EECE 301 Signals & Systems Prof. Mark Fowler

Size: px
Start display at page:

Download "EECE 301 Signals & Systems Prof. Mark Fowler"

Transcription

1 EECE 3 Signals & Systems Prof. ark Fowler Note Set #28 D-T Systems: DT Filters Ideal & Practical /4

2 Ideal D-T Filters Just as in the CT case we can specify filters. We looked at the ideal filter for the CT case here we look at it for the DT case. Ideal Lowpass Filter (LPF) H ( Ω) Cut-off frequency = B rad/sample 4π 3π 2π π -B B π 2π 3π 4π Ω H ( Ω) Linear Phase 4π 3π 2π π -B B π 2π 3π 4π As always with DT only need to look here As for CT there are lowpass, highpass, pass, and stop filters. 2/4

3 Why can t an ideal filter exist in practice?? Same as for CT. It is non-causal For the ideal LPF 2 jωn H( Ω ) = p ( Ω) e d Ω [ ππ, ) repeats elsewhere B Now consider applying a delta function as its input: x[n] = δ[n] X(Ω) = Then the output has DTFT: jωn Y( Ω ) = X( Ω) H( Ω ) = p ( Ω) e d Ω [ ππ, ) repeats elsewhere B From the DTFT Table: sinc[ B n] p ( 2 ) 2 Ω+ π k π π 2B k= B Linear Phase Imparts Delay So the response to a delta (applied at t = ) is: [ ] = ( / π)sinc [( / π)( )] yn B B n n d x[n] = δ[n] Ideal LPF yn [ ] t Starts before input starts Thus, system is non-causal! n d n 3/4

4 Causal LPF Design Truncated sinc ethod In practice, the best we can do is try to approximate the ideal LPF. We already tried this: yn [ ] = xn [ ] + xn [ ] xn [ ( N )] N N N A really bad LPF! But now we ve seen that a shifted sinc function seems to be involved so a simple approach is to define the b coefficients in terms of a truncated shifted sinc function: b m B = Cutoff Frequency Error in Video [ π ] b = ( B/ π)sinc ( B/ )( m /2), m =,,2,, m yn [ ] = bxn [ ] + bxn [ ] b xn [ ] H z b bz b z /2 ( ) = m H( Ω ) = b + be Ω b e Causal, Non-Recursive Filter j jω 4/4

5 Let s see how well this method works These all have Linear Phase! All cases for B =.6π Ω/π Ω/π N = 2 = 2 N = 6 = 6 N = Ω/π Frequency Response of a sinc filter truncated to 2 samples Frequency Response of a sinc filter truncated to 6 samples Frequency Response of a sinc filter truncated to 2 samples Some general insight: Longer lengths for the truncated impulse response Gives better approximation to the ideal filter response!! 5/4

6 For DT filters always plot in db but never use a log frequency axis! This truncated sinc approach is a very simplistic approach and does not yield the best possible filters as we can see even better in the db plot below! There are very powerful methods for designing REALLY good DT filters we ll look at those in the next set of notes Pass looks OK Stop not so good! (db) Red: = 3 Blue: = Normalized DT Frequency Ω/π 6/4

7 Practical Filter Specification Lowpass Filter Specification δ p H ( Ω) + δ p + δ p H ( Ω) δ s δ p Pass Ripple = 2log ( + δ p ) db Stop Attenuation = 2log ( δ s ) db To make filter more ideal : δ p, δ s, Ω s Ω p δ s Ω p Ω s Ω Pass- Transition Stop- 7/4

8 Highpass Filter Specification To make filter more ideal : δ p, δ s, Ω s Ω p + δ p δ p Pass Ripple = 2log ( + δ p ) db Stop Attenuation = 2log ( δ s ) db δ s Ω s Ω p π Ω Stop- Transition Pass- 8/4

9 Bandpass Filter Specification To make filter more ideal : δ p, δ si, Ω si Ω pi + δ p δ p δ s δ s2 Ω s Ω p Ω p2 Ω s2 π Ω Stop Trans Pass- Trans Stop- 9/4

10 Bandstop Filter Specification + δ p δ p To make filter more ideal : δ p, δ si, Ω si Ω pi + δ p2 δ p2 δ s Ω p Ω s Ω s2 Ω p2 π Ω Pass Trans Stop- Trans Pass- /4

11 DT Filter Types There are 2 main types of DT filters, based on the structure of their Diff. Equation: Recursive Filters Have Feedback in the Difference Equation y n] + a y[ n ] an y[ n N ] = b x[ n] + b x[ n ] b x[ n ] [ Feedback Terms y[ n] = N i= a i y[ n i] + i= b x[ n i i] Feedback Terms Non-Recursive Filters Have No Feedback in the Difference Equation yn [ ] = bxn [ ] + bxn [ ] b xn [ ] /4

12 Recursive Filters y[ n] = N i= a y[ n i] + i i= b x[ n i] i H( z) = Feedback Terms b + bz b z N + az an z Feedback Terms! H( z) = z H ( Ω ) = bz + bz b ( N ) N N z + az an Ω b + be b e Ω + ae a e j jω j jωn N? Origin N > : N Origin N < : N Origin Only Feedback can give poles not at origin! Normalized DT Frequency Ω/π ust worry about stability! ake sure all poles are inside UC! 2/4

13 Non-Recursive Filters y[ n] = bx[ n i] i= i H z = b + bz + + b z ( )... H( z) = bz + bz b z Origin H( Ω ) = b + be Ω b e j jω No Feedback Only Poles at Origin! No worries about stability! Always Stable!!! Normalized DT Frequency Ω/π 3/4

14 IIR & FIR Filters These are just new names for filters we ve already seen! IIR: Infinite Impulse Response Impulse Response has infinite duration FIR: Finite Impulse Response Impulse Response has finite duration Recursive Filters are IIR H( z) n n n = 2 2 N N ( N ) Bz ( ) z Az ( ) Assumes no repeated roots & No Direct Terms hn [ ] = kpun [ ] + k pun [ ] + + k p un [ ] Non-Recursive Filters are FIR ( )... H z = b + bz + + b z hn [ ] = {,, b, b, b,, b,,,, } 2 n= 4/4

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Signals & Systems Prof. Mark Fowler Note Set #26 D-T Systems: Transfer Function and Frequency Response / Finding the Transfer Function from Difference Eq. Recall: we found a DT system s freq. resp.

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

The Discrete-Time Fourier

The Discrete-Time Fourier Chapter 3 The Discrete-Time Fourier Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 3-1-1 Continuous-Time Fourier Transform Definition The CTFT of

More information

Discrete Time Systems

Discrete Time Systems Discrete Time Systems Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz 1 LTI systems In this course, we work only with linear and time-invariant systems. We talked about

More information

Your solutions for time-domain waveforms should all be expressed as real-valued functions.

Your solutions for time-domain waveforms should all be expressed as real-valued functions. ECE-486 Test 2, Feb 23, 2017 2 Hours; Closed book; Allowed calculator models: (a) Casio fx-115 models (b) HP33s and HP 35s (c) TI-30X and TI-36X models. Calculators not included in this list are not permitted.

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

Computer Engineering 4TL4: Digital Signal Processing

Computer Engineering 4TL4: Digital Signal Processing Computer Engineering 4TL4: Digital Signal Processing Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December, 2003 This examination paper includes

More information

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet

EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, 2007 Cover Sheet Test Duration: 120 minutes. Open Book but Closed Notes. Calculators allowed!! This test contains five problems. Each of

More information

ECE503: Digital Signal Processing Lecture 5

ECE503: Digital Signal Processing Lecture 5 ECE53: Digital Signal Processing Lecture 5 D. Richard Brown III WPI 3-February-22 WPI D. Richard Brown III 3-February-22 / 32 Lecture 5 Topics. Magnitude and phase characterization of transfer functions

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

Filter Design Problem

Filter Design Problem Filter Design Problem Design of frequency-selective filters usually starts with a specification of their frequency response function. Practical filters have passband and stopband ripples, while exhibiting

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 30 Signals & Systems Prof. Mark Fowler Note Set #22 D-T Systems: DT Systems & Difference Equations / D-T System Models So far we ve seen how to use the FT to analyze circuits Use phasors and standard

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Issued: Tuesday, September 5. 6.: Discrete-Time Signal Processing Fall 5 Solutions for Problem Set Problem.

More information

LINEAR-PHASE FIR FILTERS DESIGN

LINEAR-PHASE FIR FILTERS DESIGN LINEAR-PHASE FIR FILTERS DESIGN Prof. Siripong Potisuk inimum-phase Filters A digital filter is a minimum-phase filter if and only if all of its zeros lie inside or on the unit circle; otherwise, it is

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

Signal Processing. Lecture 10: FIR Filter Design. Ahmet Taha Koru, Ph. D. Yildiz Technical University Fall

Signal Processing. Lecture 10: FIR Filter Design. Ahmet Taha Koru, Ph. D. Yildiz Technical University Fall Signal Processing Lecture 10: FIR Filter Design Ahmet Taha Koru, Ph. D. Yildiz Technical University 2017-2018 Fall ATK (YTU) Signal Processing 2017-2018 Fall 1 / 47 Introduction Introduction ATK (YTU)

More information

Basic Design Approaches

Basic Design Approaches (Classic) IIR filter design: Basic Design Approaches. Convert the digital filter specifications into an analog prototype lowpass filter specifications. Determine the analog lowpass filter transfer function

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

ECGR4124 Digital Signal Processing Exam 2 Spring 2017

ECGR4124 Digital Signal Processing Exam 2 Spring 2017 ECGR4124 Digital Signal Processing Exam 2 Spring 2017 Name: LAST 4 NUMBERS of Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting NO TEXTBOOK, NO CALCULATOR,

More information

Transform Analysis of Linear Time-Invariant Systems

Transform Analysis of Linear Time-Invariant Systems Transform Analysis of Linear Time-Invariant Systems Discrete-Time Signal Processing Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC Transform

More information

Linear Convolution Using FFT

Linear Convolution Using FFT Linear Convolution Using FFT Another useful property is that we can perform circular convolution and see how many points remain the same as those of linear convolution. When P < L and an L-point circular

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

# FIR. [ ] = b k. # [ ]x[ n " k] [ ] = h k. x[ n] = Ae j" e j# ˆ n Complex exponential input. [ ]Ae j" e j ˆ. ˆ )Ae j# e j ˆ. y n. y n.

# FIR. [ ] = b k. # [ ]x[ n  k] [ ] = h k. x[ n] = Ae j e j# ˆ n Complex exponential input. [ ]Ae j e j ˆ. ˆ )Ae j# e j ˆ. y n. y n. [ ] = h k M [ ] = b k x[ n " k] FIR k= M [ ]x[ n " k] convolution k= x[ n] = Ae j" e j ˆ n Complex exponential input [ ] = h k M % k= [ ]Ae j" e j ˆ % M = ' h[ k]e " j ˆ & k= k = H (" ˆ )Ae j e j ˆ ( )

More information

INF3440/INF4440. Design of digital filters

INF3440/INF4440. Design of digital filters Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 INF3440/INF4440. Design of digital filters October 2004 Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 Last lectures:

More information

Discrete Time Systems

Discrete Time Systems 1 Discrete Time Systems {x[0], x[1], x[2], } H {y[0], y[1], y[2], } Example: y[n] = 2x[n] + 3x[n-1] + 4x[n-2] 2 FIR and IIR Systems FIR: Finite Impulse Response -- non-recursive y[n] = 2x[n] + 3x[n-1]

More information

Digital Signal Processing IIR Filter Design via Bilinear Transform

Digital Signal Processing IIR Filter Design via Bilinear Transform Digital Signal Processing IIR Filter Design via Bilinear Transform D. Richard Brown III D. Richard Brown III 1 / 12 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

Lecture 7 - IIR Filters

Lecture 7 - IIR Filters Lecture 7 - IIR Filters James Barnes (James.Barnes@colostate.edu) Spring 204 Colorado State University Dept of Electrical and Computer Engineering ECE423 / 2 Outline. IIR Filter Representations Difference

More information

Digital Signal Processing:

Digital Signal Processing: Digital Signal Processing: Mathematical and algorithmic manipulation of discretized and quantized or naturally digital signals in order to extract the most relevant and pertinent information that is carried

More information

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems.

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 1th, 016 Examination hours: 14:30 18.30 This problem set

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings

More information

Discrete-Time Signals and Systems. Frequency Domain Analysis of LTI Systems. The Frequency Response Function. The Frequency Response Function

Discrete-Time Signals and Systems. Frequency Domain Analysis of LTI Systems. The Frequency Response Function. The Frequency Response Function Discrete-Time Signals and s Frequency Domain Analysis of LTI s Dr. Deepa Kundur University of Toronto Reference: Sections 5., 5.2-5.5 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:

More information

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters. INTRODUCTION 2. IIR FILTER DESIGN 3. ANALOG FILTERS 4. THE BUTTERWORTH ANALOG FILTER 5. THE CHEBYSHEV-I

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning EE 637 Study Solutions - Assignment 3 Topics: Discrete transforms; and D Filters, sampling, and scanning Spring 00 Exam : Problem 3 (sampling Consider a sampling system were the input, s(t = sinc(t, is

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

Today. ESE 531: Digital Signal Processing. IIR Filter Design. Impulse Invariance. Impulse Invariance. Impulse Invariance. ω < π.

Today. ESE 531: Digital Signal Processing. IIR Filter Design. Impulse Invariance. Impulse Invariance. Impulse Invariance. ω < π. Today ESE 53: Digital Signal Processing! IIR Filter Design " Lec 8: March 30, 207 IIR Filters and Adaptive Filters " Bilinear Transformation! Transformation of DT Filters! Adaptive Filters! LMS Algorithm

More information

-Digital Signal Processing- FIR Filter Design. Lecture May-16

-Digital Signal Processing- FIR Filter Design. Lecture May-16 -Digital Signal Processing- FIR Filter Design Lecture-17 24-May-16 FIR Filter Design! FIR filters can also be designed from a frequency response specification.! The equivalent sampled impulse response

More information

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by Code No: RR320402 Set No. 1 III B.Tech II Semester Regular Examinations, Apr/May 2006 DIGITAL SIGNAL PROCESSING ( Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering,

More information

Very useful for designing and analyzing signal processing systems

Very useful for designing and analyzing signal processing systems z-transform z-transform The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems Very useful for designing and analyzing signal processing

More information

Lecture 14: Windowing

Lecture 14: Windowing Lecture 14: Windowing ECE 401: Signal and Image Analysis University of Illinois 3/29/2017 1 DTFT Review 2 Windowing 3 Practical Windows Outline 1 DTFT Review 2 Windowing 3 Practical Windows DTFT Review

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 9: February 13th, 2018 Downsampling/Upsampling and Practical Interpolation Lecture Outline! CT processing of DT signals! Downsampling! Upsampling 2 Continuous-Time

More information

ECGR4124 Digital Signal Processing Midterm Spring 2010

ECGR4124 Digital Signal Processing Midterm Spring 2010 ECGR4124 Digital Signal Processing Midterm Spring 2010 Name: LAST 4 DIGITS of Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting Open book, 1 sheet front/back

More information

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal 2. CONVOLUTION Convolution sum. Response of d.t. LTI systems at a certain input signal Any signal multiplied by the unit impulse = the unit impulse weighted by the value of the signal in 0: xn [ ] δ [

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 02 DSP Fundamentals 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Design of IIR filters

Design of IIR filters Design of IIR filters Standard methods of design of digital infinite impulse response (IIR) filters usually consist of three steps, namely: 1 design of a continuous-time (CT) prototype low-pass filter;

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur- 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY Academic Year 2016-2017 QUESTION BANK-ODD SEMESTER NAME OF THE SUBJECT SUBJECT CODE SEMESTER YEAR

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

ECGR4124 Digital Signal Processing Final Spring 2009

ECGR4124 Digital Signal Processing Final Spring 2009 ECGR4124 Digital Signal Processing Final Spring 2009 Name: LAST 4 NUMBERS of Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting Open book, 2 sheet front/back

More information

Introduction to DSP Time Domain Representation of Signals and Systems

Introduction to DSP Time Domain Representation of Signals and Systems Introduction to DSP Time Domain Representation of Signals and Systems Dr. Waleed Al-Hanafy waleed alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt Digital Signal Processing (ECE407)

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC2314- DIGITAL SIGNAL PROCESSING UNIT I INTRODUCTION PART A Classification of systems : Continuous and Discrete

More information

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED EE 33 Linear Signals & Systems (Fall 208) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED By: Mr. Houshang Salimian and Prof. Brian L. Evans Prolog for the Solution Set.

More information

Discrete-time Signals and Systems in

Discrete-time Signals and Systems in Discrete-time Signals and Systems in the Frequency Domain Chapter 3, Sections 3.1-39 3.9 Chapter 4, Sections 4.8-4.9 Dr. Iyad Jafar Outline Introduction The Continuous-Time FourierTransform (CTFT) The

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

Digital Signal Processing Lecture 5

Digital Signal Processing Lecture 5 Remote Sensing Laboratory Dept. of Information Engineering and Computer Science University of Trento Via Sommarive, 14, I-38123 Povo, Trento, Italy Digital Signal Processing Lecture 5 Begüm Demir E-mail:

More information

CMPT 889: Lecture 5 Filters

CMPT 889: Lecture 5 Filters CMPT 889: Lecture 5 Filters Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 7, 2009 1 Digital Filters Any medium through which a signal passes may be regarded

More information

Discrete Time Fourier Transform

Discrete Time Fourier Transform Discrete Time Fourier Transform Recall that we wrote the sampled signal x s (t) = x(kt)δ(t kt). We calculate its Fourier Transform. We do the following: Ex. Find the Continuous Time Fourier Transform of

More information

Digital Filters. Linearity and Time Invariance. Linear Time-Invariant (LTI) Filters: CMPT 889: Lecture 5 Filters

Digital Filters. Linearity and Time Invariance. Linear Time-Invariant (LTI) Filters: CMPT 889: Lecture 5 Filters Digital Filters CMPT 889: Lecture 5 Filters Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 7, 29 Any medium through which a signal passes may be regarded as

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE EEE 43 DIGITAL SIGNAL PROCESSING (DSP) 2 DIFFERENCE EQUATIONS AND THE Z- TRANSFORM FALL 22 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

IT6502 DIGITAL SIGNAL PROCESSING Unit I - SIGNALS AND SYSTEMS Basic elements of DSP concepts of frequency in Analo and Diital Sinals samplin theorem Discrete time sinals, systems Analysis of discrete time

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Quadrature-Mirror Filter Bank

Quadrature-Mirror Filter Bank Quadrature-Mirror Filter Bank In many applications, a discrete-time signal x[n] is split into a number of subband signals { v k [ n]} by means of an analysis filter bank The subband signals are then processed

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 12th, 2019 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #20 Wednesday, October 22, 2003 6.4 The Phase Response and Distortionless Transmission In most filter applications, the magnitude response H(e

More information

Filter structures ELEC-E5410

Filter structures ELEC-E5410 Filter structures ELEC-E5410 Contents FIR filter basics Ideal impulse responses Polyphase decomposition Fractional delay by polyphase structure Nyquist filters Half-band filters Gibbs phenomenon Discrete-time

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR Digital Signal Processing - Design of Digital Filters - FIR Electrical Engineering and Computer Science University of Tennessee, Knoxville November 3, 2015 Overview 1 2 3 4 Roadmap Introduction Discrete-time

More information

! z-transform. " Tie up loose ends. " Regions of convergence properties. ! Inverse z-transform. " Inspection. " Partial fraction

! z-transform.  Tie up loose ends.  Regions of convergence properties. ! Inverse z-transform.  Inspection.  Partial fraction Lecture Outline ESE 53: Digital Signal Processing Lec 6: January 3, 207 Inverse z-transform! z-transform " Tie up loose ends " gions of convergence properties! Inverse z-transform " Inspection " Partial

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

Discrete-Time David Johns and Ken Martin University of Toronto

Discrete-Time David Johns and Ken Martin University of Toronto Discrete-Time David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 40 Overview of Some Signal Spectra x c () t st () x s () t xn

More information

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12 . ECE 40 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter IIR Filter Design ) Based on Analog Prototype a) Impulse invariant design b) Bilinear transformation ( ) ~ widely used ) Computer-Aided

More information

Question Bank. UNIT 1 Part-A

Question Bank. UNIT 1 Part-A FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai -625 020 An ISO 9001:2008 Certified Institution Question Bank DEPARTMENT OF ELECTRONICS AND COMMUNICATION

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

Digital Signal Processing I Final Exam Fall 2008 ECE Dec Cover Sheet

Digital Signal Processing I Final Exam Fall 2008 ECE Dec Cover Sheet Digital Signal Processing I Final Exam Fall 8 ECE538 7 Dec.. 8 Cover Sheet Test Duration: minutes. Open Book but Closed Notes. Calculators NOT allowed. This test contains FIVE problems. All work should

More information

VU Signal and Image Processing

VU Signal and Image Processing 052600 VU Signal and Image Processing Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at raphael.sahann@univie.ac.at vda.cs.univie.ac.at/teaching/sip/18s/

More information

Analog vs. discrete signals

Analog vs. discrete signals Analog vs. discrete signals Continuous-time signals are also known as analog signals because their amplitude is analogous (i.e., proportional) to the physical quantity they represent. Discrete-time signals

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 30, 2018 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

UNIVERSITI SAINS MALAYSIA. EEE 512/4 Advanced Digital Signal and Image Processing

UNIVERSITI SAINS MALAYSIA. EEE 512/4 Advanced Digital Signal and Image Processing -1- [EEE 512/4] UNIVERSITI SAINS MALAYSIA First Semester Examination 2013/2014 Academic Session December 2013 / January 2014 EEE 512/4 Advanced Digital Signal and Image Processing Duration : 3 hours Please

More information

Tunable IIR Digital Filters

Tunable IIR Digital Filters Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections Discrete-Time Signals and Systems The z-transform and Its Application Dr. Deepa Kundur University of Toronto Reference: Sections 3. - 3.4 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:

More information

MITOCW watch?v=jtj3v Rx7E

MITOCW watch?v=jtj3v Rx7E MITOCW watch?v=jtj3v Rx7E The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information