Modeling and Measurement of Thermal Process in Experimental Borehole in Matlab&Simulink and Comsol Multiphysics

Size: px
Start display at page:

Download "Modeling and Measurement of Thermal Process in Experimental Borehole in Matlab&Simulink and Comsol Multiphysics"

Transcription

1 Modeling and Measurement of Thermal Process in Experimental Borehole in Matlab&Simulink and Comsol Multiphysics STEPAN OZANA, RADOVAN HAJOVSKY, MARTIN PIES, BLANKA FILIPOVA Department of Cybernetics and Biomedical Engineering VSB-Technical University of Ostrava 17. listopadu 15/2172 CZECH REPUBLIC {stepan.ozana radovan.hajovsky martin.pies Abstract: - The article deals with the measurement, modeling and simulation of thermal process within the experimental borehole located at mining dump Hedvika. The model is based on Heat equation, solved in Matlab and Comsol Multiphysics. The purpose of this model is to verify simulated data with the one retrieved from sensoric network around and within the experimental borehole. Experiment that provided all the necessary data has been running at Hedvika mining dump which is still one of the thermally active mining dumps in the surroundings of Ostrava with subsurface fires in it. The temperature of the mining dump can increase dramatically any time. The great benefit would be the knowledge of when and where fast temperature changes occur. Key-Words: - borehole, Matlab, Comsol Multiphysics, mining dump, modeling, simulation 1 Introduction The issue of mining dumps is very extensive. The heaps are made from waste and tailings from coal mines. Waste rocks can catch fire spontaneously any time and mining dump starts to burn. Temperatures can change immediately. Fast change of temperature has a bad effect on the environment, whether it is the fauna, flora, or the surrounding buildings and humans. and arise as a secondary product of combustion. It is dangerous for living organisms due to exhaust fumes and high temperature that can reach to the buildings on the ground. It is one of the main reasons why the presented data model is being developed. Currently we are monitoring temperature changes in the mining dump. It is a large network made up of tens of sensors. The sensors measure temperatures at depths of 3 and 6 meters. Temperature distribution throughout the heap is determined with using mathematical interpolated methods based on the temperature measurements. Current situation illustrated in Fig. 1 has been changed by adding one more experimental borehole with more additional equipment than the other borehole have at these days. All of the data, as the same as for the other sensors, is transferred to the MySQL database by GPRS, then it is accessed and processed by Matlab and Simulink environment. The basic model (one-chamber) is solved in Matlab only, then 3D model has been created with the use of Comsol Multiphysics that allows to solve more complex tasks by FEM (finite elements method) [6]. Fig. 1. Current sensoric network at Hedvika mining dump [7]. 2 Mathematical background The thermal process within the experimental borehole can be analytically identified by use of Heat equation which is then solved either in Matlab (FDM, FEM) or Comsol Multiphysics (FEM) [1], [3]. 2.1 Heat equation The basic form of heat equation used in this paper to analyze the dynamic model of thermal process is according (1). ISBN:

2 where and ( ) (1) stands for a short denotation of w D m/s Darcy s flow K D m 2 permeability L m length T K temperature 2.2 Analysis of heat sources The environment of the experimental borehole includes solid and leeks filled up with a liquid phase. The liquid phase could consist of both liquid and gas elements. Heat transfer is carried out by two ways: convection and conduction. The first way is bound for presence of media flow, the direction of heat transfer is determined by the direction of this flow and the magnitude of particular relative heat flux is according (2). qk wd * t * ct * T (2) Darcy s relative flow of liquid phase (for laminar flow) is given by (3). wd KD * p (3) L * The relative heat flux for the heat transfer is given by (4) q V * grad( T) (4) and partial differential equation for thermal field includes the term (5) a c * (5) usually referred to as thermal conductivity coefficient and other parameters refers to as c J/kg/deg relative heat capacity c t J/kg/deg relative heat capacity of liquid component q k W/m 2 relative heat flux (convection) q v W/m 2 relative heat flux (conduction) W/m/deg relative heat conductivity N.s/m 2 dynamic viscosity kg/m 3 density p Pa pressure difference The equation for computing Darcy s flow includes permeability K D that deps on porosity of the environment. Therefore besides relative density, thermal capacity and thermal conductivity the porosity has to be entered into the model. The values of thermal conductivity coefficient for common materials are rarely mentioned in the literature resources, it is often determined as a result of additional computational techniques [2], [4], [5]. 3 Modeling of the thermal process in experimental borehole Modeling of thermal process in experimental was firstly carried out as one-chamber model and this model then was exted into three-chamber model that summarizes heat sources into three volumes. 3.1 Modeling of the basic one-chamber model in Matlab The Matlab code shown below shows the solution of basic one-chamber model, by use of FDM (finite difference model). This solution was used to determine basic parameters of the model and mainly helped to turn the solution towards Comsol Multiphysics. Fig. 2 shows borehole cylindrical model (type of single U-pipe) with placement of corresponding variables: borehole parts, temperature variables and four-variable functions, borehole essential parameters (e. g. thermal conductivity λ or borehole resistance RB), parameters of temperature initial condition (IC), and temperature boundary conditions (BC) based on geometrical configuration of this borehole model (finite length circular cylinder). ISBN:

3 Fig. 2. Borehole cylindrical model (type of single U-pipe) [6]. 3.2 Modeling of three-chamber model in Comsol Multiphysics The main purpose of this experiment is to measure heating, resp. cooling of a small area in close surroundings of the experimental borehole by use of temperature sensors Pt100. Inside there are three interconnected chambers with cooling media. The overall height of the apparatus is 4 meters, having its top 1 meter under the ground, which works out 5 meters of the depth altogether, as it can be seen from Fig. 2. Around the borehole itself there is a cross-cylindrical system of sensors for temperature measurement, the distance between sensors are 0.3 meter horizontally and they are located in three levels vertically, corresponding to the centers of particular chambers. It is supposed that temperature changes caused by enforced cooling happen at least 100 times faster than temperature changes caused by burning of the mining dump. Before the start of the experiment the temperature in the borehole surroundings can be considered as constant (and can be measured within the borehole). By control intervention the temperature in a close surroundings of the borehole will be affected, ant the temperature tr lines can be stored. Fig. 3. Setting up the heat equation in Comsol Multiphysics environment. ISBN:

4 Fig. 5. Top view of the experiment setup. Fig. 6. Detail of chamber outlets with Pt100 temperature sensor. Fig. 4. Transverse view of the experiment setup. Fig. 7. Meshed geometry in Comsol Multiphysics. ISBN:

5 Fig. 8. 3D plot of temperature over the time in x- direction Setting of the partial differential equation describing the model into Comsol Multiphysics can be seen in Fig. 3. The experimental setup of the apparatus that provides the data to be compared to simulated results is illustrated in Fig. 4, Fig. 5 and Fig. 6. The created model is linear time invariant with variant space parameters. Therefore, is not necessary to deal with absolute values of temperature, but it is enough to compute relative temperature differences related to initial or steady state. The top and sides of the modeled object will have zero Dirichlet boundary condition that determine the ambient temperature, or Neumann condition computed from zero (relative) ambient temperature, simulated temperature of cooled object and heat transfer coefficient (iteration computation). Meshed geometry ready to compute is illustrated in Fig. 7. There can be many plots resulting from the computation, such as the one in Fig. 8 representing energy spread over x-axis and time. The sequence of computation is as follows: setting of zero initial condition setting of zero Dirichlet boundary condition input of step change of the power is brought to the system retrieving particular values of at given points (corresponding to measured points) calculation of from 4 Conclusion The paper presented main idea of modeling experimental borehole. This model can be then exted and applied for large areas of mining dumps provided we have sufficient information about crucial parameters of area of interest. The verification between simulated and measured data is just in the primal phase, but it has been proven that the concept of the model and the methodology of experiment are valid. The most crucial fact that has to be explored in detail in future phases of the project is heat sources represented by the component. The Comsol Multiphysics appears to be the most appropriate tool for solution of such complex model due to the fact that it allows to model nonlinear phenomena even in heterogeneous materials with time and space variant coefficient, while the partial differential equation(s) are already predefined in this environment. Of course, it lets user easily define 1D, 2D or 3D plots with computed signals. 5 Acknowledgment The paper was supported by TACR TA Enhancement of quality of environment with respect to occurrence of ogenous fires in mine dumps and industrial waste dumps, including its modeling and spread prediction. References: [1] Phillips G. M., Taylor P. J.: Theory and Applications of Numerical Analysis. Elsevier Academic Press. London, ISBN [2] Filipova B., Hajovsky R. Using MATLAB for modeling of thermal processes in a mining dump. Recent advances in fluid mechanics and heat & mass transfer. Proceedings of the 9th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment. WSEAS Press, pp , ISBN [3] Stoer J., Bulirsch R. Introduction to Numerical Analysis. Springer Science + Business Media, New York, USA, ISBN [4] Vitasek E. Numericke metody. SNTL, Praha [5] Lixin L., Revesz P. Interpolation methods for spatio-temporal geographic data. Computers, Environment and Urban Systems. Volume 28, Issue 3, pp , Elsevier, [6] Vojcinak P., Vrtek M., Hajovsky R. Evaluation and Monitoring of Effectiveness of Heat Pumps via COP Parameter, In International Conference on Circuits, Systems, Signals pp , ISBN [7] Hajovsky R., Ozana S., Nevriva P. Remote Sensor Net for Wireless Temperature and Gas Measurement on Mining Dumps. In 7th WSEAS International Conference on Remote Sensing (REMOTE '11). Penang, Malaysia: WSEAS Press, pp ISBN ISBN:

6 Appix clear all,close all maxdel=10; %maximum of slices dt=1; %integration step maxtime=100; %number of integration steps case "integer" h=5; %length of the step in coordinates q=1; %input heat source" h2=h*h; %square of step in coordinates %initial values: i=1:1:maxdel;j=1:1:maxdel;k=1:1:maxdel; Q(i,j,k)=0; %zero initial value i=1:1:maxdel;j=1:1:maxdel;k=1:1:maxdel; qt(i,j,k)=0; %zero initial value n=1:1:maxtime;i=1:1:maxdel; G(i,n)=0; %reset of regult matrix %integration start for n=1:1:maxtime; %cycle for integration steps %second derivatives in the sides (going through starting point) j=1:1:maxdel; k=1:1:maxdel; d2qdx2(1,j,k)=(q(1,j,k)-2*q(2,j,k)+q(3,j,k))/h2; %second derivative of the energy perpicular to x-axis i=1:1:maxdel;k=1:1:maxdel; d2qdy2(i,1,k)=(q(i,1,k)-2*q(i,2,k)+q(i,3,k))/h2; %second derivative of the energy perpicular to y-axis i=1:1:maxdel;j=1:1:maxdel; d2qdz2(i,j,1)=(q(i,j,1)-2*q(i,j,2)+q(i,j,3))/h2; %second derivative of the energy perpicular to z-axis %second derivatives inside the objects (sides excluded) i=2:1:maxdel-1;j=1:1:maxdel;k=1:1:maxdel; d2qdx2(i,j,k)=(q(i-1,j,k)- 2*Q(i,j,k)+Q(i+1,j,k))/h2; %second derivative of the energy in x-axis i=1:1:maxdel;j=2:1:maxdel-1;k=1:1:maxdel; d2qdy2(i,j,k)=(q(i,j-1,k)- 2*Q(i,j,k)+Q(i,j+1,k))/h2; %second derivative of the energy in y-axis %second derivatives in the sides (going out of starting point) j=1:1:maxdel;k=1:1:maxdel; d2qdx2(maxdel,j,k)=(q(maxdel-2,j,k)- 2*Q(maxdel-1,j,k)+Q(maxdel,j,k))/h2; %second derivative of the energy in the side x=maxdel i=1:1:maxdel;k=1:1:maxdel; d2qdy2(i,maxdel,k)=(q(i,maxdel-2,k)- 2*Q(i,maxdel-1,k)+Q(i,maxdel,k))/h2; % second derivative of the energy in the side y=maxdel i=1:1:maxdel;j=1:1:maxdel; d2qdz2(i,j,maxdel)=(q(i,j,maxdel-2)- 2*Q(i,j,maxdel-1)+Q(i,j,maxdel))/h2; % second derivative of the energy in the side z=maxdel %input heat source k=1:1:maxdel; k=1:1:maxdel; qt(1,1,k)=(1-exp(0.05*(-n+1)))-0.1*q(1,1,k); %time derivatives i=1:1:maxdel;j=1:1:maxdel;k=1:1:maxdel; dq(i,j,k)=d2qdx2(i,j,k)+d2qdy2(i,j,k)+d2qdz2(i,j,k )+qt(i,j,k); %notation of derivatives in all points %integration in time for k=1:1:maxdel; for j=1:1:maxdel; for i=1:1:maxdel; Q(i,j,k)=Q(i,j,k)+dt*dQ(i,j,k); % Q(i,j,k)is a vector deping on n index G(i,n)=Q(i,3,2); %preparation for plottingin x axisx %3D plotting figure(1),surface (G); axis ([1 maxtime 1 maxdel 0 15]); xlabel('time'),ylabel('x axis') zlabel('energy'),grid i=1:1:maxdel; j=1:1:maxdel;k=2:1:maxdel-1; d2qdz2(i,j,k)=(q(i,j,k-1)- 2*Q(i,j,k)+Q(i,j,k+1))/h2; %second derivative of the energy in z-axis ISBN:

Fig. 1. Current sensoric network with experimental borehole. Cybernetics and Biomedical Engineering, 17. listopadu 15, Ostrava, Czech Republic

Fig. 1. Current sensoric network with experimental borehole. Cybernetics and Biomedical Engineering, 17. listopadu 15, Ostrava, Czech Republic Applied Mechanics and Materials Vols. 548-549 (2014) pp 571-578 (2014) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm. 548-549.571 Using MATLAB and COMSOL Multiphysics for Optimization

More information

Propagation of the Hydraulic Head in an Elastic Pipeline. Blanka Filipova, Pavel Nevfiva, Stepan Ozana

Propagation of the Hydraulic Head in an Elastic Pipeline. Blanka Filipova, Pavel Nevfiva, Stepan Ozana Propagation of the Hydraulic Head in an Elastic Pipeline Blanka Filipova, Pavel Nevfiva, Stepan Ozana VSB - Technical University of Ostrava, 17. listopadu 15, Czech republic {blanka.filipova, pavel.nevriva,

More information

Key-Words: - Simulation, Measurement, Superheaters, Partial differential equations, Model verification

Key-Words: - Simulation, Measurement, Superheaters, Partial differential equations, Model verification Dynamical Model of a Power Plant Superheater PAVEL NEVRIVA, STEPAN OZANA, MARTIN PIES, LADISLAV VILIMEC Department of Measurement and Control, Department of Energy Engineering VŠB-Technical University

More information

NUMERICAL MODELING OF TRANSIENT ACOUSTIC FIELD USING FINITE ELEMENT METHOD

NUMERICAL MODELING OF TRANSIENT ACOUSTIC FIELD USING FINITE ELEMENT METHOD POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 213 Lukáš KOUDELA* Jindřich JANSA* Pavel KARBAN* NUMERICAL MODELING OF TRANSIENT ACOUSTIC FIELD USING FINITE ELEMENT METHOD

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Project #1 Internal flow with thermal convection

Project #1 Internal flow with thermal convection Project #1 Internal flow with thermal convection MAE 494/598, Fall 2017, Project 1 (20 points) Hard copy of report is due at the start of class on the due date. The rules on collaboration will be released

More information

2. Governing Equations. 1. Introduction

2. Governing Equations. 1. Introduction Multiphysics Between Deep Geothermal Water Cycle, Surface Heat Exchanger Cycle and Geothermal Power Plant Cycle Li Wah Wong *,1, Guido Blöcher 1, Oliver Kastner 1, Günter Zimmermann 1 1 International Centre

More information

MAE 598 Project #1 Jeremiah Dwight

MAE 598 Project #1 Jeremiah Dwight MAE 598 Project #1 Jeremiah Dwight OVERVIEW A simple hot water tank, illustrated in Figures 1 through 3 below, consists of a main cylindrical tank and two small side pipes for the inlet and outlet. All

More information

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business

More information

Experimental and numerical studies of the effect of high temperature to the steel structure

Experimental and numerical studies of the effect of high temperature to the steel structure Experimental and numerical studies of the effect of high temperature to the steel structure LENKA LAUSOVÁ IVETA SKOTNICOVÁ IVAN KOLOŠ MARTIN KREJSA Faculty of Civil Engineering VŠB-Technical University

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

A Simple Method for Thermal Characterization of Low-Melting Temperature Phase Change Materials (PCMs)

A Simple Method for Thermal Characterization of Low-Melting Temperature Phase Change Materials (PCMs) A Simple Method for hermal Characterization of Low-Melting emperature Phase Change Materials (PCMs) L. Salvador *, J. Hastanin, F. Novello, A. Orléans 3 and F. Sente 3 Centre Spatial de Liège, Belgium,

More information

Thermal Capacity Measurement of Engineering Alloys in Dependence on Temperature.

Thermal Capacity Measurement of Engineering Alloys in Dependence on Temperature. Thermal Capacity Measurement of Engineering Alloys in Dependence on Temperature. Z. Jedlicka, 1 I. Herzogova 2 ABSTRACT Thermophysical laboratory at Department of Thermal Engineering of Technical University

More information

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE PROCEEDINGS, Twenty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 25-27, 1999 SGP-TR-162 AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION

More information

The energy performance of an airflow window

The energy performance of an airflow window The energy performance of an airflow window B.(Bram) Kersten / id.nr. 0667606 University of Technology Eindhoven, department of Architecture Building and Planning, unit Building Physics and Systems. 10-08-2011

More information

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Prepared by a Task Group of the SFPE Standards Making Committee on Predicting the Thermal Performance of Fire Resistive Assemblies

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

1. Resistivity of rocks

1. Resistivity of rocks RESISTIVITY 1) Resistivity of rocks 2) General principles of resistivity surveying 3) Field procedures, interpretation and examples 4) Summary and conclusions INDUCED POLARIZATION 1) General principles

More information

Modeling and Model Predictive Control of Nonlinear Hydraulic System

Modeling and Model Predictive Control of Nonlinear Hydraulic System Modeling and Model Predictive Control of Nonlinear Hydraulic System Petr Chalupa, Jakub Novák Department of Process Control, Faculty of Applied Informatics, Tomas Bata University in Zlin, nám. T. G. Masaryka

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Computer Evaluation of Results by Room Thermal Stability Testing

Computer Evaluation of Results by Room Thermal Stability Testing Computer Evaluation of Results by Room Thermal Stability Testing HANA CHARVÁTOVÁ 1, MARTIN ZÁLEŠÁK 1 Regional Research Centre CEBIA-Tech, Department of Automation and Control Engineering Faculty of Applied

More information

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Presented at the COMSOL Conference 2008 Hannover Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane Maryam Ghadrdan Norwegian University of Science and

More information

Development of a Thermo-Hydro-Geochemical Model for Low Temperature Geoexchange Applications

Development of a Thermo-Hydro-Geochemical Model for Low Temperature Geoexchange Applications Development of a ThermoHydroGeochemical Model for Low Temperature Geoexchange Applications F. Eppner *1, P. Pasquier 1, and P. Baudron 1 1 Department of Civil, Geological and Mining Engineering, Polytechnique

More information

The Influence of Channel Aspect Ratio on Performance of Optimized Thermal-Fluid Structures

The Influence of Channel Aspect Ratio on Performance of Optimized Thermal-Fluid Structures Excerpt from the Proceedings of the COMSOL Conference 2010 Boston The Influence of Channel Aspect Ratio on Performance of Optimized Thermal-Fluid Structures Ercan M. Dede 1* 1 Technical Research Department,

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Cooling of a multi-chip power module

Cooling of a multi-chip power module Cooling of a multi-chip power module G. CAMMARAA, G. PERONE Department of Industrial Engineering University of Catania Viale A. Doria 6, 953 Catania IALY gcamma@dii.unict.it, gpetrone@dii.unict.it Abstract:

More information

Taylor Dispersion Created by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2005

Taylor Dispersion Created by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 2005 Taylor Dispersion Created by Robert P. Hesketh, Chemical Engineering, Rowan University Fall 005 In this problem you will simulate a tubular reactor with fluid flowing in laminar flow. The governing equations

More information

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE TEMPERATURE DISTRIBUTION INSIDE OIL-COOLED TRANSFORMER WINDINGS

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE TEMPERATURE DISTRIBUTION INSIDE OIL-COOLED TRANSFORMER WINDINGS NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE TEMPERATURE DISTRIBUTION INSIDE OIL-COOLED TRANSFORMER WINDINGS N. Schmidt 1* and S. Tenbohlen 1 and S. Chen 2 and C. Breuer 3 1 University of Stuttgart,

More information

Differential Mobility Particle Sizer (Aerosol measurements)

Differential Mobility Particle Sizer (Aerosol measurements) Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Differential Mobility Particle Sizer (Aerosol measurements) Abstract A differential mobility particle sizer (DMPS) is

More information

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development. Presented at the 2011 COMSOL Conference

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development. Presented at the 2011 COMSOL Conference Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development Francesco Noto Presented at the 2011 COMSOL Conference V. Bellini, E. Cisbani, V. De Smet, F. Librizzi, F. Mammoliti,

More information

Simulation, Prediction and Compensation of Transient Thermal Deformations of a Reciprocating Linear Slide for F8S Motion Error Separation

Simulation, Prediction and Compensation of Transient Thermal Deformations of a Reciprocating Linear Slide for F8S Motion Error Separation Proceedings of the 3 rd International Conference on Mechanical Engineering and Mechatronics Prague, Czech Republic, August 14-1, 2014 Paper No. 139 Simulation, Prediction and Compensation of Transient

More information

Mathematical Modeling of Displacements and Thermal Stresses in Anisotropic Materials (Sapphire) in Cooling

Mathematical Modeling of Displacements and Thermal Stresses in Anisotropic Materials (Sapphire) in Cooling Mathematical Modeling of Displacements and Thermal Stresses in Anisotropic Materials (Sapphire) in Cooling Timo Tiihonen & Tero Tuovinen September 11, 2015 European Study Group with Industry, ESGI 112,

More information

BENJAMIN SPONAGLE AND DOMINIC GROULX Dalhousie University, Nova Scotia, Canada. Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

BENJAMIN SPONAGLE AND DOMINIC GROULX Dalhousie University, Nova Scotia, Canada. Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston IMPROVEMENT OF A STEADY STATE METHOD OF THERMAL INTERFACE MATERIAL CHARACTERIZATION BY USE OF A THREE DIMENSIONAL FEA SIMULATION IN COMSOL MULTIPHYSICS BENJAMIN SPONAGLE AND DOMINIC GROULX Dalhousie University,

More information

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation Ahsan Munir, PhD Tom Spirka, PhD Agenda Provide an overview of COMSOL 4.3b Our products, solutions and applications Subsurface

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

Embedded Control System of Apparatus for Measurement of Thermal Conductivity

Embedded Control System of Apparatus for Measurement of Thermal Conductivity Embedded Control System of Apparatus for Measurement of Thermal Conductivity RENÉ PYSZKO 1, LUDVÍK KOVAL 2, ADÉLA MACHÁČKOVÁ 1 ZUZANA KLEČKOVÁ 1 and ZDENĚK JEDLIČKA 1 1 Department of Thermal Engineering

More information

Analytical Design of Isolations for Cryogenic Tankers

Analytical Design of Isolations for Cryogenic Tankers , July 3-5, 2013, London, U.K. Analytical Design of Isolations for Cryogenic Tankers R. Miralbes, D. Valladares, L. Castejon, J. Abad, J.L. Santolaya, Member, IAENG Abstract In this paper it is presented

More information

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE *

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M2, pp 325-335 Printed in The Islamic Republic of Iran, 2015 Shiraz University USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE

More information

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy 1 Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy Mariana Cavique, Student, DEEC/AC Energia, João F.P. Fernandes, LAETA/IDMEC,

More information

Thermal and hydraulic modelling of road tunnel joints

Thermal and hydraulic modelling of road tunnel joints Thermal and hydraulic modelling of road tunnel joints Cédric Hounyevou Klotoé 1, François Duhaime 1, Lotfi Guizani 1 1 Département de génie de la construction, École de technologie supérieure, Montréal,

More information

A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning

A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning Cammarata G., Petrone G. * Department of Industrial and

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES

A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES A NUMERICAL APPROACH FOR ESTIMATING THE ENTROPY GENERATION IN FLAT HEAT PIPES Dr. Mahesh Kumar. P Department of Mechanical Engineering Govt College of Engineering, Kannur Parassinikkadavu (P.O), Kannur,

More information

CHARACTERIZATION OF FRACTURES IN GEOTHERMAL RESERVOIRS USING RESISTIVITY

CHARACTERIZATION OF FRACTURES IN GEOTHERMAL RESERVOIRS USING RESISTIVITY PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 - February 1, 01 SGP-TR-194 CHARACTERIZATION OF FRACTURES IN GEOTHERMAL RESERVOIRS

More information

A Magnetohydrodynamic study af a inductive MHD generator

A Magnetohydrodynamic study af a inductive MHD generator Excerpt from the Proceedings of the COMSOL Conference 2009 Milan A Magnetohydrodynamic study af a inductive MHD generator Augusto Montisci, Roberto Pintus University of Cagliari, Department of Electrical

More information

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

More information

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 62 CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 5.1 INTRODUCTION The primary objective of this work is to investigate the convective heat transfer characteristics of silver/water nanofluid. In order

More information

Mathematical Modeling of Oil Shale Pyrolysis

Mathematical Modeling of Oil Shale Pyrolysis October, 19 th, 2011 Mathematical Modeling of Oil Shale Pyrolysis Pankaj Tiwari Jacob Bauman Milind Deo Department of Chemical Engineering University of Utah, Salt Lake City, Utah http://from50000feet.wordpress.com

More information

THE HEAT TRANSFER COEFFICIENT CALCULATION IN THE ICE CYLINDER BASED ON IN-CYLINDER PRESSURE DATA

THE HEAT TRANSFER COEFFICIENT CALCULATION IN THE ICE CYLINDER BASED ON IN-CYLINDER PRESSURE DATA Journal of KONES Powertrain and Transport, Vol. 2, No. 4 213 THE HEAT TRANSFER COEFFICIENT CALCULATION IN THE ICE CYLINDER BASED ON IN-CYLINDER PRESSURE DATA Grzegorz Przybya, Stefan Postrzednik, Zbigniew

More information

Experimental and numerical study of velocity profiles in FGD reactor

Experimental and numerical study of velocity profiles in FGD reactor Experimental and numerical study of velocity profiles in FGD reactor JAN NOVOSÁD, PETRA DANČOVÁ, TOMÁŠ VÍT Department of Power Engineering Equipment Technical University of Liberec Studentská 1402/2, 461

More information

HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN REAL OPERATING CONDITIONS

HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN REAL OPERATING CONDITIONS MATEC Web of Conferences 3, 0033 ( 05) DOI: 0.05/ matecconf/ 0530033 C Owned by the authors, published by EDP Sciences, 05 HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN

More information

BASIC RESEARCH OF THERMAL TRANSFER SIMULATIONS

BASIC RESEARCH OF THERMAL TRANSFER SIMULATIONS 27TH DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION DOI:.257/27th.daaam.proceedings.85 BASIC RESEARCH OF THERMAL TRANSFER SIMULATIONS Václav Marek This Publication has to be

More information

Assessment of Self-Heating in Wood Pellets by FE Modelling

Assessment of Self-Heating in Wood Pellets by FE Modelling Assessment of Self-Heating in Wood Pellets by FE Modelling JOHAN ANDERSON, JOHAN SJÖSTRÖM, ANDERS LÖNNERMARK, HENRY PERSSON AND IDA LARSSON SP Safety, Fire Research SP Technical Research Institute of Sweden

More information

SIMULATION AND TESTING OF STRUCTURAL COMPOSITE MATERIALS EXPOSED TO FIRE DEGRADATION

SIMULATION AND TESTING OF STRUCTURAL COMPOSITE MATERIALS EXPOSED TO FIRE DEGRADATION SIMULATION AND TESTING OF STRUCTURAL COMPOSITE MATERIALS EXPOSED TO FIRE DEGRADATION A. Lozano Martín a*, A. Fernández López a, A. Güemes a a Department of Aerospace Materials and Manufacturing, School

More information

Modeling of Hydraulic Control Valves

Modeling of Hydraulic Control Valves Modeling of Hydraulic Control Valves PETR CHALUPA, JAKUB NOVAK, VLADIMIR BOBAL Department of Process Control, Faculty of Applied Informatics Tomas Bata University in Zlin nam. T.G. Masaryka 5555, 76 1

More information

MODELLING OF A LARGE ROTARY HEAT EXCHANGER

MODELLING OF A LARGE ROTARY HEAT EXCHANGER Applied Computer Science,vol. 13, no. 1, pp. 20 28 doi: 10.23743/acs-2017-02 Submitted: 2017-02-01 Revised: 2017-02-08 Accepted: 2017-03-21 CFD, Conjugate, Heat, Exchanger, Recuperation Tytus TULWIN *

More information

USE OF CFD TOOL ANSYS FLUENT FOR FIRE SAFETY IMPROVEMENT OF AN INDOOR SPORTS ARENA

USE OF CFD TOOL ANSYS FLUENT FOR FIRE SAFETY IMPROVEMENT OF AN INDOOR SPORTS ARENA USE OF CFD TOOL ANSYS FLUENT FOR FIRE SAFETY IMPROVEMENT OF AN INDOOR SPORTS ARENA Ondřej ZAVILA 1 Abstract: Key words: The focus of the article is the design of a HVAC (heating, ventilation and air-conditioning)

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

Shape, Convection and Convergence

Shape, Convection and Convergence Presented at the COMSOL Conference 2008 Boston Shape, Convection and Convergence,VP Research, Inc. Who is? Who is? We are: A Technical Consultation firm in business since 1993 Who is? We are: A Technical

More information

Comparison of Heat and Mass Transport at the Micro-Scale

Comparison of Heat and Mass Transport at the Micro-Scale Comparison of Heat and Mass Transport at the Micro-Scale E. Holzbecher, S. Oehlmann Georg-August Univ. Göttingen *Goldschmidtstr. 3, 37077 Göttingen, GERMANY, eholzbe@gwdg.de Abstract: Phenomena of heat

More information

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack

Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack Calculation of Sound Fields in Flowing Media Using CAPA and Diffpack H. Landes 1, M. Kaltenbacher 2, W. Rathmann 3, F. Vogel 3 1 WisSoft, 2 Univ. Erlangen 3 inutech GmbH Outline Introduction Sound in Flowing

More information

International Fire Safety Symposium 2015

International Fire Safety Symposium 2015 Proceedings of the International Fire Safety Symposium 2015 Organizers: cib - International Council for Research and Innovation in Building Construction UC - University of Coimbra albrasci - Luso-Brazilian

More information

Analysis of oil displacement by water in oil reservoirs with horizontal wells

Analysis of oil displacement by water in oil reservoirs with horizontal wells Analysis of oil displacement by water in oil reservoirs with horizontal wells Paulo Dore Fernandes, Thiago Judson L. de Oliveira and Rodrigo A. C. Dias Problem Description This work involves near-well

More information

Modelling and Experimental Validation Possibilities of Heat Transfer Room Model

Modelling and Experimental Validation Possibilities of Heat Transfer Room Model Excerpt from the Proceedings of the COMSOL Conference 2010 Paris Modelling and Experimental Validation Possibilities of Heat Transfer Room Model Author M. Zalesak 1, Author V. Gerlich *,1 1 Author Tomas

More information

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 2010-13th Conference on Process Integration, Modelling

More information

Mixing in Flow Devices:

Mixing in Flow Devices: Mixing in Flow Devices: Spiral microchannels in two and three dimensions Prepared by Ha Dinh Mentor: Professor Emeritus Bruce A. Finlayson Department of Chemical Engineering University of Washington June

More information

NUMERICAL ANALYSIS OF HEAT STORAGE AND HEAT CONDUCTIVITY IN THE CONCRETE HOLLOW CORE DECK ELEMENT

NUMERICAL ANALYSIS OF HEAT STORAGE AND HEAT CONDUCTIVITY IN THE CONCRETE HOLLOW CORE DECK ELEMENT NUMERICAL ANALYSIS OF HEAT STORAGE AND HEAT CONDUCTIVITY IN THE CONCRETE HOLLOW CORE DECK ELEMENT Michal Pomianowski 1, Per Heiselberg 1, Rasmus Lund Jensen 1, and Hicham Johra 1 1 Aalborg University,

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

arxiv: v1 [physics.app-ph] 25 Mar 2018

arxiv: v1 [physics.app-ph] 25 Mar 2018 Improvement of heat exchanger efficiency by using hydraulic and thermal entrance regions arxiv:1803.09255v1 [physics.app-ph] 25 Mar 2018 Abstract Alexey Andrianov a, Alexander Ustinov a, Dmitry Loginov

More information

The Meaning and Significance of Heat Transfer Coefficient. Alan Mueller, Chief Technology Officer

The Meaning and Significance of Heat Transfer Coefficient. Alan Mueller, Chief Technology Officer The Meaning and Significance of Heat Transfer Coefficient Alan Mueller, Chief Technology Officer The Meaning of Heat Transfer Coefficient I kno the meaning of HTC! Why should I aste my time listening to

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Thermal-Fluids Engineering I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING Thermal-Fluids Engineering I MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.005 Thermal-Fluids Engineering I PROBLEM SET #8, Fall Term 2008 Issued: Thursday, October 23, 2008 Due: Thursday, October 30,

More information

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers E. Zanchini,1 and T. Terlizzese 1 1

More information

TankExampleNov2016. Table of contents. Layout

TankExampleNov2016. Table of contents. Layout Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

More information

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used? 1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?. During unsteady state heat transfer, can the temperature

More information

NUMERICAL ANALYSIS OF THE THREE-MATERIAL DOWNHOLE FLOW FIELD IN HYDROTHERMAL JET DRILLING

NUMERICAL ANALYSIS OF THE THREE-MATERIAL DOWNHOLE FLOW FIELD IN HYDROTHERMAL JET DRILLING 2017 WJTA-IMCA Conference and Expo October 25-27, 2017 New Orleans, Louisiana Paper NUMERICAL ANALYSIS OF THE THREE-MATERIAL DOWNHOLE FLOW FIELD IN HYDROTHERMAL JET DRILLING Xianzhi Song, Zehao Lyu, Haizhu

More information

Numerical simulations of hardening and cooling of the early-age concrete

Numerical simulations of hardening and cooling of the early-age concrete Numerical simulations of hardening and cooling of the early-age concrete Grzegorz Knor IPPT PAN, 5b Pawińskiego str., 02-106 Warsaw, Poland gknor@ippt.pan.pl received 26 September 2013, in final form 30

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

A multiscale framework for lubrication analysis of bearings with textured surface

A multiscale framework for lubrication analysis of bearings with textured surface A multiscale framework for lubrication analysis of bearings with textured surface *Leiming Gao 1), Gregory de Boer 2) and Rob Hewson 3) 1), 3) Aeronautics Department, Imperial College London, London, SW7

More information

A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR

A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR A FINITE VOLUME-BASED NETWORK METHOD FOR THE PREDICTION OF HEAT, MASS AND MOMENTUM TRANSFER IN A PEBBLE BED REACTOR GP Greyvenstein and HJ van Antwerpen Energy Systems Research North-West University, Private

More information

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material

Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material Sensibility Analysis of Inductance Involving an E-core Magnetic Circuit for Non Homogeneous Material K. Z. Gomes *1, T. A. G. Tolosa 1, E. V. S. Pouzada 1 1 Mauá Institute of Technology, São Caetano do

More information

Modeling Ion Motion in a Miniaturized Ion Mobility Spectrometer

Modeling Ion Motion in a Miniaturized Ion Mobility Spectrometer Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Modeling Ion Motion in a Miniaturized Ion Mobility Spectrometer Sebastian Barth and Stefan Zimmermann Research Unit, Drägerwerk AG &

More information

Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone

Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone P.I. Krakowska (AGH University of Science and Technology in Krakow), P.J. Madejski* (AGH University of Science and

More information

AnalysisofElectroThermalCharacteristicsofaConductiveLayerwithCracksandHoles

AnalysisofElectroThermalCharacteristicsofaConductiveLayerwithCracksandHoles Global Journal of Researches in Engineering Mechanical and Mechanics Engineering Volume 14 Issue 1 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Introduction Theory Vulcano Model Results Conclusions Acknowledgements. Introduction Theory Vulcano Model Results Conclusions Acknowledgements

Introduction Theory Vulcano Model Results Conclusions Acknowledgements. Introduction Theory Vulcano Model Results Conclusions Acknowledgements Time-dependent modelling of the electric and magnetic fields caused by fluid flow in Vulcano, Italy Emilie Walker & Paul Glover Université Laval, Québec, Canada Plan Introduction Theory Vulcano Model Results

More information

SCIENCES & TECHNOLOGY

SCIENCES & TECHNOLOGY Pertanika J. Sci. & Technol. 22 (2): 645-655 (2014) SCIENCES & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Numerical Modelling of Molten Carbonate Fuel Cell: Effects of Gas Flow Direction

More information

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood R. Sanaee *, G. F. Oluyemi, M. Hossain, and M. B. Oyeneyin Robert Gordon University *Corresponding

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL

FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL CONDENSED MATTER FINITE ELEMENT METHOD MODELLING OF A HIGH TEMPERATURE PEM FUEL CELL V. IONESCU 1 1 Department of Physics and Electronics, Ovidius University, Constanta, 900527, Romania, E-mail: ionescu.vio@gmail.com

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

Integral-based Algorithm for Parameter Identification of the Heat Exchanger

Integral-based Algorithm for Parameter Identification of the Heat Exchanger Proceedings of the International MultiConference of Engineers and Computer Scientists 218 Vol II IMECS 218, March 14-16, 218, Hong Kong Integral-based Algorithm for Parameter Identification of the Heat

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

INVESTIGATION OF VAPOR GENERATION INTO CAPILLARY STRUCTURES OF MINIATURE LOOP HEAT PIPES

INVESTIGATION OF VAPOR GENERATION INTO CAPILLARY STRUCTURES OF MINIATURE LOOP HEAT PIPES Minsk International Seminar Heat Pipes, Heat Pumps, Refrigerators Minsk, Belarus, September 8-, INESTIGATION OF APOR GENERATION INTO CAPIARY STRUCTURES OF MINIATURE OOP HEAT PIPES.M. Kiseev, A.S. Nepomnyashy,

More information

(Refer Slide Time 1:25)

(Refer Slide Time 1:25) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 24 Transient Response of Pressure Transducers

More information

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco Thermal Field in a NMR Cryostat Annunziata D Orazio Agostini Chiara Simone Fiacco Overall Objective of Research Program The main objective of the present work was to study the thermal field inside the

More information

Parametric Study of Rock Bed Thermal Regenerator for Space Heating

Parametric Study of Rock Bed Thermal Regenerator for Space Heating RESEARCH ARTICLE OPEN ACCESS Parametric Study of Rock Bed Thermal Regenerator for Space Heating Neeraj Tewari, Manish Bhendura, Mithleshupadhyay, D.S. Murthy Mechanical Engineering Department, College

More information

Transactions of the VŠB Technical University of Ostrava, Mechanical Series No. 2, 2010, vol. LVI article No. 1778

Transactions of the VŠB Technical University of Ostrava, Mechanical Series No. 2, 2010, vol. LVI article No. 1778 Transactions of the VŠB Technical University of Ostrava, Mechanical Series No. 2, 2010, vol. LVI article No. 1778 Marian BOJKO *, Lumír HRUŽÍK **, Martin VAŠINA *** MATHEMATICAL SIMULATION OF DRIFT OF

More information

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani* 1 1 Department of Industrial Engineering - University of Parma Parco Area delle Scienze 181/A I-43124 Parma,

More information

A NEW HEAT PIPE COOLING DEVICE

A NEW HEAT PIPE COOLING DEVICE DAAAM INTERNATIONAL SCIENTIFIC BOOK 2010 pp. 593-606 CHAPTER 52 A NEW HEAT PIPE COOLING DEVICE COMANESCU, D.; COMANESCU, A.; FILIPOIU, I. D. & ALIONTE, C.G. Abstract: The paper presents a specific application

More information