter. The approximation to an ideal LPF can

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #24 Tuesday, November 4, 2003 6.8 IIR Filter Design Properties of IIR Filters: IIR filters may be unstable Causal IIR filters with rational system

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

Transform analysis of LTI systems Oppenheim and Schafer, Second edition pp For LTI systems we can write

Transform analysis of LTI systems Oppenheim and Schafer, Second edition pp For LTI systems we can write Transform analysis of LTI systems Oppenheim and Schafer, Second edition pp. 4 9. For LTI systems we can write yœn D xœn hœn D X kd xœkhœn Alternatively, this relationship can be expressed in the z-transform

More information

Problem Set 2: Solution Due on Wed. 25th Sept. Fall 2013

Problem Set 2: Solution Due on Wed. 25th Sept. Fall 2013 EE 561: Digital Control Systems Problem Set 2: Solution Due on Wed 25th Sept Fall 2013 Problem 1 Check the following for (internal) stability [Hint: Analyze the characteristic equation] (a) u k = 05u k

More information

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter?

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter? UNIT - III PART A. Mention the important features of the IIR filters? i) The physically realizable IIR filters does not have linear phase. ii) The IIR filter specification includes the desired characteristics

More information

Z-Transform. x (n) Sampler

Z-Transform. x (n) Sampler Chapter Two A- Discrete Time Signals: The discrete time signal x(n) is obtained by taking samples of the analog signal xa (t) every Ts seconds as shown in Figure below. Analog signal Discrete time signal

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Lecture 18: Stability

Lecture 18: Stability Lecture 18: Stability ECE 401: Signal and Image Analysis University of Illinois 4/18/2017 1 Stability 2 Impulse Response 3 Z Transform Outline 1 Stability 2 Impulse Response 3 Z Transform BIBO Stability

More information

Digital Signal Processing:

Digital Signal Processing: Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried

More information

An Autoregressive Recurrent Mixture Density Network for Parametric Speech Synthesis

An Autoregressive Recurrent Mixture Density Network for Parametric Speech Synthesis ICASSP 07 New Orleans, USA An Autoregressive Recurrent Mixture Density Network for Parametric Speech Synthesis Xin WANG, Shinji TAKAKI, Junichi YAMAGISHI National Institute of Informatics, Japan 07-03-07

More information

Research Article Design of One-Dimensional Linear Phase Digital IIR Filters Using Orthogonal Polynomials

Research Article Design of One-Dimensional Linear Phase Digital IIR Filters Using Orthogonal Polynomials International Scholarly Research Network ISRN Signal Processing Volume, Article ID 8776, 7 pages doi:.54//8776 Research Article Design of One-Dimensional Linear Phase Digital IIR Filters Using Orthogonal

More information

Nonparametric and Parametric Defined This text distinguishes between systems and the sequences (processes) that result when a WN input is applied

Nonparametric and Parametric Defined This text distinguishes between systems and the sequences (processes) that result when a WN input is applied Linear Signal Models Overview Introduction Linear nonparametric vs. parametric models Equivalent representations Spectral flatness measure PZ vs. ARMA models Wold decomposition Introduction Many researchers

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

Experiment 13 Poles and zeros in the z plane: IIR systems

Experiment 13 Poles and zeros in the z plane: IIR systems Experiment 13 Poles and zeros in the z plane: IIR systems Achievements in this experiment You will be able to interpret the poles and zeros of the transfer function of discrete-time filters to visualize

More information

Lecture 13: Pole/Zero Diagrams and All Pass Systems

Lecture 13: Pole/Zero Diagrams and All Pass Systems EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 13: Pole/Zero Diagrams and All Pass Systems No4, 2001 Prof: J. Bilmes

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Today. ESE 531: Digital Signal Processing. IIR Filter Design. Impulse Invariance. Impulse Invariance. Impulse Invariance. ω < π.

Today. ESE 531: Digital Signal Processing. IIR Filter Design. Impulse Invariance. Impulse Invariance. Impulse Invariance. ω < π. Today ESE 53: Digital Signal Processing! IIR Filter Design " Lec 8: March 30, 207 IIR Filters and Adaptive Filters " Bilinear Transformation! Transformation of DT Filters! Adaptive Filters! LMS Algorithm

More information

Need for transformation?

Need for transformation? Z-TRANSFORM In today s class Z-transform Unilateral Z-transform Bilateral Z-transform Region of Convergence Inverse Z-transform Power Series method Partial Fraction method Solution of difference equations

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Detailed Solutions to Exercises

Detailed Solutions to Exercises Detailed Solutions to Exercises Digital Signal Processing Mikael Swartling Nedelko Grbic rev. 205 Department of Electrical and Information Technology Lund University Detailed solution to problem E3.4 A

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur- 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY Academic Year 2016-2017 QUESTION BANK-ODD SEMESTER NAME OF THE SUBJECT SUBJECT CODE SEMESTER YEAR

More information

Professor Fearing EECS150/Problem Set Solution Fall 2013 Due at 10 am, Thu. Oct. 3 (homework box under stairs)

Professor Fearing EECS150/Problem Set Solution Fall 2013 Due at 10 am, Thu. Oct. 3 (homework box under stairs) Professor Fearing EECS50/Problem Set Solution Fall 203 Due at 0 am, Thu. Oct. 3 (homework box under stairs). (25 pts) List Processor Timing. The list processor as discussed in lecture is described in RT

More information

Chapter 7: Filter Design 7.1 Practical Filter Terminology

Chapter 7: Filter Design 7.1 Practical Filter Terminology hapter 7: Filter Design 7. Practical Filter Terminology Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing and communication systems. This is due

More information

Formant Analysis using LPC

Formant Analysis using LPC Linguistics 582 Basics of Digital Signal Processing Formant Analysis using LPC LPC (linear predictive coefficients) analysis is a technique for estimating the vocal tract transfer function, from which

More information

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut Finite Word Length Effects and Quantisation Noise 1 Finite Word Length Effects Finite register lengths and A/D converters cause errors at different levels: (i) input: Input quantisation (ii) system: Coefficient

More information

Analysis Of Ill-Conditioning Of Multi-Channel Deconvolution Problems

Analysis Of Ill-Conditioning Of Multi-Channel Deconvolution Problems Analysis Of Ill-Conditioning Of Multi-Channel Deconvolution Problems Ole Kirkeby, Per Rubak, and Angelo Farina * Department of Communication Techology, Fredrik Bajers Vej 7, Aalborg University, DK-9220

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 19: Lattice Filters Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 2008 K. E. Barner (Univ. of Delaware) ELEG

More information

Q.1. Which one of the following is scalar quantity? Displacement Option Electric field Acceleration Work Correct Answer 4 w = F.ds; it does not have any direction, it s a scalar quantity. Q.. Which one

More information

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M:

Lesson 1. Optimal signalbehandling LTH. September Statistical Digital Signal Processing and Modeling, Hayes, M: Lesson 1 Optimal Signal Processing Optimal signalbehandling LTH September 2013 Statistical Digital Signal Processing and Modeling, Hayes, M: John Wiley & Sons, 1996. ISBN 0471594318 Nedelko Grbic Mtrl

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Issued: Tuesday, September 5. 6.: Discrete-Time Signal Processing Fall 5 Solutions for Problem Set Problem.

More information

UNIT 4: DIGITAL SYSTEM MODELS

UNIT 4: DIGITAL SYSTEM MODELS UNIT 4: DIGITAL SYSTEM MODELS 4.1 Introduction This unit is concerned with the description of digital systems, it introduces the concepts of a linear time-invariant system, convolution, the general system

More information

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design DIGITAL SIGNAL PROCESSING Chapter 6 IIR Filter Design OER Digital Signal Processing by Dr. Norizam Sulaiman work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

More information

ECE503: Digital Signal Processing Lecture 5

ECE503: Digital Signal Processing Lecture 5 ECE53: Digital Signal Processing Lecture 5 D. Richard Brown III WPI 3-February-22 WPI D. Richard Brown III 3-February-22 / 32 Lecture 5 Topics. Magnitude and phase characterization of transfer functions

More information

Linear Prediction 1 / 41

Linear Prediction 1 / 41 Linear Prediction 1 / 41 A map of speech signal processing Natural signals Models Artificial signals Inference Speech synthesis Hidden Markov Inference Homomorphic processing Dereverberation, Deconvolution

More information

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by Code No: RR320402 Set No. 1 III B.Tech II Semester Regular Examinations, Apr/May 2006 DIGITAL SIGNAL PROCESSING ( Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering,

More information

z-transforms Definition of the z-transform Chapter

z-transforms Definition of the z-transform Chapter z-transforms Chapter 7 In the study of discrete-time signal and systems, we have thus far considered the time-domain and the frequency domain. The z- domain gives us a third representation. All three domains

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Introduction to Digital Signal Processing 1.1 What is DSP? DSP is a technique of performing the mathematical operations on the signals in digital domain. As real time signals are analog in nature we need

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

LINEAR-PHASE FIR FILTERS DESIGN

LINEAR-PHASE FIR FILTERS DESIGN LINEAR-PHASE FIR FILTERS DESIGN Prof. Siripong Potisuk inimum-phase Filters A digital filter is a minimum-phase filter if and only if all of its zeros lie inside or on the unit circle; otherwise, it is

More information

Question Bank. UNIT 1 Part-A

Question Bank. UNIT 1 Part-A FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

VISA: Versatile Impulse Structure Approximation for Time-Domain Linear Macromodeling

VISA: Versatile Impulse Structure Approximation for Time-Domain Linear Macromodeling VISA: Versatile Impulse Structure Approximation for Time-Domain Linear Macromodeling Chi-Un Lei and Ngai Wong Dept. of Electrical and Electronic Engineering The University of Hong Kong Presented by C.U.

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 IT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete all 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. assachusetts

More information

An Fir-Filter Example: Hanning Filter

An Fir-Filter Example: Hanning Filter An Fir-Filter Example: Hanning Filter Josef Goette Bern University of Applied Sciences, Biel Institute of Human Centered Engineering - microlab Josef.Goette@bfh.ch February 7, 2018 Contents 1 Mathematical

More information

Solutions: Homework Set # 5

Solutions: Homework Set # 5 Signal Processing for Communications EPFL Winter Semester 2007/2008 Prof. Suhas Diggavi Handout # 22, Tuesday, November, 2007 Solutions: Homework Set # 5 Problem (a) Since h [n] = 0, we have (b) We can

More information

DSP. Chapter-3 : Filter Design. Marc Moonen. Dept. E.E./ESAT-STADIUS, KU Leuven

DSP. Chapter-3 : Filter Design. Marc Moonen. Dept. E.E./ESAT-STADIUS, KU Leuven DSP Chapter-3 : Filter Design Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/ Filter Design Process Step-1 : Define filter specs Pass-band, stop-band,

More information