ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:

Size: px
Start display at page:

Download "ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:"

Transcription

1 ECE 30 Division, all 2008 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info. 2. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero. 3. At the end of this document is a 5 page table of formulas and 4 pages of scratch paper. You may detach these once the exam begins provided you sign your name on top of each page and slide them back inside your exam before handing it in. 4. This is a closed book exam. The only personal items allowed are pens/pencils, erasers, your Purdue ID and something to drink. Anything else is strictly forbidden. 5. You must keep your eyes on your exam at all times. Looking around is strictly forbidden. 6. Please leave your Purdue ID out so the proctors may check your identity. Name: Signature: Itemized Scores Problem : Problem 6: Problem 2: Problem 7: Problem 3: Problem 8: Problem 4: Problem 5: Total:

2 (0 pts). Compute the energy and the power of the signal x[n] = + 3j e 2πjn. 2

3 (20 pts) 2. NOTE: EVEN THOUGH THIS PAGE CONTAINS MULTIPLE CHOICE QUESTIONS, IT WOULD BE UNWISE TO ATTEMPT TO CHEAT, AS THE QUESTIONS ARE PERMUTED IN THE 4 DIERENT VERSIONS O THIS TEST. a) Let x(t) and y(t) be the input and the output of a continuous-time system, respectively. Answer each of the questions below with either yes or no. (No justification needed). Yes No If y(t) = (t + 5)x(t), is the system causal? If y(t) = x(t 2 ), is the system causal? If y(t) = x(5 t), is the system memoryless? If y(t) = x(t/3), is the system stable? If y(t) = x(t/3), is the system linear? If y(t) = u(t) x(t), is the system LTI? b) Are the following statements true or false? (No justification needed.) True In a cascade of a time-scaling and a time-delay, the order of the systems does not matter. alse In a cascade of LTI systems, the order of the systems does not matter. If two linear systems have the same unit impulse response, then the two systems are the same. e 2πjt = ( e 2πj) t = t =. 3

4 (25 pts) 3. You have learned that a discrete-time LTI system can be specified in several ways, such as. an explicit input-output formula y[n] = f (x[n], n), 2. the unit impulse response of the system h[n], 3. the system s function H(z), with its ROC, 4. a difference equation. or each system below, you are given one of these representations. ind the others. (No justification needed.) System System 2 Explicit Input-output ormula y[n] = n k= x(k) h[n] 3 n u[ n] H(z), ROC Difference Equation (5 pts) 4. The Laplace transform of the unit impulse response of an LTI system is H(s) = s+3 s 2 +s 4. What is the system s response to the input x(t) = e2t (No justification needed. ) 4

5 (5 pts) 5. Let x(t) be a periodic signal with fundamental frequency ω 0. Without using the table of ourier transforms pairs, prove that the ourier transform of x(t) is X (ω) = 2πa k δ (ω kω 0 ) k= where the a k s are the ourier series coefficients of x(t). Note: if you write nothing on this page, you will automatically get 3 pts. 5

6 (5 pts) 6. Obtain the inverse Laplace transform of X(s) = s 2, ROC: Re(s) < s + 2 Note: if you write nothing on this page, you will automatically get 3 pts. 6

7 (5 pts) 7. Using the definition of the z-transform (and without otherwise using the table), compute the inverse z-transform of X(z) = z +, z > 4. 4z Note: if you write nothing on this page, you will automatically get 3 pts. 7

8 (25 pts) 8. Let x(t) be a pure imaginary and even signal with Nyquist rate equal to π. (3+2pts) a) Sketch the graph of a ourier transform that could be the ourier transform of x(t). (You will get two extra points if it has a cute shape!) Then base your answer to b) and c) on this graph. (0 pts) b) Sketch the graph of the ourier transform of x (t) = x(t) k= δ ( t 2k ) 3. (0 pts) c) Sketch the graph of the ourier transform of x 2 [n] = x( 2 3 n). 8

9 Table DT Signal Energy and Power E = CT Signal Energy and Power n= P = lim N 2N + x[n] 2 () N n= N x[n] 2 (2) E = P = lim T 2T x(t) 2 dt (3) T T x(t) 2 dt (4) ourier Series of CT Periodic Signals with period T x(t) = a k e jk( 2π T )t (5) a k = T k= T 0 x(t)e jk( 2π T )t dt (6) ourier Series of DT Periodic Signals with period N x[n] = N a k = N k=0 N a k e jk( 2π N )n n=0 x[n]e jk( 2π N )n (7) (8) 9

10 CT ourier Transform.T. : X (ω) = Inverse.T.: x(t) = Z x(t)e jωt dt (9) Z X (ω)e jωt dω 2π (0) Properties of CT ourier Transform Let x(t) be a continuous-time signal and denote by X (ω) its ourier transform. continuous-time signal and denote by Y(ω) its ourier transform. Let y(t) be another Signal Linearity: ax(t) + by(t) ax (ω) + by(ω) () Time Shifting: x(t t 0 ) e jωt 0 X (ω) (2) requency Shifting: e jω0t x(t) X (ω ω 0 ) (3) Time and requency Scaling: x(at) ω a X a (4) Multiplication: x(t)y(t) X (ω) Y(ω) 2π (5) Convolution: x(t) y(t) X (ω)y(ω) (6) Differentiation in Time: T d x(t) dt jωx (ω) (7) Some CT ourier Transform Pairs e jω 0t 2πδ(ω ω0 ) (8) sin W t πt u(t + T ) u(t T ) δ(t) e at u(t), Re{a} > 0 te at u(t), Re{a} > 0 2πδ(ω) (9) u(ω + W ) u(ω W ) (20) 2 sin(ωt ) (2) ω (22) a + jω (23) (a + jω) 2 (24) 0

11 DT ourier Transform Let x[n] be a discrete-time signal and denote by X(ω) its ourier transform..t.:x (ω) = Inverse.T.: x[n] = X x[n]e jωn (25) n= Z X (ω)e jωn dω (26) 2π 2π Properties of DT ourier Transform Let x(t) be a signal and denote by X (ω) its ourier transform. Let y(t) be another signal and denote by Y(ω) its ourier transform. Signal.T. Linearity: ax[n] + by[n] ax (ω) + by(ω) (27) Time Shifting: x[n n 0 ] e jωn 0 X (ω) (28) requency Shifting: e jω0n x[n] X (ω ω 0 ) (29) Time Reversal: x[ n] X ( ω) (30) Multiplication: x[n]y[n] X (ω) Y(ω) 2π (3) Convolution: x[n] y[n] X (ω)y(ω) (32) Differencing in Time: x[n] x[n ] ( e jω )X (ω) (33) Some DT ourier Transform Pairs N X k=0 a k e jk( 2π N )n 2π X k= e jω 0n 2π X a k δ(ω 2πk N ) (34) δ(ω ω 0 2πl) (35) l= X 2π δ(ω 2πl) (36) l= j, sin W n πn, 0 < W < π X (ω) = δ[n] u[n] α n u[n], α < (n + )α n u[n], α < 0 ω < W 0, π ω > W X (ω)periodic with period 2π (37) (38) e jω + π X δ(ω 2πk) k= (39) αe jω (40) ( αe jω ) 2 (4)

12 Laplace Transform X(s) = Z x(t)e st dt (42) Properties of Laplace Transform Let x(t), x (t) and x 2 (t) be three CT signals and denote by X(s), X (s) and X 2 (s) their respective Laplace transform. Let R be the ROC of X(s), let R be the ROC of X (z) and let R 2 be the ROC of X 2 (s). Signal L.T. ROC Linearity: ax (t) + bx 2 (t) ax (s) + bx 2 (s) At least R R 2 (43) Time Shifting: x(t t 0 ) e st 0 X(s) R (44) Shifting in s: e s 0t x(t) X(s s 0 ) R + s 0 (45) Conjugation: x (t) X (s ) R (46) Time Scaling: x(at) s a X a ar (47) Convolution: x (t) x 2 (t) X (s)x 2 (s) At least R R 2 (48) Differentiation in Time: Differentiation in s: Integration : d x(t) dt sx(s) At least R (49) dx(s) tx(t) R (50) ds Z t x(τ)dτ X(s) At least R Re{s} > 0 (5) s Some Laplace Transform Pairs Signal LT ROC e αt u(t) e αt u( t) δ(t) all s (52) s + α s + α Re{s} > α (53) Re{s} < α (54) 2

13 z-transform X(z) = X n= x[n]z n (55) Properties of z-transform Let x[n], x [n] and x 2 [n] be three DT signals and denote by X(z), X (z) and X 2 (z) their respective z-transform. Let R be the ROC of X(z), let R be the ROC of X (z) and let R 2 be the ROC of X 2 (z). Signal z-t. ROC Linearity: ax [n] + bx 2 [n] ax (z) + bx 2 (z) At least R R 2 (56) Time Shifting: x[n n 0 ] z n 0 X(z) R, but perhaps adding/deleting z = 0 (57) Time Shifting: x[ n] X(z ) R (58) Scaling in z: e jω0n x[n] X(e jω 0 z) R (59) Conjugation: x [n] X (z ) R (60) Convolution: x [n] x 2 [n] X (z)x 2 (z) At least R R 2 (6) Some z-transform Pairs Signal LT ROC u[n] z z > (62) u[ n ] z z < (63) α n u[n] αz z > α (64) α n u[ n ] αz z < α (65) δ[n] all z (66) 3

14 -SCRATCH - (will not be graded) 4

15 -SCRATCH - (will not be graded) 5

16 -SCRATCH - (will not be graded) 6

17 -SCRATCH - (will not be graded) 7

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination ECE 30 Division, all 2006 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 3, Fall 2007 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 3, all 2007 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients able : Properties of the Continuous-ime Fourier Series x(t = a k e jkω0t = a k = x(te jkω0t dt = a k e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period

More information

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients able : Properties of the Continuous-ime Fourier Series x(t = e jkω0t = = x(te jkω0t dt = e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period and fundamental

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

ELEN 4810 Midterm Exam

ELEN 4810 Midterm Exam ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information

ECE : Linear Circuit Analysis II

ECE : Linear Circuit Analysis II Purdue University School of Electrical and Computer Engineering ECE 20200 : Linear Circuit Analysis II Summer 2014 Instructor: Aung Kyi San Instructions: Midterm Examination I July 2, 2014 1. Wait for

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

Your solutions for time-domain waveforms should all be expressed as real-valued functions.

Your solutions for time-domain waveforms should all be expressed as real-valued functions. ECE-486 Test 2, Feb 23, 2017 2 Hours; Closed book; Allowed calculator models: (a) Casio fx-115 models (b) HP33s and HP 35s (c) TI-30X and TI-36X models. Calculators not included in this list are not permitted.

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Definition of Discrete-Time Fourier Transform (DTFT)

Definition of Discrete-Time Fourier Transform (DTFT) Definition of Discrete-Time ourier Transform (DTT) {x[n]} = X(e jω ) + n= {X(e jω )} = x[n] x[n]e jωn Why use the above awkward notation for the transform? X(e jω )e jωn dω Answer: It is consistent with

More information

Discrete Time Fourier Transform

Discrete Time Fourier Transform Discrete Time Fourier Transform Recall that we wrote the sampled signal x s (t) = x(kt)δ(t kt). We calculate its Fourier Transform. We do the following: Ex. Find the Continuous Time Fourier Transform of

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

Chapter 7: The z-transform

Chapter 7: The z-transform Chapter 7: The -Transform ECE352 1 The -Transform - definition Continuous-time systems: e st H(s) y(t) = e st H(s) e st is an eigenfunction of the LTI system h(t), and H(s) is the corresponding eigenvalue.

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09-Dec-13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Module 4 : Laplace and Z Transform Problem Set 4

Module 4 : Laplace and Z Transform Problem Set 4 Module 4 : Laplace and Z Transform Problem Set 4 Problem 1 The input x(t) and output y(t) of a causal LTI system are related to the block diagram representation shown in the figure. (a) Determine a differential

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

ECE 413 Digital Signal Processing Midterm Exam, Spring Instructions:

ECE 413 Digital Signal Processing Midterm Exam, Spring Instructions: University of Waterloo Department of Electrical and Computer Engineering ECE 4 Digital Signal Processing Midterm Exam, Spring 00 June 0th, 00, 5:0-6:50 PM Instructor: Dr. Oleg Michailovich Student s name:

More information

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 Name: Instructions: The examination lasts for 75 minutes and is closed book, closed notes. No electronic devices are permitted, including

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is

Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section The (DT) Fourier transform (or spectrum) of x[n] is Discrete-time Fourier transform (DTFT) representation of DT aperiodic signals Section 5. 3 The (DT) Fourier transform (or spectrum) of x[n] is X ( e jω) = n= x[n]e jωn x[n] can be reconstructed from its

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION This paper is for St Lucia

More information

EE 637 Final April 30, Spring Each problem is worth 20 points for a total score of 100 points

EE 637 Final April 30, Spring Each problem is worth 20 points for a total score of 100 points EE 637 Final April 30, Spring 2018 Name: Instructions: This is a 120 minute exam containing five problems. Each problem is worth 20 points for a total score of 100 points You may only use your brain and

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response. University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 5-8 pm NAME: 1.

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

Digital Signal Processing Lecture 3 - Discrete-Time Systems

Digital Signal Processing Lecture 3 - Discrete-Time Systems Digital Signal Processing - Discrete-Time Systems Electrical Engineering and Computer Science University of Tennessee, Knoxville August 25, 2015 Overview 1 2 3 4 5 6 7 8 Introduction Three components of

More information

log dx a u = log a e du

log dx a u = log a e du Formuls from Trigonometry: sin A cos A = cosa ± B) = cos A cos B sin A sin B sin A = sin A cos A tn A = tn A tn A sina ± B) = sin A cos B ± cos A sin B tn A±tn B tna ± B) = tn A tn B cos A = cos A sin

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 12th, 2019 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet Name: Final Exam ECE3 Signals and Systems Friday, May 3, 3 Cover Sheet Write your name on this page and every page to be safe. Test Duration: minutes. Coverage: Comprehensive Open Book but Closed Notes.

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

Final Exam 14 May LAST Name FIRST Name Lab Time

Final Exam 14 May LAST Name FIRST Name Lab Time EECS 20n: Structure and Interpretation of Signals and Systems Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA BERKELEY Final Exam 14 May 2005 LAST Name FIRST Name Lab

More information

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet Test Duration: 75 minutes Coverage: Chaps 1,2 Open Book but Closed Notes One 85 in x 11 in crib sheet Calculators NOT allowed DO NOT

More information

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz

Discrete Time Signals and Systems Time-frequency Analysis. Gloria Menegaz Discrete Time Signals and Systems Time-frequency Analysis Gloria Menegaz Time-frequency Analysis Fourier transform (1D and 2D) Reference textbook: Discrete time signal processing, A.W. Oppenheim and R.W.

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2017 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points / 25

More information

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Name: Solve problems 1 3 and two from problems 4 7. Circle below which two of problems 4 7 you

More information

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE EEE 43 DIGITAL SIGNAL PROCESSING (DSP) 2 DIFFERENCE EQUATIONS AND THE Z- TRANSFORM FALL 22 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Signals and Systems Lecture 8: Z Transform

Signals and Systems Lecture 8: Z Transform Signals and Systems Lecture 8: Z Transform Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 Farzaneh Abdollahi Signal and Systems Lecture 8 1/29 Introduction

More information

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet NAME: February EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems and Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems and Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems.

Good Luck. EE 637 Final May 4, Spring Name: Instructions: This is a 120 minute exam containing five problems. EE 637 Final May 4, Spring 200 Name: Instructions: This is a 20 minute exam containing five problems. Each problem is worth 20 points for a total score of 00 points You may only use your brain and a pencil

More information

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections Discrete-Time Signals and Systems The z-transform and Its Application Dr. Deepa Kundur University of Toronto Reference: Sections 3. - 3.4 of John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing:

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)]

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)] ECE30 Summer II, 2006 Exam, Blue Version July 2, 2006 Name: Solution Score: 00/00 You must show all of your work for full credit. Calculators may NOT be used.. (5 points) x(t) = tu(t ) + ( t)u(t 2) u(t

More information

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam.

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam. ECE 35 Spring - Final Exam 9 May ECE 35 Signals and Systems Spring Final Exam - Solutions Three 8 ½ x sheets of notes, and a calculator are allowed during the exam Write all answers neatly and show your

More information

Signals & Systems Handout #4

Signals & Systems Handout #4 Signals & Systems Handout #4 H-4. Elementary Discrete-Domain Functions (Sequences): Discrete-domain functions are defined for n Z. H-4.. Sequence Notation: We use the following notation to indicate the

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 30, 2018 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information

log dx a u = log a e du

log dx a u = log a e du Formuls from Trigonometry: sin A cos A = cosa ± B = cos A cos B sin A sin B sin A = sin A cos A tn A = tn A tn A sina ± B = sin A cos B ± cos A sin B tn A±tn B tna ± B = tn A tn B cos A = cos A sin A sin

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 2-May-05 COURSE: ECE-2025 NAME: GT #: LAST, FIRST (ex: gtz123a) Recitation Section: Circle the date & time when

More information

ECE431 Digital Signal Processing

ECE431 Digital Signal Processing ECE431 Digital Signal Processing Bruce Francis Course notes, Version 104, September 2009 Preface These notes follow the topics in the text Some sections of these notes are complete in the sense of being

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Solutions. Number of Problems: 10

Solutions. Number of Problems: 10 Final Exam February 9th, 2 Signals & Systems (5-575-) Prof. R. D Andrea Solutions Exam Duration: 5 minutes Number of Problems: Permitted aids: One double-sided A4 sheet. Questions can be answered in English

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Z-TRANSFORMS. Solution: Using the definition (5.1.2), we find: for case (b). y(n)= h(n) x(n) Y(z)= H(z)X(z) (convolution) (5.1.

Z-TRANSFORMS. Solution: Using the definition (5.1.2), we find: for case (b). y(n)= h(n) x(n) Y(z)= H(z)X(z) (convolution) (5.1. 84 5. Z-TRANSFORMS 5 z-transforms Solution: Using the definition (5..2), we find: for case (a), and H(z) h 0 + h z + h 2 z 2 + h 3 z 3 2 + 3z + 5z 2 + 2z 3 H(z) h 0 + h z + h 2 z 2 + h 3 z 3 + h 4 z 4

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

ECE503: Digital Signal Processing Lecture 4

ECE503: Digital Signal Processing Lecture 4 ECE503: Digital Signal Processing Lecture 4 D. Richard Brown III WPI 06-February-2012 WPI D. Richard Brown III 06-February-2012 1 / 29 Lecture 4 Topics 1. Motivation for the z-transform. 2. Definition

More information

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2.

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 20 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Note: Π(t) = u(t + 1) u(t 1 ), and r(t) = tu(t) where u(t)

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 8: February 7th, 2017 Sampling and Reconstruction Lecture Outline! Review " Ideal sampling " Frequency response of sampled signal " Reconstruction " Anti-aliasing

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

Problem Set #7 Solutions Due: Friday June 1st, 2018 at 5 PM.

Problem Set #7 Solutions Due: Friday June 1st, 2018 at 5 PM. EE102B Spring 2018 Signal Processing and Linear Systems II Goldsmith Problem Set #7 Solutions Due: Friday June 1st, 2018 at 5 PM. 1. Laplace Transform Convergence (10 pts) Determine whether each of the

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

ECE301 Fall, 2006 Exam 1 Soluation October 7, Name: Score: / Consider the system described by the differential equation

ECE301 Fall, 2006 Exam 1 Soluation October 7, Name: Score: / Consider the system described by the differential equation ECE301 Fall, 2006 Exam 1 Soluation October 7, 2006 1 Name: Score: /100 You must show all of your work for full credit. Calculators may NOT be used. 1. Consider the system described by the differential

More information

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn Sampling Let x a (t) be a continuous time signal. The signal is sampled by taking the signal value at intervals of time T to get The signal x(t) has a Fourier transform x[n] = x a (nt ) X a (Ω) = x a (t)e

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

EEE4001F EXAM DIGITAL SIGNAL PROCESSING. University of Cape Town Department of Electrical Engineering PART A. June hours.

EEE4001F EXAM DIGITAL SIGNAL PROCESSING. University of Cape Town Department of Electrical Engineering PART A. June hours. EEE400F EXAM DIGITAL SIGNAL PROCESSING PART A Basic digital signal processing theory.. A sequencex[n] has a zero-phase DTFT X(e jω ) given below: X(e jω ) University of Cape Town Department of Electrical

More information

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet NAME: December Digital Signal Processing I Final Exam Fall Cover Sheet Test Duration: minutes. Open Book but Closed Notes. Three 8.5 x crib sheets allowed Calculators NOT allowed. This test contains four

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

VI. Z Transform and DT System Analysis

VI. Z Transform and DT System Analysis Summer 2008 Signals & Systems S.F. Hsieh VI. Z Transform and DT System Analysis Introduction Why Z transform? a DT counterpart of the Laplace transform in CT. Generalization of DT Fourier transform: z

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 6: January 31, 2017 Inverse z-transform Lecture Outline! z-transform " Tie up loose ends " Regions of convergence properties! Inverse z-transform " Inspection " Partial

More information