III. Quantum ergodicity on graphs, perspectives

Size: px
Start display at page:

Download "III. Quantum ergodicity on graphs, perspectives"

Transcription

1 III. Quantum ergodicity on graphs, perspectives Nalini Anantharaman Université de Strasbourg 24 août 2016

2 Yesterday we focussed on the case of large regular (discrete) graphs. Let G = (V, E) be a (q + 1)-regular graph. Discrete laplacian : f : V C, f (x) = (f (y) f (x)) = y x y x f (y) (q + 1)f (x). = A (q + 1)I

3 Sp(A) [ (q + 1), q + 1] Let V = N. We look at the limit N +.

4 Sp(A) [ (q + 1), q + 1] Let V = N. We look at the limit N +. We assume that G N has few short loops (= converges to a tree in the sense of Benjamini-Schramm).

5 Theorem (A-Le Masson, 2013) Assume that G N has few short loops and that it forms an expander family = uniform spectral gap for A. Let (φ (N) i ) N i=1 be an ONB of eigenfunctions of the laplacian on G N. Let a = a N : V N C be such that a(x) 1 for all x V N. Then lim N + 1 N N a(x) φ (N) i (x) 2 a x V N i=1 a = 1 a(x) N x V N 2 = 0.

6 Deterministic statement ; applies in particular to random regular graphs

7 More general version Theorem (A-Le Masson, 2013) Assume that G N has few short loops and that it forms an expander family. Let (φ (N) i ) N i=1 be an ONB of eigenfunctions of the laplacian on G N. Let K = K N : V N V N C be a matrix such that d(x, y) > D = K(x, y) = 0. Assume K(x, y) 1. Then lim N + 1 N N φ (N) i i=1, Kφ (N) i K λi 2 = 0.

8 Yesterday s proof yielded the following expression for K λ : thanks to Fourier analysis on the (q + 1)-regular tree, we wrote K = Op(a) and we obtained K λ = 1 N x D N X if λ = q 1/2+is + q 1/2 is = 2 q cos(s ln q). a(x, ω, s)dν x (ω)

9 Another formula for K λ K λ = 1 N x D,y X K(x, y)φ sph,λ (d(x, y)). Φ sph,λ is the spherical function of parameter λ on the (q + 1)-regular tree.

10 Another formula for K λ K λ = 1 N x D,y X K(x, y)φ sph,λ (d(x, y)). Φ sph,λ is the spherical function of parameter λ on the (q + 1)-regular tree. Φ λ (d) = q d/2 ( 2 q + 1 if λ = 2 q cos(s ln q). cos(ds ln q) + q 1 q + 1 ) sin((d + 1)s ln q) sin(s ln q)

11 A third formula for K λ Write G N = G = (V, E) = Γ\X. Introduce the Hilbert space H Γ = {(K(x, y)) (x,y) X X, K(γ x, γ y) = K(x, y) γ Γ, 1 K(x, y) 2 < + } D Consider the closed subspace x D,y X F = Vect{A k, k 0}={K H Γ, [A, K] = 0} H Γ.

12 A third formula for K λ For K H Γ, P F (K) = f K (A) where f K is a function on R (actually a polynomial of degree D if [d(x, y) > D = K(x, y) = 0])

13 A third formula for K λ For K H Γ, P F (K) = f K (A) where f K is a function on R (actually a polynomial of degree D if [d(x, y) > D = K(x, y) = 0]) We find K λ = f K (λ).

14 4 line (sketch of) proof Var([A, K]) = 0 Var(K) = 1 V N φ (N) i i=1 Var(K) 1 V K 2 HS(l 2 (V )) K 2 H ΓN, Kφ (N) i 2 + C(D) sup K 2 1 {x V, ρ(x) < D}. V By a density argument (using expansion), Var(K) 0 N + if K HΓN F. For general K, apply the previous line to K P F (K) = K f K (A).

15 On a regular graph, consider a weighted adjacency matrix, A p f (x) = y x p(x, y)f (y) with homogeneous probability weights.

16 Theorem (2015) Assume that G N has few short loops and that it forms an expander family. Let (φ (N) i ) N i=1 be an ONB of eigenfunctions of A p on G N. Let K = K N : V N V N C be a matrix such that d(x, y) > D = K(x, y) = 0. Assume K(x, y) 1. Then lim N + 1 N N φ (N) i i=1, Kφ (N) i K λi 2 = 0.

17 K λ = 1 N x,y K(x, y) Im G λ+i0(x, y) Im G λ+i0 (x, x). (the Green function of the infinite (q + 1)-regular tree)

18 K λ = 1 N x,y K(x, y) Im G λ+i0(x, y) Im G λ+i0 (x, x). (the Green function of the infinite (q + 1)-regular tree) Write the spectral decomposition of A p on X, dp (,λ] = P λ dm(λ) K λ = 1 V Tr l 2 (X)1l D KP λ.

19 Exploration + V (x) in progress with Mostafa Sabri

20 Exploration + V (x) in progress with Mostafa Sabri regular graph with (random) weights on the edges

21 Exploration + V (x) in progress with Mostafa Sabri regular graph with (random) weights on the edges some non-regular graphs? e.g. percolation graphs based on regular graphs

22 Wigner matrices Hemitian matrices of size N N, random iid entries. Law is centered, has a density and gaussian tails. Erdös, Schlein, Yau, Yin, Bourgade ( ), Tao-Vu : for any eigenvector φ, 1 φ N 1/2+ɛ φ 2 ( full delocalization, 2009) 2 η, ν > 0 s.t. B {1,..., N}, x B φ(x) 2 1 η = B νn. 3 QUE (2013) : for any fixed k, a N : {1,..., N} [ 1, 1], a N (x) φ (N) k (x) 2 a N δ a N N x with overwhelming probability.

23 Heavy-tailed matrices Symmetric matrices of size N N, random iid entries. Law is centered and has heavy tails : with 0 < α < 2. P( X > t) t α

24 Heavy-tailed matrices Symmetric matrices of size N N, random iid entries. Law is centered and has heavy tails : with 0 < α < 2. P( X > t) t α Ben Arous Guionnet have identified the limiting distribution of eigenvalues. Bordenave Guionnet have shown : If 1 < α < 2, for all but o(n) of the eigenvectors, there is delocalization in the sense that φ n ρ φ 2. If 0 < α < 2/3 and eigenvectors with eigenvalue λ large enough, there is localization : the mass of ( φ(x) 2 ) x=1,...,n is carried by at most n 1 δ entries.

25 Random non-symmetric matrices Vershynin-Rudelson 2014, Tao-Vu Matrices of size N N, random iid entries. Law is centered and has subexponential tail. Then with probability 1 n 1 t, all eigenvectors have 3/2 ln n9/2 φ Ct φ 2. n

26 Random band matrices Erdös-Knowles 2010 : symmetric matrices of size N N, band-width W N 6/7. Entries are iid, centered random variables, law has sub exponential tail. Then for most eigenvectors, the localization length is N.

27 Erdös-Rényi graphs Random graph with N vertices. Edges are chosen independently with probability p = p(n). The adjacency matrix is then a random N N symmetric matrix (containing only 0 and 1). Erdös, Knowles, Yau, Yin 2013 : if pn (ln N) C, then with high probability there is full delocalization of all eigenvectors : +QUE statement φ C (ln N)c N φ 2.

28 Random regular graphs with d N +. Dumitriu-Pal, Tran-Vu-Wang, Geisinger. Bauerschmidt-Knowles-Yau 2015 : if d N (log N) 4, then with proba 1 e ξ log ξ all eigenvectors have +QUE statement φ C ξ N φ 2.

Local Kesten McKay law for random regular graphs

Local Kesten McKay law for random regular graphs Local Kesten McKay law for random regular graphs Roland Bauerschmidt (with Jiaoyang Huang and Horng-Tzer Yau) University of Cambridge Weizmann Institute, January 2017 Random regular graph G N,d is the

More information

Random regular digraphs: singularity and spectrum

Random regular digraphs: singularity and spectrum Random regular digraphs: singularity and spectrum Nick Cook, UCLA Probability Seminar, Stanford University November 2, 2015 Universality Circular law Singularity probability Talk outline 1 Universality

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg Quantum ergodicity Nalini Anantharaman Université de Strasbourg 22 août 2016 I. Quantum ergodicity on manifolds. II. QE on (discrete) graphs : regular graphs. III. QE on graphs : other models, perspectives.

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Extreme eigenvalues of Erdős-Rényi random graphs

Extreme eigenvalues of Erdős-Rényi random graphs Extreme eigenvalues of Erdős-Rényi random graphs Florent Benaych-Georges j.w.w. Charles Bordenave and Antti Knowles MAP5, Université Paris Descartes May 18, 2018 IPAM UCLA Inhomogeneous Erdős-Rényi random

More information

Local law of addition of random matrices

Local law of addition of random matrices Local law of addition of random matrices Kevin Schnelli IST Austria Joint work with Zhigang Bao and László Erdős Supported by ERC Advanced Grant RANMAT No. 338804 Spectrum of sum of random matrices Question:

More information

arxiv: v3 [math-ph] 21 Jun 2012

arxiv: v3 [math-ph] 21 Jun 2012 LOCAL MARCHKO-PASTUR LAW AT TH HARD DG OF SAMPL COVARIAC MATRICS CLAUDIO CACCIAPUOTI, AA MALTSV, AD BJAMI SCHLI arxiv:206.730v3 [math-ph] 2 Jun 202 Abstract. Let X be a matrix whose entries are i.i.d.

More information

arxiv: v2 [math.pr] 16 Aug 2014

arxiv: v2 [math.pr] 16 Aug 2014 RANDOM WEIGHTED PROJECTIONS, RANDOM QUADRATIC FORMS AND RANDOM EIGENVECTORS VAN VU DEPARTMENT OF MATHEMATICS, YALE UNIVERSITY arxiv:306.3099v2 [math.pr] 6 Aug 204 KE WANG INSTITUTE FOR MATHEMATICS AND

More information

Isotropic local laws for random matrices

Isotropic local laws for random matrices Isotropic local laws for random matrices Antti Knowles University of Geneva With Y. He and R. Rosenthal Random matrices Let H C N N be a large Hermitian random matrix, normalized so that H. Some motivations:

More information

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices László Erdős University of Munich Oberwolfach, 2008 Dec Joint work with H.T. Yau (Harvard), B. Schlein (Cambrigde) Goal:

More information

Universality of local spectral statistics of random matrices

Universality of local spectral statistics of random matrices Universality of local spectral statistics of random matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany CRM, Montreal, Mar 19, 2012 Joint with P. Bourgade, B. Schlein, H.T. Yau, and J.

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

Semicircle law on short scales and delocalization for Wigner random matrices

Semicircle law on short scales and delocalization for Wigner random matrices Semicircle law on short scales and delocalization for Wigner random matrices László Erdős University of Munich Weizmann Institute, December 2007 Joint work with H.T. Yau (Harvard), B. Schlein (Munich)

More information

The Matrix Dyson Equation in random matrix theory

The Matrix Dyson Equation in random matrix theory The Matrix Dyson Equation in random matrix theory László Erdős IST, Austria Mathematical Physics seminar University of Bristol, Feb 3, 207 Joint work with O. Ajanki, T. Krüger Partially supported by ERC

More information

Inhomogeneous circular laws for random matrices with non-identically distributed entries

Inhomogeneous circular laws for random matrices with non-identically distributed entries Inhomogeneous circular laws for random matrices with non-identically distributed entries Nick Cook with Walid Hachem (Telecom ParisTech), Jamal Najim (Paris-Est) and David Renfrew (SUNY Binghamton/IST

More information

Homogenization of the Dyson Brownian Motion

Homogenization of the Dyson Brownian Motion Homogenization of the Dyson Brownian Motion P. Bourgade, joint work with L. Erdős, J. Yin, H.-T. Yau Cincinnati symposium on probability theory and applications, September 2014 Introduction...........

More information

Comparison Method in Random Matrix Theory

Comparison Method in Random Matrix Theory Comparison Method in Random Matrix Theory Jun Yin UW-Madison Valparaíso, Chile, July - 2015 Joint work with A. Knowles. 1 Some random matrices Wigner Matrix: H is N N square matrix, H : H ij = H ji, EH

More information

RANDOM MATRICES: TAIL BOUNDS FOR GAPS BETWEEN EIGENVALUES. 1. Introduction

RANDOM MATRICES: TAIL BOUNDS FOR GAPS BETWEEN EIGENVALUES. 1. Introduction RANDOM MATRICES: TAIL BOUNDS FOR GAPS BETWEEN EIGENVALUES HOI NGUYEN, TERENCE TAO, AND VAN VU Abstract. Gaps (or spacings) between consecutive eigenvalues are a central topic in random matrix theory. The

More information

Real Variables # 10 : Hilbert Spaces II

Real Variables # 10 : Hilbert Spaces II randon ehring Real Variables # 0 : Hilbert Spaces II Exercise 20 For any sequence {f n } in H with f n = for all n, there exists f H and a subsequence {f nk } such that for all g H, one has lim (f n k,

More information

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA) The circular law Lewis Memorial Lecture / DIMACS minicourse March 19, 2008 Terence Tao (UCLA) 1 Eigenvalue distributions Let M = (a ij ) 1 i n;1 j n be a square matrix. Then one has n (generalised) eigenvalues

More information

Spectral Universality of Random Matrices

Spectral Universality of Random Matrices Spectral Universality of Random Matrices László Erdős IST Austria (supported by ERC Advanced Grant) Szilárd Leó Colloquium Technical University of Budapest February 27, 2018 László Erdős Spectral Universality

More information

Invertibility of random matrices

Invertibility of random matrices University of Michigan February 2011, Princeton University Origins of Random Matrix Theory Statistics (Wishart matrices) PCA of a multivariate Gaussian distribution. [Gaël Varoquaux s blog gael-varoquaux.info]

More information

Applications of random matrix theory to principal component analysis(pca)

Applications of random matrix theory to principal component analysis(pca) Applications of random matrix theory to principal component analysis(pca) Jun Yin IAS, UW-Madison IAS, April-2014 Joint work with A. Knowles and H. T Yau. 1 Basic picture: Let H be a Wigner (symmetric)

More information

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Etienne Le Masson (Joint work with Tuomas Sahlsten) School of Mathematics University of Bristol, UK August 26, 2016 Hyperbolic

More information

Universality for random matrices and log-gases

Universality for random matrices and log-gases Universality for random matrices and log-gases László Erdős IST, Austria Ludwig-Maximilians-Universität, Munich, Germany Encounters Between Discrete and Continuous Mathematics Eötvös Loránd University,

More information

EIGENVECTORS OF RANDOM MATRICES OF SYMMETRIC ENTRY DISTRIBUTIONS. 1. introduction

EIGENVECTORS OF RANDOM MATRICES OF SYMMETRIC ENTRY DISTRIBUTIONS. 1. introduction EIGENVECTORS OF RANDOM MATRICES OF SYMMETRIC ENTRY DISTRIBUTIONS SEAN MEEHAN AND HOI NGUYEN Abstract. In this short note we study a non-degeneration property of eigenvectors of symmetric random matrices

More information

Small Ball Probability, Arithmetic Structure and Random Matrices

Small Ball Probability, Arithmetic Structure and Random Matrices Small Ball Probability, Arithmetic Structure and Random Matrices Roman Vershynin University of California, Davis April 23, 2008 Distance Problems How far is a random vector X from a given subspace H in

More information

1 Tridiagonal matrices

1 Tridiagonal matrices Lecture Notes: β-ensembles Bálint Virág Notes with Diane Holcomb 1 Tridiagonal matrices Definition 1. Suppose you have a symmetric matrix A, we can define its spectral measure (at the first coordinate

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1

Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Upper Bound for Intermediate Singular Values of Random Sub-Gaussian Matrices 1 Feng Wei 2 University of Michigan July 29, 2016 1 This presentation is based a project under the supervision of M. Rudelson.

More information

Quantum Probability and Asymptotic Spectral Analysis of Growing Roma, GraphsNovember 14, / 47

Quantum Probability and Asymptotic Spectral Analysis of Growing Roma, GraphsNovember 14, / 47 Quantum Probability and Asymptotic Spectral Analysis of Growing Graphs Nobuaki Obata GSIS, Tohoku University Roma, November 14, 2013 Quantum Probability and Asymptotic Spectral Analysis of Growing Roma,

More information

Concentration inequalities: basics and some new challenges

Concentration inequalities: basics and some new challenges Concentration inequalities: basics and some new challenges M. Ledoux University of Toulouse, France & Institut Universitaire de France Measure concentration geometric functional analysis, probability theory,

More information

Gaussian Fields and Percolation

Gaussian Fields and Percolation Gaussian Fields and Percolation Dmitry Beliaev Mathematical Institute University of Oxford RANDOM WAVES IN OXFORD 18 June 2018 Berry s conjecture In 1977 M. Berry conjectured that high energy eigenfunctions

More information

Numerical analysis and random matrix theory. Tom Trogdon UC Irvine

Numerical analysis and random matrix theory. Tom Trogdon UC Irvine Numerical analysis and random matrix theory Tom Trogdon ttrogdon@math.uci.edu UC Irvine Acknowledgements This is joint work with: Percy Deift Govind Menon Sheehan Olver Raj Rao Numerical analysis and random

More information

Invertibility of symmetric random matrices

Invertibility of symmetric random matrices Invertibility of symmetric random matrices Roman Vershynin University of Michigan romanv@umich.edu February 1, 2011; last revised March 16, 2012 Abstract We study n n symmetric random matrices H, possibly

More information

Fluctuations of the free energy of spherical spin glass

Fluctuations of the free energy of spherical spin glass Fluctuations of the free energy of spherical spin glass Jinho Baik University of Michigan 2015 May, IMS, Singapore Joint work with Ji Oon Lee (KAIST, Korea) Random matrix theory Real N N Wigner matrix

More information

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR:

STUDENT NAME: STUDENT SIGNATURE: STUDENT ID NUMBER: SECTION NUMBER RECITATION INSTRUCTOR: MA262 FINAL EXAM SPRING 2016 MAY 2, 2016 TEST NUMBER 01 INSTRUCTIONS: 1. Do not open the exam booklet until you are instructed to do so. 2. Before you open the booklet fill in the information below and

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

Random matrices: A Survey. Van H. Vu. Department of Mathematics Rutgers University

Random matrices: A Survey. Van H. Vu. Department of Mathematics Rutgers University Random matrices: A Survey Van H. Vu Department of Mathematics Rutgers University Basic models of random matrices Let ξ be a real or complex-valued random variable with mean 0 and variance 1. Examples.

More information

Random band matrices

Random band matrices Random band matrices P. Bourgade Courant Institute, ew York University bourgade@cims.nyu.edu We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erdős-Schlein-Yau

More information

Update on the beta ensembles

Update on the beta ensembles Update on the beta ensembles Brian Rider Temple University with M. Krishnapur IISC, J. Ramírez Universidad Costa Rica, B. Virág University of Toronto The Tracy-Widom laws Consider a random Hermitian n

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

Random Matrices: Invertibility, Structure, and Applications

Random Matrices: Invertibility, Structure, and Applications Random Matrices: Invertibility, Structure, and Applications Roman Vershynin University of Michigan Colloquium, October 11, 2011 Roman Vershynin (University of Michigan) Random Matrices Colloquium 1 / 37

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Microscopic behavior for β-ensembles: an energy approach

Microscopic behavior for β-ensembles: an energy approach Microscopic behavior for β-ensembles: an energy approach Thomas Leblé (joint with/under the supervision of) Sylvia Serfaty Université Paris 6 BIRS workshop, 14 April 2016 Thomas Leblé (Université Paris

More information

Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues

Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues László Erdős Antti Knowles 2 Horng-Tzer Yau 2 Jun Yin 2 Institute of Mathematics, University of Munich, Theresienstrasse

More information

Stochastic domination in space-time for the supercritical contact process

Stochastic domination in space-time for the supercritical contact process Stochastic domination in space-time for the supercritical contact process Stein Andreas Bethuelsen joint work with Rob van den Berg (CWI and VU Amsterdam) Workshop on Genealogies of Interacting Particle

More information

RANDOM MATRICES: OVERCROWDING ESTIMATES FOR THE SPECTRUM. 1. introduction

RANDOM MATRICES: OVERCROWDING ESTIMATES FOR THE SPECTRUM. 1. introduction RANDOM MATRICES: OVERCROWDING ESTIMATES FOR THE SPECTRUM HOI H. NGUYEN Abstract. We address overcrowding estimates for the singular values of random iid matrices, as well as for the eigenvalues of random

More information

1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem.

1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem. STATE EXAM MATHEMATICS Variant A ANSWERS AND SOLUTIONS 1 1.1 Limits and Continuity. Precise definition of a limit and limit laws. Squeeze Theorem. Intermediate Value Theorem. Extreme Value Theorem. Definition

More information

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there

More information

From the mesoscopic to microscopic scale in random matrix theory

From the mesoscopic to microscopic scale in random matrix theory From the mesoscopic to microscopic scale in random matrix theory (fixed energy universality for random spectra) With L. Erdős, H.-T. Yau, J. Yin Introduction A spacially confined quantum mechanical system

More information

Random Toeplitz Matrices

Random Toeplitz Matrices Arnab Sen University of Minnesota Conference on Limits Theorems in Probability, IISc January 11, 2013 Joint work with Bálint Virág What are Toeplitz matrices? a0 a 1 a 2... a1 a0 a 1... a2 a1 a0... a (n

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Lecture I: Asymptotics for large GUE random matrices

Lecture I: Asymptotics for large GUE random matrices Lecture I: Asymptotics for large GUE random matrices Steen Thorbjørnsen, University of Aarhus andom Matrices Definition. Let (Ω, F, P) be a probability space and let n be a positive integer. Then a random

More information

FRG Workshop in Cambridge MA, May

FRG Workshop in Cambridge MA, May FRG Workshop in Cambridge MA, May 18-19 2011 Programme Wednesday May 18 09:00 09:10 (welcoming) 09:10 09:50 Bachmann 09:55 10:35 Sims 10:55 11:35 Borovyk 11:40 12:20 Bravyi 14:10 14:50 Datta 14:55 15:35

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Advances in Mathematics and Theoretical Physics, Roma, 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

arxiv: v4 [math.pr] 10 Sep 2018

arxiv: v4 [math.pr] 10 Sep 2018 Lectures on the local semicircle law for Wigner matrices arxiv:60.04055v4 [math.pr] 0 Sep 208 Florent Benaych-Georges Antti Knowles September, 208 These notes provide an introduction to the local semicircle

More information

Random Lifts of Graphs

Random Lifts of Graphs 27th Brazilian Math Colloquium, July 09 Plan of this talk A brief introduction to the probabilistic method. A quick review of expander graphs and their spectrum. Lifts, random lifts and their properties.

More information

JUST THE MATHS SLIDES NUMBER 9.6. MATRICES 6 (Eigenvalues and eigenvectors) A.J.Hobson

JUST THE MATHS SLIDES NUMBER 9.6. MATRICES 6 (Eigenvalues and eigenvectors) A.J.Hobson JUST THE MATHS SLIDES NUMBER 96 MATRICES 6 (Eigenvalues and eigenvectors) by AJHobson 96 The statement of the problem 962 The solution of the problem UNIT 96 - MATRICES 6 EIGENVALUES AND EIGENVECTORS 96

More information

Fluctuations of random tilings and discrete Beta-ensembles

Fluctuations of random tilings and discrete Beta-ensembles Fluctuations of random tilings and discrete Beta-ensembles Alice Guionnet CRS (E S Lyon) Workshop in geometric functional analysis, MSRI, nov. 13 2017 Joint work with A. Borodin, G. Borot, V. Gorin, J.Huang

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) Each of the six questions is worth 10 points. 1) Let H be a (real or complex) Hilbert space. We say

More information

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures

Duality, Statistical Mechanics and Random Matrices. Bielefeld Lectures Duality, Statistical Mechanics and Random Matrices Bielefeld Lectures Tom Spencer Institute for Advanced Study Princeton, NJ August 16, 2016 Overview Statistical mechanics motivated by Random Matrix theory

More information

Free Probability and Random Matrices: from isomorphisms to universality

Free Probability and Random Matrices: from isomorphisms to universality Free Probability and Random Matrices: from isomorphisms to universality Alice Guionnet MIT TexAMP, November 21, 2014 Joint works with F. Bekerman, Y. Dabrowski, A.Figalli, E. Maurel-Segala, J. Novak, D.

More information

1 Distributions (due January 22, 2009)

1 Distributions (due January 22, 2009) Distributions (due January 22, 29). The distribution derivative of the locally integrable function ln( x ) is the principal value distribution /x. We know that, φ = lim φ(x) dx. x ɛ x Show that x, φ =

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

Spectra of adjacency matrices of random geometric graphs

Spectra of adjacency matrices of random geometric graphs Spectra of adjacency matrices of random geometric graphs Paul Blackwell, Mark Edmondson-Jones and Jonathan Jordan University of Sheffield 22nd December 2006 Abstract We investigate the spectral properties

More information

Least singular value of random matrices. Lewis Memorial Lecture / DIMACS minicourse March 18, Terence Tao (UCLA)

Least singular value of random matrices. Lewis Memorial Lecture / DIMACS minicourse March 18, Terence Tao (UCLA) Least singular value of random matrices Lewis Memorial Lecture / DIMACS minicourse March 18, 2008 Terence Tao (UCLA) 1 Extreme singular values Let M = (a ij ) 1 i n;1 j m be a square or rectangular matrix

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

THE COLORED BENJAMINI-SCHRAMM TOPOLOGY

THE COLORED BENJAMINI-SCHRAMM TOPOLOGY THE COLORED BEJAMII-SCHRAMM TOPOLOGY MOSTAFA SABRI Abstract. These are lecture notes on the Benjamini-Schramm topology. We discuss basic notions, examples and implications for the spectral measures.. Introduction

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions Physics 37A Quantum Mechanics Fall 0 Midterm II - Solutions These are the solutions to the exam given to Lecture Problem [5 points] Consider a particle with mass m charge q in a simple harmonic oscillator

More information

Paper Specific Instructions

Paper Specific Instructions Paper Specific Instructions. The examination is of 3 hours duration. There are a total of 60 questions carrying 00 marks. The entire paper is divided into three sections, A, B and C. All sections are compulsory.

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

Eigenvalue variance bounds for Wigner and covariance random matrices

Eigenvalue variance bounds for Wigner and covariance random matrices Eigenvalue variance bounds for Wigner and covariance random matrices S. Dallaporta University of Toulouse, France Abstract. This work is concerned with finite range bounds on the variance of individual

More information

Quantum ergodicity on regular graphs

Quantum ergodicity on regular graphs Quantum ergodcty on regular graphs Naln Anantharaman Unversté de Strasbourg 23 août 2016 M Remannan manfold Let (ψ k ) k N be an orthonormal bass of L 2 (M), wth QE theorem (smplfed) : ψ k = λ k ψ k, λ

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Quantum Diffusion and Delocalization for Random Band Matrices

Quantum Diffusion and Delocalization for Random Band Matrices Quantum Diffusion and Delocalization for Random Band Matrices László Erdős Ludwig-Maximilians-Universität, Munich, Germany Montreal, Mar 22, 2012 Joint with Antti Knowles (Harvard University) 1 INTRODUCTION

More information

The Eigenvector Moment Flow and local Quantum Unique Ergodicity

The Eigenvector Moment Flow and local Quantum Unique Ergodicity The Eigenvector Moment Flow and local Quantum Unique Ergodicity P. Bourgade Cambridge University and Institute for Advanced Study E-mail: bourgade@math.ias.edu H.-T. Yau Harvard University and Institute

More information

Sparse recovery for spherical harmonic expansions

Sparse recovery for spherical harmonic expansions Rachel Ward 1 1 Courant Institute, New York University Workshop Sparsity and Cosmology, Nice May 31, 2011 Cosmic Microwave Background Radiation (CMB) map Temperature is measured as T (θ, ϕ) = k k=0 l=

More information

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Reimer Kühn Disordered Systems Group Department of Mathematics, King s College London Random Graphs and Random Processes, KCL

More information

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian

Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Lecture 1: Graphs, Adjacency Matrices, Graph Laplacian Radu Balan January 31, 2017 G = (V, E) An undirected graph G is given by two pieces of information: a set of vertices V and a set of edges E, G =

More information

On the inverse matrix of the Laplacian and all ones matrix

On the inverse matrix of the Laplacian and all ones matrix On the inverse matrix of the Laplacian and all ones matrix Sho Suda (Joint work with Michio Seto and Tetsuji Taniguchi) International Christian University JSPS Research Fellow PD November 21, 2012 Sho

More information

arxiv: v2 [math.pr] 27 Oct 2015

arxiv: v2 [math.pr] 27 Oct 2015 A brief note on the Karhunen-Loève expansion Alen Alexanderian arxiv:1509.07526v2 [math.pr] 27 Oct 2015 October 28, 2015 Abstract We provide a detailed derivation of the Karhunen Loève expansion of a stochastic

More information

Econ Slides from Lecture 7

Econ Slides from Lecture 7 Econ 205 Sobel Econ 205 - Slides from Lecture 7 Joel Sobel August 31, 2010 Linear Algebra: Main Theory A linear combination of a collection of vectors {x 1,..., x k } is a vector of the form k λ ix i for

More information

Fluctuations from the Semicircle Law Lecture 4

Fluctuations from the Semicircle Law Lecture 4 Fluctuations from the Semicircle Law Lecture 4 Ioana Dumitriu University of Washington Women and Math, IAS 2014 May 23, 2014 Ioana Dumitriu (UW) Fluctuations from the Semicircle Law Lecture 4 May 23, 2014

More information

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Hilbert Space Methods for Reduced-Rank Gaussian Process Regression Arno Solin and Simo Särkkä Aalto University, Finland Workshop on Gaussian Process Approximation Copenhagen, Denmark, May 2015 Solin &

More information

Stability, dispersal and ecological networks. François Massol

Stability, dispersal and ecological networks. François Massol Stability, dispersal and ecological networks François Massol June 1 st 2015 General theme Evolutionary ecology of fluxes o Evolution & ecology of dispersal o Spatial structure, networks of populations

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Diffusion Profile and Delocalization for Random Band Matrices

Diffusion Profile and Delocalization for Random Band Matrices Diffusion Profile and Delocalization for Random Band Matrices Antti Knowles Courant Institute, New York University Newton Institute 19 September 2012 Joint work with László Erdős, Horng-Tzer Yau, and Jun

More information

Optimality and Sub-optimality of Principal Component Analysis for Spiked Random Matrices

Optimality and Sub-optimality of Principal Component Analysis for Spiked Random Matrices Optimality and Sub-optimality of Principal Component Analysis for Spiked Random Matrices Alex Wein MIT Joint work with: Amelia Perry (MIT), Afonso Bandeira (Courant NYU), Ankur Moitra (MIT) 1 / 22 Random

More information

Linear Differential Equations. Problems

Linear Differential Equations. Problems Chapter 1 Linear Differential Equations. Problems 1.1 Introduction 1.1.1 Show that the function ϕ : R R, given by the expression ϕ(t) = 2e 3t for all t R, is a solution of the Initial Value Problem x =

More information