Classes at: - Topic: Thermodynamics. = E v. = G f T 1

Size: px
Start display at page:

Download "Classes at: - Topic: Thermodynamics. = E v. = G f T 1"

Transcription

1 PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Topic: Thermodynamics Meq. Approach 1. The efficiency of heat engine is miximum when a) Temperature of source > temperature of sink b) Temperature of sink > temperature of source c) Temperature difference of source and sink is minimum d) Temperature difference of source and sink is maximum 2. Entopy change of vaporisation at constant pressure is given by : a) S v) = H v /T b) S v) = E v /T b) S v) = H v / T 3. Entropy change of fusion at constant pressure is given by : a) S f) = H f /T b) S f) = G f /T c) S f) = H f / T 4. Change is entropy for a reaction is given by : a) nr log 10 V 2 b) nr log e V 2 c) nr log e P 1 /P 2 d) All 5. Work done in reversible adiabatic process is given by : a) RT log V 2 b) nr /γ 1) T 2 T 1 ) c) RT log V 1 /V 2 6. Work done in reversible isothermal process is given by : a) RT log V 2 b)nr /γ 1)T 2 T 1 ) c) RT log V 1 /V 2 7. The heat measured for a reaction in a bomb calorimeter is : a) G b) H c) E d) P V 8. The internal energy of one mole of a gas is : a) 3/2RT b) KT/2 c) RT/2 d) 3KT/2 9. Internal energy and pressure of a gas of unit volume are related as : a) P = 2/3E b) P = 3/2E c) P = E/2 d) P = 2E 10. A closed flask contains water in all its three states, solides, liquid and vapour at 0 C. In this situation the average KE of the water molecule will be : a) Maximum in vapour state b) Maximum in solid state c) Greater in the liquid than in vapour state d) Same in all the three states 11. At constant pressure and temperature. The direction of any chemical reaction is one where, the...decrease : a) Entropy b) Enthalpy c) Gibbs free energy 12. Human body is an example of : a) Open system b) Closed system c) Isolated system 13. When ice malts into water, entropy : a) Becomes zero b) Decreases c) Increases d) Remains the same 14. Equilibrium constant of a reaction is related to a) Standard free energy change G b) Free energy change G c) Heat enthalpy Page No.: 1

2 15. Which has the least entropy : a) Graphite b) Diamond c) N 2 g) d) N 2 Og) 16. Which is not a spontaneous process : a) Expansion of a gas into vacuum b) Water flowing down hill c) Heat flowing from colder body to a hotter body d) Evaporation of water from clothes during drying 17. When the value of entropy is greater, then the ability for work is : a) Maximum b) minimum c) Medium of these 18. The total entropy change for a system and its surrounding increase, if the process is : a) Reversible b) Irreversible c) Exothermic d) Endothermic 19. In a reversible isothermal process, the change in internal energy is : a) Zero b) Positive c) Negative 20. The matter has highest entropy in : a) Solid state b) Liquid state c) Gaseous state d) Equal in all 21. Least random state of water is : a) Ice b) Liquid water c) Steam d) All present in same random state 22. When a solid is changed into liquid the entropy a) Decreases b) Increases c) Remains constant 23. During an isothermal expansion of an ideal gas its : a) Enthalpy decreases b) Internal energy decreases c) Internal energy increases d) Internal energy remains constant 24. During isothermal transformation of an ideal gas, internal energy : a) Increases as the pressure increases b) Decreases as the volume decreases c) Decreases as the pressure decreases d) Remains fixed 25. Work done by the system on surrounding is : a) Positive b) Negative c) Zero 26. A gaseous system changes from state AP 1, V 1, T 1 ) to B P 2, V 2, T 2 ) B to C P 3, V 3, T 3 ) and finally from C to A. The whole process may be called : a) Reversible process b) Cyclic process c) Isobaric process d) Spontaneous process 27. If temperature remains constant during a reaction the process is called : a) Isothermal b) Isochoric c) Isobaric d) Adiabatic 28. During an adiabatic process : a) Pressure is maintained constant b) Gas is isothermally expanded c) There is perfect heat insulation d) The system changes heat with surroundings 29. Highest entropy is in : a) Water b) Hydrogen c) Mercury d) Graphite 30. If G > 0, for a reaction then : a) K p > 1 b) K p < 1 c) The products predominate in the equilibrium mixture 31. The cooling in refrigerator is due to : a) The work of compressor b) The expansion of gas in the refrigerator c) Expansion of ice d) Reaction of the refrogerator gas 32. A thermodynamic state function is : a) One which obeys all the laws of thermodynamics b) A quantity which is used to measure thermal changes c) A quantity whose value is independent of the path d) A quantity which is used to express pressure-volume work Page No.: 2

3 33. A system is changed from state A to state B by one path and from B to A by another path. If E 1 and E 2 are the corresponding changes in internal energy, then : a) E 1 + E 2 = + ve b) E 1 + E 2 = ve c) E 1 + E 2 = Temperature and heat are : a) Extensive properties b) Intensive properties c) Intensive and extensive properties respectively d) Extensive and intensive properties respectively 35. A gas expands isothermally and reversibly. The work done by the gas is : a) Zero b) Minimum c) Maximum d) Equal to work done 36. In an isothermal expansion of an ideal gas : a) Q = 0 b) V = 0 c) W = 0 d) E = If a refrigerator door is kept open, then we get : a) Room cooled b) Room heated c) More heat is passed out d) No effect on room 38. In a spontaneous irreversible process, the total entropy of the system and surroundings : a) Remains constant b) Increases c) Decreases d) Zero 39. S is positive for the change : a) Mixing of two gases b) Boiling of liquid c) Melting of solid d) All 40. Joule Thomson coefficient for ideal gas is : a) Zero b) Positive c) Negative d) Infinite 41. When hydrogen and oxygen burn to form water in an oxyhydrogen torch, the entropy change is : a) Negative b) Positive c) zero d) May be positive or negative 42. On dissolving NaCl in water there occurs : a) Increase in free energy b) Increase in entropy c) Decrease in entropy d) No change in entropy 43. Which gas shows a heating effect when expanded into a region of low pressure: a) O 2 b) NH 3 c) N 2 d) H For the precipitation of AgCl by Ag + ions and HCl: a) H = 0 b) G = 0 c) G = ve d) H = G 45. Gibbs free energy G, enthalpy H and entropy S are related by: a) G = H + TS b) G = H TS c) G TS = H d) S = H G 46. The total amount of energy in the universe is fixed, but: a) Matter is increasing b) Gravitation is decreasing c) Disorder is increasing d) Lightening is increasing 47. For the reversible vaporisation of water at 100 C and 1 atmospheric pressure, G is equal to: a) H b) S c) Zero d) H/T 48. Entropy is a measure of disorder. For perfect crystalline substances at 0 K, entropy becomes: a) Minus b) Zero c) Constant d) Very low 49. Which statements are correct: P 2 H vap. [T 2 T 1 ] a) log P = is 1 R T 1 T 2 Clausius-Clapeyronequation H vap. b) boiling point = 88 J mol 1 K 1 is called Trouton s rule c) Entropy is a measure of uavailable energy i.e.; unvailable energy = entropy temprerature d) all Page No.: 3

4 50. It is impossible to attain the lowest temperature known as zero degree absolute. This is a simple statement of: a) First law of thermodynamics b) Second law of thermodynamics c) Third law of thermodynamics 51. An ideal gas undergoing expansion in vaccum shows: a) E = 0 b) W = 0 d) q = 0 d) All 52. An example of closed system is: a) Hot water present in an open beaker b) Some amount of water present in equilibrium with its vapour in a closed and insulated beaker c) Some amount of hot water enclosed in a closed container which is not insulated 53. Decrease in free energy of a reactiong system indicates to: a) Exothermic reaction b) Equilibrium reaction c) Spontaneous reaction d) Slow reaction 54. For the reaction having H and S both positive, the rate of reaction: a) Increases with the increase in temperature b) Decreases with the increase in temperature c) Has no effect of temprature d) Decreases with the increase in pressure litre-atmosphere is equal to: a) J b) cal c) erg d) All 56. The van t Hoff reaction isotherm is: a) G = RT log e K p b) G= RT log e K p c) G = RT 2 In K p 57. The temperature of the system increases during an: a) Isothermal expansion. b) Adiabatic compression c) Adiabatic expansion d) Isothermal compression 58. The entropy change at a given temperature is expressed as: a) S = q T b) S = q/ T c) q = T S d) S = q/t 59. In an irreversible process, the value of S system + S surr. is: a) > 0 b) < 0 c) = 0 d) All 60. Which statements is are correct: δh δe a) δt p δt v = R δh δe b) > δt p δt v δe c) for ideal gas is zero δv v d) All 61. A thrmodynamic quantity is that: a) Which is used in thermochenistry b) Which obeys all the law of thermodynamics c) Quantity which depends only on the state of the system d) Quantity which is used in measuring thermal change 62. The process in which pressure remains constant throughout a change is : a) Adiabatic b) Isochoric c) Isobaric d) Isothermal 63. Which one is not a spontaneous process : a) Dissolution of CuSO 4 in water b) Water flowing down the hills c) Flow of current from low potential to high potential 64. Internal energy of a system containing molecules is reported as : a) Kinetic energy b) Vibrational energy c) Rotational energy d) All kinds of energy associated with it 65. A gas on subjecting to adiabatic expansion gets cooled due to : a) Fall in temperature b) Loss of kinetic energy Page No.: 4

5 c) Decrease in velocity d) Energy used in doing work 66. When two atoms hydrogen combine to form a molecule of hydrogen gas, the energy of the molecule is : a) Greater than that of separate atoms b) Equal to that of separate atoms c) Lower than that of separate atoms d) Sometimes lower and something higher 67. For which process energy will be absorbed : a) Separation of an electron from an electron b) Separation of an proton from a proton c) Separation of a neutron from neutron d) Separation of an electron from a neutral atom 68. Which of the following have same units : i) Work ii) Heat iii) Energy iv) Entropy a) i), ii) and iii) b) i), ii) and iv) c) ii), iii) and iv) d) iii) and iv) 69. Select the correct limitations of III law of thermodynamics : a) Glass solids at zero Kelvin has entropy greater than zero b) Solides having mixtures of isotopes do not have entropy zero at zero Kelvin c) Crystals of CO, N 2 O, NO, H 2 O, etc., do not have Zero entropy at zero Kelvin d) All 70. Which are correct to express work terms : a) Work = Capacity factor Intencity factor; where capacity factor is a measure of extent of work done and intensity factor is a measure of force responsible for work b) Electrical work = E nf ; E is intensity factor; nf is capacity factor c) Expansion work = P V; P is intensity factor ; V is capacity factor d) All 71. For the process, melting of ice at 260 K, the H is : a) Negative b) Positive c) Zero d) Cannot be predicted 72. The gas in a refrigerator cause cooling on expension because : a) Work done by the gas is converted into heat b) Heat of the gas is lost as work is done by the gas c) The heat is spread over a large space 73. The second law of thermodynamics introduced the concept of a) Third law of thermodynamics b) Work c) Entropy d) Internal energy 74. All the naturally occuring processes i.e., spontaneous proceed spontaneously in a direction which leads to : a) Decrease of free energy b) Increase of free energy c) Decrease of entropy d) Increase of enthalpy 75. A reaction taking place with absorption of energy is : a) Burning of a candle b) Electrolysis of water c) Digestion of food d) Rusting of iron 76. Vibrational energy is : a) Partially potential and partially kinetic b) Only potential c) Only kinetic 77. The heat change in a chemical reaction at constant pressure is : a) H b) E c) T d) V Page No.: 5

6 A N S W E R S 1. d 16. c 31. b 46. c 2. a 17. a 32. c 47. c 3. a 18. b 33. a 48. b 4. d 19. a 34. c 49. d 5. b 20. c 35. c 50. c 6. a 21. a 36. d 51. d 7. c 22. b 37. b 52. c 8. a 23. d 38. b 53. c 9. a 24. d 39. d 54. a 10. d 25. b 40. a 55. d 11. c 26. b 41. a 56. b 12. b 27. a 42. b 57. b 13. c 28. c 43. d 58. c 14. a 29. b 44. c 59. a 15. b 30. b 45. b 60. d 61. c 77. a 62. c 63. c 64. d 65. d 66. c 67. d 68. a 69. d 70. d 71. b 72. b 73. c 74. a b Opp. Khuda Baksh Library, Ashok Rajpath, Patna House a no. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Page No.: 6

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chemical thermodynamics the area of chemistry that deals with energy relationships Chemistry: The Central Science Chapter 19: Chemical Thermodynamics Chemical thermodynamics the area of chemistry that deals with energy relationships 19.1: Spontaneous Processes First law of thermodynamics

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Thermodynamics is not concerned about. (i) energy changes involved in a chemical reaction. the extent to which a chemical reaction proceeds. the rate at which a

More information

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. , S is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints on

More information

First Law of Thermodynamics Basic Concepts

First Law of Thermodynamics Basic Concepts 236 7 PHYSICAL CHEMISTRY 7 CHAPTER First Law of Thermodynamics Basic Concepts CONTENTS THERMODYNAMIC TERMS SYSTEM, BOUNDARY, SURROUNDINGS HOMOGENEOUS AND HETEROGENEOUS SYSTEMS TYPES OF THERMODYNAMIC SYSTEMS

More information

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. Entropy is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

For more info visit

For more info visit Basic Terminology: Terms System Open System Closed System Isolated system Surroundings Boundary State variables State Functions Intensive properties Extensive properties Process Isothermal process Isobaric

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Thermodynamics- 1) Hess's law states that 1) The standard enthalpy of an overall reaction is the sum of the enthalpy changes in individual reaction. ) Enthalpy of formation of compound is same as the enthalpy

More information

Downloaded from

Downloaded from THERMODYNAMICS Thermodynamics: is the branch of science which deals with deals with the study of different forms of energy and the quantitative relationship between them. Significance of Thermodynamics:

More information

Page 1 of 11. Website: Mobile:

Page 1 of 11. Website:    Mobile: Class XI Chapter 6 Thermodynamics Chemistry Question 6.1: Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path

More information

6.Thermodynamics. Some Important Points and Terms of the Chapter

6.Thermodynamics. Some Important Points and Terms of the Chapter 6.Thermodynamics Some Important Points and Terms of the Chapter 1. System and the Surroundings: A system in thermodynamics refers to that part of universe in which observations are made and remaining universe

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Thermodynamics & Thermochemistry

Thermodynamics & Thermochemistry Chemistry Thermodynamics & Thermochemistry www.testprepkart.com Table of Content. Basic terms of thermodynamics.. Internal energy, Heat and Work. 3. Zeroth law of thermodynamics. 4. First law of thermodynamics.

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

CHAPTER THERMODYNAMICS

CHAPTER THERMODYNAMICS 54 CHAPTER THERMODYNAMICS 1. If ΔH is the change in enthalpy and ΔE the change in internal energy accompanying a gaseous reaction, then ΔHis always greater than ΔE ΔH< ΔE only if the number of moles of

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key Supplemental Activities Module: Thermodynamics Section: Second Law of Thermodynamics Key Spontaneity ACTIVITY 1 The purpose of this activity is to practice your understanding of the concept of spontaneous

More information

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics

I PUC CHEMISTRY CHAPTER - 06 Thermodynamics I PUC CHEMISTRY CHAPTER - 06 Thermodynamics One mark questions 1. Define System. 2. Define surroundings. 3. What is an open system? Give one example. 4. What is closed system? Give one example. 5. What

More information

5.1 Exothermic and endothermic reactions

5.1 Exothermic and endothermic reactions Topic 5: Energetics 5.1 Exothermic and endothermic reactions Chemical reactions involve the breaking and making of bonds. Breaking bonds requires energy,whereas energy is given out when new bonds are formed.

More information

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container?

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container? 1. Which gas law states that the volume of a fixed mass of a gas is directly proportional to its Kelvin temperature if the pressure is kept constant? A. Boyle s law B. Charles law C. Dalton s law D. Gay-Lussac

More information

Thermodynamics C Test

Thermodynamics C Test Northern Regional: January 19 th, 2019 Thermodynamics C Test Name(s): Team Name: School Name: Team Number: Rank: Score: Science Olympiad North Florida Regional at the University of Florida Thermodynamics

More information

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers! Nicolas Léonard Sadi Carnot (1796-1832) Sadi Carnot was a French military engineer and physicist, often

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Topic: Chemical Kinetics

Topic: Chemical Kinetics PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Topic:

More information

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes

Matter exchange - type of wall Yes - permeable - absence of wall. Energy exchange - type of wall. - diathermic - moving wall. Yes I. The concept of work, expansion and additional (useful) work. II. The concept of heat. III. Definition of internal energy and its molecular interpretation. I. Different forms of the first law of thermodynamics..

More information

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm 12 THERMODYNAMICS Zeroth law of thermodynamics Two systems separately in thermal equilibrium with a third system are in thermal equilibrium with each other. Isotherm It is the graph connecting pressure

More information

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

THERMODYNAMICS b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium. THERMODYNAMICS Important Points:. Zeroth Law of Thermodynamics: a) This law gives the concept of temperature. b) If the temperatures of two bodies are equal then they are said to be in thermal equilibrium.

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chapter 19. Chemical Thermodynamics 19.1 Spontaneous Processes Chemical thermodynamics is concerned with energy relationships in chemical reactions. We consider enthalpy and we also consider entropy in

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

ENTROPY

ENTROPY ENTROPY 6.2.8 6.2.11 ENTHALPY VS. ENTROPY ENTROPY (S) the disorder of a system - solid liquid gas = entropy - gas liquid solid = entropy - mixing substances always = entropy SPONTANEOUS VS. NONSPONTANEOUS

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False

0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False 0. Graphite is thermodynamically less stable that diamond under standard conditions. 1. True 2. False 1. Which statement would be the best interpretation of the First Law of Thermodynamics? 1. The total

More information

Topic: Chemical Kinetics SO HCI 2 + 2I

Topic: Chemical Kinetics SO HCI 2 + 2I PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - Meq. Approach SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market,

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A PART 1: KEY TERMS AND SYMBOLS IN THERMOCHEMISTRY System and surroundings When we talk about any kind of change, such as a chemical

More information

CHAPTER - 12 THERMODYNAMICS

CHAPTER - 12 THERMODYNAMICS CHAPER - HERMODYNAMICS ONE MARK QUESIONS. What is hermodynamics?. Mention the Macroscopic variables to specify the thermodynamics. 3. How does thermodynamics differ from Mechanics? 4. What is thermodynamic

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics Overview Everything in the world is a balance of energy, in various forms from biological processes to the rusting of a nail. Two of the most important questions chemists ask are:

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Thermochemistry Chapter 8

Thermochemistry Chapter 8 Thermochemistry Chapter 8 Thermochemistry First law of thermochemistry: Internal energy of an isolated system is constant; energy cannot be created or destroyed; however, energy can be converted to different

More information

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.)

Energy. Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Change in Energy Energy Different types of energy exist (heat, potential, kinetic, chemical, nuclear etc.) Heat - the energy transferred between objects that are at different temperatures. Unit of heat

More information

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield

CHAPTER 17: THERMOCHEMISTRY. Mrs. Brayfield CHAPTER 17: THERMOCHEMISTRY Mrs. Brayfield REVIEW What is the law of conservation of energy? It states that energy cannot be created or destroyed So the energy of any process is the same THERMOCHEMISTRY

More information

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Name Class Date Thermochemistry 17.1 The Flow of Energy As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings. Process Cause Effect endothermic

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Lecture 4. The Second Law of Thermodynamics

Lecture 4. The Second Law of Thermodynamics Lecture 4. The Second Law of Thermodynamics LIMITATION OF THE FIRST LAW: -Does not address whether a particular process is spontaneous or not. -Deals only with changes in energy. Consider this examples:

More information

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes 1. What is Gibbs energy? VERY SHORT ANSWER QUESTIONS Gibbs energy (G): The amount of energy

More information

8 A Microscopic Approach to Entropy

8 A Microscopic Approach to Entropy 8 A Microscopic Approach to Entropy The thermodynamic approach www.xtremepapers.com Internal energy and enthalpy When energy is added to a body, its internal energy U increases by an amount ΔU. The energy

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Thermodynamic Third class Dr. Arkan J. Hadi

Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

Classification following properties of the system in Intensive and Extensive

Classification following properties of the system in Intensive and Extensive Unit I Classification following properties of the system in Intensive and Extensive Extensive : mass, weight, volume, potential energy, Kinetic energy, Internal energy, entropy, exergy, energy, magnetization

More information

Thermodynamics 1. Hot Milk in a thermos flask is an example for 1) Isolated system ) Open system 3) Closed system 4) Adiabatic system. In open system, system and surroundings exchange 1) Energy only )

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Energy and Chemical Change

Energy and Chemical Change Energy and Chemical Change Section 15.1 Energy Section 15.2 Heat Section 15.3 Thermochemical Equations Section 15.4 Calculating Enthalpy Change Section 15.5 Reaction Spontaneity Click a hyperlink or folder

More information

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered:

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Entropy So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Energy is transferred from one state to another by any possible forms,

More information

Thermodynamics Cont. Subtitle

Thermodynamics Cont. Subtitle Thermodynamics Cont. Subtitle System vs. Surroundings The system- the reactants and products of a reaction The surroundings- everything that surrounds a reaction Thermochemistry is concerned with the flow

More information

Section 1 - Thermochemistry

Section 1 - Thermochemistry Reaction Energy Section 1 - Thermochemistry Virtually every chemical reaction is accompanied by a change in energy. Chemical reactions usually absorb or release energy as heat. You learned in Chapter 12

More information

Physical Chemistry. Chapter 3 Second Law of Thermodynamic

Physical Chemistry. Chapter 3 Second Law of Thermodynamic Physical Chemistry Chapter 3 Second Law of hermodynamic by Izirwan Bin Izhab FKKSA izirwan@ump.edu.my Chapter Description Aims Develop the calculational path for property change and estimate enthalpy and

More information

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School

Brown, LeMay Ch 5 AP Chemistry Monta Vista High School Brown, LeMay Ch 5 AP Chemistry Monta Vista High School 1 From Greek therme (heat); study of energy changes in chemical reactions Energy: capacity do work or transfer heat Joules (J), kilo joules (kj) or

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

UNIT ONE BOOKLET 6. Thermodynamic

UNIT ONE BOOKLET 6. Thermodynamic DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT ONE BOOKLET 6 Thermodynamic Can we predict if a reaction will occur? What determines whether a reaction will be feasible or not? This is a question that

More information

Chapter Seventeen Thermodynamics: Spontaneity, Entropy, and Free Energy

Chapter Seventeen Thermodynamics: Spontaneity, Entropy, and Free Energy 1 Thermodynamics: Spontaneity, Entropy, and Free Energy 2 Introductory Concepts Thermodynamics examines the relationship between heat (q) and work (w) Spontaneity is the notion of whether or not a process

More information

Thermochemistry: Energy Flow and Chemical Reactions

Thermochemistry: Energy Flow and Chemical Reactions Thermochemistry: Energy Flow and Chemical Reactions Outline thermodynamics internal energy definition, first law enthalpy definition, energy diagrams, calorimetry, theoretical calculation (heats of formation

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

S6. (a) State what is meant by an ideal gas...

S6. (a) State what is meant by an ideal gas... IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS TSOKOS CHAPTER 3 TEST REVIEW S1. Thermal energy is transferred through the glass windows of a house mainly by A. conduction. B. radiation.

More information

THERMODYNAMICS. Extensive properties Intensive properties

THERMODYNAMICS. Extensive properties Intensive properties Thermodynamics The branch of chemistry deals with the energy change associated with chemical reactions is called chemical thermodynamics. System and surrounding A system may be defined as the specified

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

Topic: Mole Concept. (At. mass, Ba= 137) will be

Topic: Mole Concept. (At. mass, Ba= 137) will be PHYSICAL CHEMISTRY by: SHAILENDRA KR. Meq. Approach Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market,

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

CHEMISTRY 109 #25 - REVIEW

CHEMISTRY 109 #25 - REVIEW CHEMISTRY 109 Help Sheet #25 - REVIEW Chapter 4 (Part I); Sections 4.1-4.6; Ch. 9, Section 9.4a-9.4c (pg 387) ** Review the appropriate topics for your lecture section ** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc

More information

Classes at: - Topic: Ionic Equilibrium

Classes at: - Topic: Ionic Equilibrium PHYSICAL CHEMISTRY by: SHAILENDRA KR Classes at: - SCIENCE TUTORIALS; Opp Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No 5A/65, Opp Mahual Kothi, Alpana Market, Patna Topic:

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Chapter 15 Energy and Chemical Change

Chapter 15 Energy and Chemical Change Chapter 15 Energy and Chemical Change Chemical reactions usually absorb or release energy. Section 1: Energy Section 2: Heat Section 3: Thermochemical Equations Section 4: Calculating Enthalpy Change Section

More information

Classes at: - Confidence building Problems

Classes at: - Confidence building Problems PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Confidence

More information

OPEN CLOSED ISOLATED. Only energy can be exchanged between system & surrounding. eg. closed vessel

OPEN CLOSED ISOLATED. Only energy can be exchanged between system & surrounding. eg. closed vessel THERMODYNAMICS Limitations :- (1) Not applicable on microscopic system like, change inside an atoms. Or system having few molecules only. (2) deals only with initial & final state (does not deal with path

More information

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas Thermochemistry Part 1 Notes States of Matter and Intermolecular Forces (IMF) Chemistry HP At the end of this unit, students should be able to: Describe the various states of matter in terms of kinetic

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these Q 1. Q 2. Q 3. Q 4. Q 5. Q 6. Q 7. The incorrect option in the following table is: H S Nature of reaction (a) negative positive spontaneous at all temperatures (b) positive negative non-spontaneous regardless

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O

In previous chapters we have studied: Why does a change occur in the first place? Methane burns but not the reverse CH 4 + 2O 2 CO 2 + 2H 2 O Chapter 19. Spontaneous Change: Entropy and Free Energy In previous chapters we have studied: How fast does the change occur How is rate affected by concentration and temperature How much product will

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

Second Law of Thermodynamics -

Second Law of Thermodynamics - Second Law of Thermodynamics - REVIEW ENTROPY EXAMPLE Dr. Garrick 1/19/09 First Law of Thermodynamics you can t win! First Law of Thermodynamics: Energy cannot be Created or Destroyed the total energy

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

Thermochemistry. Energy and Chemical Change

Thermochemistry. Energy and Chemical Change Thermochemistry Energy and Chemical Change Energy Energy can change for and flow, but it is always conserved. The Nature of Energy Energy the ability to do work or produce heat Potential energy Kinetic

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

Slide 2 / 118. Thermochemistry

Slide 2 / 118. Thermochemistry Slide 1 / 118 Slide 2 / 118 Thermochemistry Slide 3 / 118 Table of Contents The Nature of Energy State Functions** Click on the topic to go to that section Enthalpy Measuring Enthalpy Changes: Calorimetry

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

Topic: Radioactivity. H 2 atom. The mass of 1

Topic: Radioactivity. H 2 atom. The mass of 1 1. Calculate the binding energy for 1 H 2 atom. The mass of 1 H 2 atom is 2.014102 amu, where 1n and 1p have their weights 2.016490 amu. Neglect mass of electron. 2.2232 MeV. 2. The atomic masses of Li,

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Enthalpy. Enthalpy. Enthalpy. Enthalpy. E = q + w. Internal Energy at Constant Volume SYSTEM. heat transfer in (endothermic), +q

Enthalpy. Enthalpy. Enthalpy. Enthalpy. E = q + w. Internal Energy at Constant Volume SYSTEM. heat transfer in (endothermic), +q heat transfer in (endothermic), +q heat transfer out (exothermic), -q SYSTEM E = q + w w transfer in (+w) w transfer out (-w) Internal Energy at Constant Volume E = KE + PE ΔE = q + w Because most systems,

More information

CHM 111 Dr. Kevin Moore

CHM 111 Dr. Kevin Moore CHM 111 Dr. Kevin Moore Kinetic Energy Energy of motion E k 1 2 mv 2 Potential Energy Energy of position (stored) Law of Conservation of Energy Energy cannot be created or destroyed; it can only be converted

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

Chapter 16. Spontaneity, Entropy and Free energy

Chapter 16. Spontaneity, Entropy and Free energy Chapter 16 Spontaneity, Entropy and Free energy Contents Spontaneous Process and Entropy Entropy and the second law of thermodynamics The effect of temperature on spontaneity Free energy Entropy changes

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

CHEMISTRY 202 Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 31 (20 pts.) 32 (40 pts.)

CHEMISTRY 202 Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 31 (20 pts.) 32 (40 pts.) CHEMISTRY 202 Hour Exam II October 27, 2015 Dr. D. DeCoste Name Signature T.A. This exam contains 32 questions on 11 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information