Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Size: px
Start display at page:

Download "Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients"

Transcription

1 able : Properties of the Continuous-ime Fourier Series x(t = e jkω0t = = x(te jkω0t dt = e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period and fundamental frequency ω 0 =/ b k Linearity Ax(t+By(t A + Bb k ime-shifting x(t t 0 e jkω 0t 0 = e jk(/t 0 Frequency-Shifting e jmω0t = e jm(/t x(t M Conjugation x (t ime Reversal x( t a k a k ime Scaling x(αt,α>0 (periodic with period /α Periodic Convolution x(τy(t τdτ b k Multiplication Differentiation Integration Conjugate Symmetry for Real Real and Even x(ty(t dx(t dt t x(tdt x(t real x(t real and even (finite-valued and periodic only if a 0 =0 l= a l b k l jkω 0 = jk ( ( = jk(/ jkω 0 = a k Re } = Rea k } Im } = Ima k } = a k < = < a k real and even Real and Odd x(t realandodd purely imaginary and odd Even-Odd Decomposition of Real xe (t =Evx(t} [x(t real] x o (t =Odx(t} [x(t real] Parseval s Relation for Periodic x(t 2 dt = 2 Re } jim }

2 able 2: Properties of the Discrete-ime Fourier Series x[n] = e jkω0n = e jk(/n = k=<> k=<> x[n]e jkω0n = n=<> n=<> x[n]e jk(/n Property Periodic signal Fourier series coefficients x[n] y[n] } Periodic with period and fundamental frequency ω 0 =/ b k } Periodic with period Linearity Ax[n]+By[n] A + Bb k ime shift x[n n 0 ] e jk(/n 0 Frequency Shift e jm(/n x[n] M Conjugation x [n] ime Reversal x[ n] a k a k ime Scaling x (m [n] = Periodic Convolution Multiplication x[n/m] if n is a multiple of m 0 if n is not a multiple of m (periodic with period m x[r]y[n r] r= x[n]y[n] m b k l= ( viewed as periodic with period m a l b k l First Difference x[n] x[n ] ( e jk(/ n ( ( finite-valued and Running Sum x[k] a periodic only if a 0 =0 ( e jk(/ k = a k Re } = Rea k } Conjugate Symmetry x[n] real Ima for Real k } = Ima k } = a k < = < a k Real and Even x[n] real and even real and even Real and Odd x[n] realandodd purely imaginary and odd Even-Odd Decomposition of Real x e [n] =Evx[n]} x o [n] =Odx[n]} [x[n] real] [x[n] real] Re } jim } Parseval s Relation for Periodic x[n] 2 = 2 n= k=

3 able 3: Properties of the Continuous-ime Fourier ransform x(t = X(jωe jωt dω X(jω= x(te jωt dt Property Aperiodic Signal Fourier transform x(t y(t X(jω Y (jω Linearity ax(t+by(t ax(jω+by (jω ime-shifting x(t t 0 e jωt 0 X(jω Frequency-shifting e jω0t x(t X(j(ω ω 0 Conjugation x (t X ( jω ime-reversal x( t X( jω ( jω ime- and Frequency-Scaling x(at a X a Convolution x(t y(t X(jωY (jω Multiplication x(ty(t X(jω Y (jω d Differentiation in ime dt x(t jωx(jω t Integration x(tdt jω X(jω+X(0δ(ω Differentiation in Frequency tx(t j d dω X(jω Conjugate Symmetry for Real Symmetry for Real and Even Symmetry for Real and Odd Even-Odd Decomposition for Real x(t real x(t real and even x(t real and odd x e (t =Evx(t} x o (t =Odx(t} [x(t real] [x(t real] X(jω=X ( jω ReX(jω} = ReX( jω} ImX(jω} = ImX( jω} X(jω = X( jω < X(jω = < X( jω X(jω real and even X(jω purely imaginary and odd ReX(jω} jimx(jω} Parseval s Relation for Aperiodic + x(t 2 dt = + X(jω 2 dω

4 able 4: Basic Continuous-ime Fourier ransform Pairs Fourier series coefficients Signal Fourier transform (if periodic e jω 0t e jkω 0t δ(ω ω 0 δ(ω kω 0 cos ω 0 t [δ(ω ω 0 +δ(ω + ω 0 ] sin ω 0 t x(t = Periodic square wave, t < x(t = 0, < t 2 and x(t + =x(t j [δ(ω ω 0 δ(ω + ω 0 ] δ(ω 2sinkω 0 δ(ω kω 0 k ( δ ω k a = =0, otherwise a = a = 2 =0, otherwise a = a = 2j =0, otherwise a 0 =, =0,k 0 ( this is the Fourier series representation for any choice of >0 ω 0 δ(t n = n=, t < 2sinω x(t 0, t > ω sin Wt, ω <W X(jω= t 0, ω >W δ(t u(t jω + δ(ω δ(t t 0 e jωt 0 e at u(t, Rea} > 0 te at u(t, Rea} > 0 t n (n! e at u(t, Rea} > 0 a + jω (a + jω 2 (a + jω n sinc ( kω0 for all k = sin kω 0 k

5 able 5: Properties of the Discrete-ime Fourier ransform x[n] = X(e jω e jωn dω X(e jω = n= x[n]e jωn Property Aperiodic Signal Fourier transform x[n] } X(e jω Periodic with y[n] Y (e jω period Linearity ax[n]+by[n] ax(e jω +by (e jω ime-shifting x[n n 0 ] e jωn 0 X(e jω Frequency-Shifting e jω0n x[n] X(e j(ω ω0 Conjugation x [n] X (e jω ime Reversal x[ n] X(e jω x[n/k], if n = multiple of k ime Expansions x (k [n] = X(e jkω 0, if n multiple of k Convolution x[n] y[n] X(e jω Y (e jω Multiplication x[n]y[n] X(e jθ Y (e j(ω θ dθ Differencing in ime x[n] x[n ] ( e jω X(e jω n Accumulation x[k] e jω X(ejω +X(e j0 δ(ω k Differentiation in Frequency nx[n] j dx(ejω dω X(e jω =X (e jω ReX(e jω } = ReX(e jω } Conjugate Symmetry for x[n] real ImX(e jω } = ImX(e jω } Real X(e jω = X(e jω < X(e jω = < X(e jω Symmetry for Real, Even Symmetry for Real, Odd Even-odd Decomposition of Real x[n] real and even x[n] realandodd x e [n] =Evx[n]} x o [n] =Odx[n]} [x[n] real] [x[n] real] X(e jω real and even X(e jω purely imaginary and odd ReX(e jω } jimx(e jω } Parseval s Relation for Aperiodic x[n] 2 = X(e jω 2 dω n=

6 able 6: Basic Discrete-ime Fourier ransform Pairs Fourier series coefficients Signal Fourier transform (if periodic k= e jω 0n cos ω 0 n sin ω 0 n x[n] = e jk(/n Periodic square wave, n x[n] = 0, < n /2 and x[n + ] =x[n] δ[n k] a n u[n], a < x[n] j l= l= l= l=, n sin[ω( + 2 ] 0, n > sin(ω/2 sin Wn n = W sinc ( Wn 0 <W < ( δ ω k (a ω 0 = m, k = m, m ±,m ± 2,... δ(ω ω 0 l = 0, otherwise ω (b 0 irrational he signal is aperiodic (a ω 0 = m δ(ω ω 0 l+δ(ω + ω 0 l} = 2, k = ±m, ±m ±,±m ± 2,... 0, otherwise ω (b 0 irrational he signal is aperiodic (a ω 0 = r 2j, k = r, r ±,r ± 2,... δ(ω ω 0 l δ(ω + ω 0 l} = 2j, k = r, r ±, r ± 2,... 0, otherwise ω (b 0 irrational he signal is aperiodic, k =0, ±,±2,... δ(ω l = 0, otherwise ( δ ω k ( δ ω k = ae jω, 0 ω W X(ω = 0, W < ω X(ωperiodic with period δ[n] u[n] + e jω + δ(ω k δ[n n 0 ] e jωn 0 (n +a n u[n], a < ( ae jω 2 (n + r! a n u[n], a < n!(r! ( ae jω r = sin[(k/(+ 2 ] sin[k/2], k 0, ±,±2,... = 2+, k =0, ±,±2,... for all k

7 able 7: Properties of the Laplace ransform Property Signal ransform ROC x(t X(s R x (t X (s R x 2 (t X 2 (s R 2 Linearity ax (t+bx 2 (t ax (s+bx 2 (s At least R R 2 ime shifting x(t t 0 e st 0 X(s R Shifting in the s-domain e s0t x(t X(s s 0 Shifted version of R [i.e., s is in the ROC if (s s 0 isin R] ime scaling x(at ( s a X a Conjugation x (t X (s R Scaled ROC (i.e., s is in the ROC if (s/a is in R Convolution x (t x 2 (t X (sx 2 (s At least R R 2 Differentiation in the ime Domain Differentiation in the s-domain Integration in the ime Domain t d x(t dt sx(s At least R tx(t d ds X(s R x(τd(τ X(s s At least R Res} > 0} Initial- and Final Value heorems If x(t = 0 for t<0andx(t contains no impulses or higher-order singularities at t =0,then x(0 + = lim s sx(s If x(t = 0 for t<0andx(t has a finite limit as t,then lim t x(t = lim s 0 sx(s

8 able 8: Laplace ransforms of Elementary Functions Signal ransform ROC. δ(t All s 2. u(t s Res} > 0 3. u( t s Res} < 0 4. t n (n! u(t s n Res} > 0 5. tn (n! u( t s n Res} < 0 6. e αt u(t 7. e αt u( t 8. t n (n! e αt u(t 9. tn (n! e αt u( t s + α Res} > α s + α Res} < α (s + α n Res} > α (s + α n Res} < α 0. δ(t e s All s. [cos ω 0 t]u(t 2. [sin ω 0 t]u(t 3. [e αt cos ω 0 t]u(t s s 2 + ω 2 0 ω 0 s 2 + ω0 2 s + α (s + α 2 + ω 2 0 ω 0 Res} > 0 Res} > 0 Res} > α 4. [e αt sin ω 0 t]u(t (s + α 2 + ω0 2 Res} > α 5. u n (t = dn δ(t dt n s n All s 6. u n (t =u(t u(t }} n times s n Res} > 0

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients able : Properties of the Continuous-ime Fourier Series x(t = a k e jkω0t = a k = x(te jkω0t dt = a k e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period

More information

Cache capacity: 16 bytes Associativity: 2 way set associative

Cache capacity: 16 bytes Associativity: 2 way set associative EE 26 Qualification Exam Question, January 208 (page ) Problem Caches (5 pts) A memory hierarchy with two levels of inclusive cache (L and L2) is running a test application accesses the following memory

More information

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions: ECE 30 Division, all 2008 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination ECE 30 Division, all 2006 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Ch 4: The Continuous-Time Fourier Transform

Ch 4: The Continuous-Time Fourier Transform Ch 4: The Continuous-Time Fourier Transform Fourier Transform of x(t) Inverse Fourier Transform jt X ( j) x ( t ) e dt jt x ( t ) X ( j) e d 2 Ghulam Muhammad, King Saud University Continuous-time aperiodic

More information

Complex symmetry Signals and Systems Fall 2015

Complex symmetry Signals and Systems Fall 2015 18-90 Signals and Systems Fall 015 Complex symmetry 1. Complex symmetry This section deals with the complex symmetry property. As an example I will use the DTFT for a aperiodic discrete-time signal. The

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 3, all 2007 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section 5. 3 The (DT) Fourier transform (or spectrum) of x[n] is X ( e jω) = n= x[n]e jωn x[n] can be reconstructed from its

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

Lecture 13: Discrete Time Fourier Transform (DTFT)

Lecture 13: Discrete Time Fourier Transform (DTFT) Lecture 13: Discrete Time Fourier Transform (DTFT) ECE 401: Signal and Image Analysis University of Illinois 3/9/2017 1 Sampled Systems Review 2 DTFT and Convolution 3 Inverse DTFT 4 Ideal Lowpass Filter

More information

log dx a u = log a e du

log dx a u = log a e du Formuls from Trigonometry: sin A cos A = cosa ± B) = cos A cos B sin A sin B sin A = sin A cos A tn A = tn A tn A sina ± B) = sin A cos B ± cos A sin B tn A±tn B tna ± B) = tn A tn B cos A = cos A sin

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

Homework 5 EE235, Summer 2013 Solution

Homework 5 EE235, Summer 2013 Solution Homework 5 EE235, Summer 23 Solution. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a f(t 2 cos(3πt + sin(πt + π 3 w π f(t e j3πt + e j3πt + j2

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

3 Fourier Series Representation of Periodic Signals

3 Fourier Series Representation of Periodic Signals 65 66 3 Fourier Series Representation of Periodic Signals Fourier (or frequency domain) analysis constitutes a tool of great usefulness Accomplishes decomposition of broad classes of signals using complex

More information

Definition of Discrete-Time Fourier Transform (DTFT)

Definition of Discrete-Time Fourier Transform (DTFT) Definition of Discrete-Time ourier Transform (DTT) {x[n]} = X(e jω ) + n= {X(e jω )} = x[n] x[n]e jωn Why use the above awkward notation for the transform? X(e jω )e jωn dω Answer: It is consistent with

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems and Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems and Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION This paper is for St Lucia

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Representation of Signals in Terms of Frequency Components Consider the CT signal defined by N xt () = Acos( ω t+ θ ), t k = 1 k k k The frequencies `present

More information

Fourier Representations of Signals & LTI Systems

Fourier Representations of Signals & LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n] 2. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

Signals & Systems. Lecture 4 Fourier Series Properties & Discrete-Time Fourier Series. Alp Ertürk

Signals & Systems. Lecture 4 Fourier Series Properties & Discrete-Time Fourier Series. Alp Ertürk Signals & Systems Lecture 4 Fourier Series Properties & Discrete-Time Fourier Series Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation:

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

EC1305-SIGNALS AND SYSTEMS UNIT-1 CLASSIFICATION OF SIGNALS AND SYSTEMS

EC1305-SIGNALS AND SYSTEMS UNIT-1 CLASSIFICATION OF SIGNALS AND SYSTEMS EC1305-SIGNALS AND SYSTEMS UNIT-1 CLASSIFICATION OF SIGNALS AND SYSTEMS 1. Define Signal? Signal is a physical quantity that varies with respect to time, space or any other independent variable. ( Or)

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I NOTES FOR 8-79 LECTURES 3 and 4 Introduction to Discrete-Time Fourier Transforms (DTFTs Distributed: September 8, 2005 Notes: This handout contains in brief outline form the lecture notes used for 8-79

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

5.1 The Discrete Time Fourier Transform

5.1 The Discrete Time Fourier Transform 32 33 5 The Discrete Time ourier Transform ourier (or frequency domain) analysis the last Complete the introduction and the development of the methods of ourier analysis Learn frequency-domain methods

More information

Chapter 2 Signals and Systems

Chapter 2 Signals and Systems Chapter 2 Signals and Systems The concepts covered in this chapter form the basis for modeling and analyzing communication systems. We start by defining some common signals and studying their properties.

More information

Homework 3 Solutions

Homework 3 Solutions EECS Signals & Systems University of California, Berkeley: Fall 7 Ramchandran September, 7 Homework 3 Solutions (Send your grades to ee.gsi@gmail.com. Check the course website for details) Review Problem

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems 3. Frequency-Domain Analysis of Continuous- ime Signals and Systems 3.. Definition of Continuous-ime Fourier Series (3.3-3.4) 3.2. Properties of Continuous-ime Fourier Series (3.5) 3.3. Definition of Continuous-ime

More information

log dx a u = log a e du

log dx a u = log a e du Formuls from Trigonometry: sin A cos A = cosa ± B = cos A cos B sin A sin B sin A = sin A cos A tn A = tn A tn A sina ± B = sin A cos B ± cos A sin B tn A±tn B tna ± B = tn A tn B cos A = cos A sin A sin

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Discrete-Time Fourier Transform (DTFT)

Discrete-Time Fourier Transform (DTFT) Discrete-Time Fourier Transform (DTFT) 1 Preliminaries Definition: The Discrete-Time Fourier Transform (DTFT) of a signal x[n] is defined to be X(e jω ) x[n]e jωn. (1) In other words, the DTFT of x[n]

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

ELEN 4810 Midterm Exam

ELEN 4810 Midterm Exam ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise

More information

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2)

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2) Homework 7 Solution EE35, Spring. Find the Fourier transform of the following signals using tables: (a) te t u(t) h(t) H(jω) te t u(t) ( + jω) (b) sin(πt)e t u(t) h(t) sin(πt)e t u(t) () h(t) ( ejπt e

More information

Discrete Time Fourier Transform

Discrete Time Fourier Transform Discrete Time Fourier Transform Recall that we wrote the sampled signal x s (t) = x(kt)δ(t kt). We calculate its Fourier Transform. We do the following: Ex. Find the Continuous Time Fourier Transform of

More information

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn Sampling Let x a (t) be a continuous time signal. The signal is sampled by taking the signal value at intervals of time T to get The signal x(t) has a Fourier transform x[n] = x a (nt ) X a (Ω) = x a (t)e

More information

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Name: Solve problems 1 3 and two from problems 4 7. Circle below which two of problems 4 7 you

More information

summable Necessary and sufficient for BIBO stability of an LTI system. Also see poles.

summable Necessary and sufficient for BIBO stability of an LTI system. Also see poles. EECS 206 DSP GLOSSARY c Andrew E. Yagle Fall 2005 absolutely impulse response: h[n] is finite. EX: n=0 ( 3 4 )n = 1 = 4 but 1 3 n=1 1 n. 4 summable Necessary and sufficient for BIBO stability of an LI

More information

Signals & Systems Handout #4

Signals & Systems Handout #4 Signals & Systems Handout #4 H-4. Elementary Discrete-Domain Functions (Sequences): Discrete-domain functions are defined for n Z. H-4.. Sequence Notation: We use the following notation to indicate the

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz Diskrete Fourier transform (DFT) We have just one problem with DFS that needs to be solved.

More information

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6. Dr Anil Kokaram Electronic and Electrical Engineering Dept.

SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 6. Dr Anil Kokaram Electronic and Electrical Engineering Dept. SIGNALS AND SYSTEMS: PAPER 3C HANDOUT 6. Dr Anil Kokaram Electronic and Electrical Engineering Dept. anil.kokaram@tcd.ie www.mee.tcd.ie/ sigmedia FOURIER ANALYSIS Have seen how the behaviour of systems

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter

Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter Chapter 5. Fourier Analysis for Discrete-Time Signals and Systems Chapter Objec@ves 1. Learn techniques for represen3ng discrete-)me periodic signals using orthogonal sets of periodic basis func3ons. 2.

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

Homework 6 Solutions

Homework 6 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 208 Homework 6 Solutions. Part One. (2 points) Consider an LTI system with impulse response h(t) e αt u(t), (a) Compute the frequency response

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

The Discrete-time Fourier Transform

The Discrete-time Fourier Transform The Discrete-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals: The

More information

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n].

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n]. ELEC 36 LECURE NOES WEEK 9: Chapters 7&9 Chapter 7 (cont d) Discrete-ime Processing of Continuous-ime Signals It is often advantageous to convert a continuous-time signal into a discrete-time signal so

More information

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Copyright c 2005 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org July 14, 2018 Frame # 1 Slide # 1 A. Antoniou

More information

16.362: Signals and Systems: 1.0

16.362: Signals and Systems: 1.0 16.362: Signals and Systems: 1.0 Prof. K. Chandra ECE, UMASS Lowell September 1, 2016 1 Background The pre-requisites for this course are Calculus II and Differential Equations. A basic understanding of

More information

Assignment 4 Solutions Continuous-Time Fourier Transform

Assignment 4 Solutions Continuous-Time Fourier Transform Assignment 4 Solutions Continuous-Time Fourier Transform ECE 3 Signals and Systems II Version 1.01 Spring 006 1. Properties of complex numbers. Let c 1 α 1 + jβ 1 and c α + jβ be two complex numbers. a.

More information

MEDE2500 Tutorial Nov-7

MEDE2500 Tutorial Nov-7 (updated 2016-Nov-4,7:40pm) MEDE2500 (2016-2017) Tutorial 3 MEDE2500 Tutorial 3 2016-Nov-7 Content 1. The Dirac Delta Function, singularity functions, even and odd functions 2. The sampling process and

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 Name: Instructions: The examination lasts for 75 minutes and is closed book, closed notes. No electronic devices are permitted, including

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1 Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, 7.49 Signals & Systems Sampling P1 Undersampling & Aliasing Undersampling: insufficient sampling frequency ω s < 2ω M Perfect

More information

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1)

Ver 3808 E1.10 Fourier Series and Transforms (2014) E1.10 Fourier Series and Transforms. Problem Sheet 1 (Lecture 1) Ver 88 E. Fourier Series and Transforms 4 Key: [A] easy... [E]hard Questions from RBH textbook: 4., 4.8. E. Fourier Series and Transforms Problem Sheet Lecture. [B] Using the geometric progression formula,

More information

Signals and Systems I Have Known and Loved. Andrew W. Eckford

Signals and Systems I Have Known and Loved. Andrew W. Eckford Signals and Systems I Have Known and Loved Andrew W. Eckford Department of Electrical Engineering and Computer Science York University, oronto, Ontario, Canada Version: September 2, 216 Copyright c 215

More information

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems.

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems. EE 637 Final May 4, Spring 200 Name: Instructions: This is a 20 minute exam containing five problems. Each problem is worth 20 points for a total score of 00 points You may only use your brain and a pencil

More information

Homework 9 Solutions

Homework 9 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 207 Homework 9 Solutions Part One. (6 points) Compute the convolution of the following continuous-time aperiodic signals. (Hint: Use the

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Discrete-time Signals and Systems in

Discrete-time Signals and Systems in Discrete-time Signals and Systems in the Frequency Domain Chapter 3, Sections 3.1-39 3.9 Chapter 4, Sections 4.8-4.9 Dr. Iyad Jafar Outline Introduction The Continuous-Time FourierTransform (CTFT) The

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

EE 438 Essential Definitions and Relations

EE 438 Essential Definitions and Relations May 2004 EE 438 Essential Definitions and Relations CT Metrics. Energy E x = x(t) 2 dt 2. Power P x = lim T 2T T / 2 T / 2 x(t) 2 dt 3. root mean squared value x rms = P x 4. Area A x = x(t) dt 5. Average

More information

Chapter 7: The z-transform

Chapter 7: The z-transform Chapter 7: The -Transform ECE352 1 The -Transform - definition Continuous-time systems: e st H(s) y(t) = e st H(s) e st is an eigenfunction of the LTI system h(t), and H(s) is the corresponding eigenvalue.

More information