SOME IDENTITIES INVOLVING DIFFERENCES OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS

Size: px
Start display at page:

Download "SOME IDENTITIES INVOLVING DIFFERENCES OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS"

Transcription

1 SOME IDENTITIES INVOLVING DIFFERENCES OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS CURTIS COOPER Abstract. Melham discovered the Fibonacci identity F n+1f n+2f n+6 F 3 n+3 = 1 n F n. Melham then considered the generalized sequence W n where W 0 = a, W 1 = b, and W n = pw n 1 qw n 2 and a, b, p and q are integers and q 0. Letting e = pab qa 2 b 2, he then stated and proved the following identity. W n+1w n+2w n+6 W 3 n+3 = eq n+1 p 3 W n+2 q 2 W n+1. There are similar differences of products of Fibonacci numbers like this one discovered by Fairgrieve and Gould. F nf n+4f n+5 F 3 n+3 = 1 n+1 F n+6. We will discover, generalize, and prove similar identities. For example, a generalization of Fairgrieve and Gould s identity is W nw n+4w n+5 W 3 n+3 = eq n p 3 W n+4 qw n Introduction and Results Let F n and L n be the Fibonacci and Lucas numbers, respectively. Many authors have studied Fibonacci identities and generalized Fibonacci identities. For example, Fairgrieve and Gould [1], Hoggatt and Bergum [2], and Horadam [3] stated and prove Fibonacci identities involving differences of products of Fibonacci numbers. And Melham [4] found, proved, and generalized the following Fibonacci identity involving differences of products of Fibonacci numbers. F n+1 F n+2 F n+6 F 3 n+3 = 1 n F n. We will attempt to discover and prove some more differences of products of Fibonacci and generalized Fibonacci identities numbers. The following is the sequence Melham used to generalize his Fibonacci identity involving differences of products of Fibonacci numbers. Definition 1. Let W n be defined by W 0 = a, W 1 = b, and W n = pw n 1 qw n 2 for n 2 and a, b, p and q are integers and q 0. Let e = pab qa 2 b 2. Using this sequence, Melham proved the following identity. W n+1 W n+2 W n+6 W 3 n+3 = eqn+1 p 3 W n+2 q 2 W n+1. We now list some known and some new identities involving differences of products of generalized Fibonacci numbers. We will identify which identities are known and which are new. We will give some proofs of the new ones. 1

2 2 CURTIS COOPER 1a F n+1 F n+2 F n+6 F 3 n+3 = 1n F n 1b W n+1 W n+2 W n+6 W 3 n+3 = eqn+1 p 3 W n+2 q 2 W n+1 2a F n F n+4 F n+5 F 3 n+3 = 1n+1 F n+6 2b W n W n+4 W n+5 W 3 n+3 = eqn p 3 W n+4 qw n+5 3a F n F 2 n+3 F3 n+2 = 1n+1 F n+1 3b W n W 2 n+3 W3 n+2 = eqn pw n+3 +qw n+2 4a F 2 nf n+3 F 3 n+1 = 1n+1 F n+2 4b W 2 n W n+3 W 3 n+1 = eqn pw n +W n+1 5a F n F n+5 F n+6 F n+3 F 2 n+4 = 1n+1 L n+6 5b W n W n+5 W n+6 W n+3 W 2 n+4 = eqn pw n+8 +p 3 qw n+4 6a F n F 2 n+4 F n+2f 2 n+3 = 1n+1 L n+3 6b W n W 2 n+4 W n+2w 2 n+3 = eqn p 2 W n+4 +q 2 W n+2 7a F n F n+3 F n+5 F 2 n+2 F n+4 = 1 n+1 L n+2 7b W n W n+3 W n+5 W 2 n+2 W n+4 = eq n p 2 W n+4 +q 3 W n 8a F n F 2 n+3 F2 n+1 F n+4 = 1 n+1 L n+2 8b W n W 2 n+3 W2 n+1 W n+4 = eq n W n+4 q 2 W n 9a F n F n+2 F n+5 F n+1 F 2 n+3 = 1n+1 L n+3 9b W n W n+2 W n+5 W n+1 W 2 n+3 = eqn W n+5 +p 2 qw n+1 10 F n F n+2 F n+4 F n+6 F 4 n+3 = 1n+1 L 2 n+3 11 F n F 3 n+4 F3 n+2 F n+6 = 1 n+1 F n+3 L n+3 12 F 2 n F3 n+5 F3 n+1 F2 n+6 = 1n+1 L 3 n+3 Identities 1a and 1b were discovered and proved by Melham [4]. Identity 2a was discovered and proved by Fairgrieve and Gould [1]. Identities 3a, 4a, and 8a were discovered and proved by Hoggatt and Bergum [2]. As far as we know, the other identities in the table are new. In the next section, we will prove some of the new identities. The proofs of all the generalized identities are similar to the proof of 1b by Melham [4].

3 DIFFERENCES OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS 3 We first present the proof of identity 2b. 2. Some Proofs Proof of 2b. To prove 2b, we require the identity W n W n+2 W 2 n+1 = eqn. This identity was proved by Horadam [3, p. 171, eq. 4.3]. We also need the following identities W n+2 = pw n+1 qw n, W n+3 = p 2 qw n+1 pqw n, W n+4 = p 3 2pqW n+1 p 2 q q 2 W n, W n+5 = p 4 3p 2 q +q 2 W n+1 p 3 q 2pq 2 W n. These identities are obtained by the use of the recurrence for W n. To prove 2b, we write the LHS and RHS of identity 2b in terms of W n, W n+1, p and q. The RHS of 2b is eq n p 3 W n+4 qw n+5 = W n W n+2 W 2 n+1p 3 W n+4 qw n+5 = W n pw n+1 qw n W 2 n+1 p 3 p 3 2pqW n+1 p 2 q q 2 W n q p 4 3p 2 q +q 2 W n+1 p 3 q 2pq 2 W n = p 7 2p 5 q +p 3 q 2 +pq 3 W 2 n+1 W n + 2p 6 q +5p 4 q 2 5p 2 q 3 +q 4 W n+1 W 2 n + p 6 +3p 4 q 3p 2 q 2 +q 3 W 3 n+1 +p5 q 2 2p 3 q 3 +2pq 4 W 3 n. The LHS of 2b is W n W n+4 W n+5 W 2 n+3 = W n p 3 2pqW n+1 p 2 q q 2 W n p 4 3p 2 q +q 2 W n+1 p 3 q 2pq 2 W n p 2 qw n+1 pqw n 3 = p 7 2p 5 q +p 3 q 2 +pq 3 W 2 n+1 W n + 2p 6 q +5p 4 q 2 5p 2 q 3 +q 4 W n+1 W 2 n + p 6 +3p 4 q 3p 2 q 2 +q 3 W 3 n+1 +p5 q 2 2p 3 q 3 +2pq 4 W 3 n. Since the LHS and RHS of identity 2b are equal, the identity is proved. We next present the proof of identity 5b. Proof of 5b. To prove 5b, we again require the Horadam identity W n W n+2 W 2 n+1 = eq n.

4 4 CURTIS COOPER We also need the following identities W n+2 = pw n+1 qw n, W n+3 = p 2 qw n+1 pqw n, W n+4 = p 3 2pqW n+1 p 2 q q 2 W n, W n+5 = p 4 3p 2 q +q 2 W n+1 p 3 q 2pq 2 W n, W n+6 = p 5 4p 3 q +3pq 2 W n+1 p 4 q 3p 2 q 2 +q 3 W n, W n+8 = p 7 6p 5 q +10p 3 q 2 4pq 3 W n+1 p 6 q 5p 4 q 2 +6p 2 q 3 q 4 W n. These identities are obtained by the use of the recurrence for W n. To prove 5b, we write the LHS and RHS of identity 5b in terms of W n, W n+1, p and q. The RHS of 5b is eq n pw n+8 +p 3 qw n+4 = W n W n+2 W 2 n+1 pw n+8 +p 3 qw n+5 = W n pw n+1 qw n W 2 n+1 p p 7 6p 5 q +10p 3 q 2 4pq 3 W n+1 p 6 q 5p 4 q 2 +6p 2 q 3 q 4 W n +p 3 q p 3 2pqW n+1 p 2 q q 2 W n = W 3 n pq 5 +5p 3 q 4 4p 5 q 3 +p 7 q 2 The LHS of 5b is W 2 nw n+1 5p 2 q 4 13p 4 q 3 +9p 6 q 2 2p 8 q W n W 2 n+1 pq4 +p 3 q 3 +4p 5 q 2 4p 7 q +p 9 W 3 n+1 4p2 q 3 8p 4 q 2 +5p 6 q p 8. W n W n+5 W n+6 W n+3 W 2 n+4 = W n p 4 3p 2 q +q 2 W n+1 p 3 q 2pq 2 W n p 5 4p 3 q +3pq 2 W n+1 p 4 q 3p 2 q 2 +q 3 W n p 2 qw n+1 pqw n p 3 2pqW n+1 p 2 q q 2 W n 2 = W 3 n pq 5 +5p 3 q 4 4p 5 q 3 +p 7 q 2 W 2 nw n+1 5p 2 q 4 13p 4 q 3 +9p 6 q 2 2p 8 q W n W 2 n+1 pq4 +p 3 q 3 +4p 5 q 2 4p 7 q +p 9 W 3 n+1 4p2 q 3 8p 4 q 2 +5p 6 q p 8. Since the LHS and RHS of identity 5b are equal, the identity is proved. We finally present the proof of 10. Proof of 10. To prove 10, we require Cassini s identity F n F n+2 F 2 n+1 = 1 n+1.

5 DIFFERENCES OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS 5 We also need the following identities F n+2 = F n+1 +F n, F n+3 = 2F n+1 +F n, F n+4 = 3F n+1 +2F n, F n+6 = 8F n+1 +5F n, L n+3 = 4F n+1 +3F n. These identities are obtained by the use of the recurrence for F n and the fact that L n+3 = F n+4 +F n+2. To prove 10, we write the LHS and RHS of identity 10 in terms of F n and F n+1. The RHS of 10 is The LHS of 10 is 1 n+1 L 2 n+3 = F n+2 F n F 2 n+1 L2 n+3 = F 2 n +F nf n+1 F 2 n+1 4F n+1 +3F n 2 = 9F 4 n +33F 3 nf n+1 +31F 2 nf 2 n+1 8F n F 3 n+1 16F 4 n+1. F n F n+2 F n+4 F n+6 F 4 n+3 = F n F n+1 +F n 3F n+1 +2F n 8F n+1 +5F n 2F n+1 +F n 4 = 9F 4 n +33F3 n F n+1 +31F 2 n F2 n+1 8F nf 3 n+1 16F4 n+1. Since the LHS and RHS of identity 10 are equal, the identity is proved. References [1] S. Fairgrieve and H. W. Gould, Product difference Fibonacci identities of Simson, Gelin-Ceaàro, Tagiuri, and generalizations, The Fibonacci Quarterly , [2] V. E. Hoggatt Jr. and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, The Fibonacci Quarterly , [3] A. F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly , [4] R. S. Melham, A Fibonacci identity in the spirit of Simson and Gelin-Cesàro, The Fibonacci Quarterly , MSC2010: 11B39 Department of Mathematics and Computer Science, University of Central Missouri, Warrensburg, MO 64093, USA address: cooper@ucmo.edu

Two Identities Involving Generalized Fibonacci Numbers

Two Identities Involving Generalized Fibonacci Numbers Two Identities Involving Generalized Fibonacci Numbers Curtis Cooper Dept. of Math. & Comp. Sci. University of Central Missouri Warrensburg, MO 64093 U.S.A. email: cooper@ucmo.edu Abstract. Let r 2 be

More information

Steve Fairgrieve Department of Mathematics, West Virginia University, PO Box 6310, Morgantown, WV

Steve Fairgrieve Department of Mathematics, West Virginia University, PO Box 6310, Morgantown, WV PRODUCT DIFFERENCE FIBONACCI IDENTITIES OF SIMSON, GELIN-CESARO, TAGIURI AND GENERALIZATIONS Steve Fairgrieve Department of Mathematics, West Virginia University, PO Box 6310, Morgantown, WV 26506-6310

More information

1. INTRODUCTION. Ll-5F 2 = 4(-l)" (1.1)

1. INTRODUCTION. Ll-5F 2 = 4(-l) (1.1) Ray Melham School of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007, Australia (Submitted April 1997) Long [4] considered the identity 1. INTRODUCTION Ll-5F 2 =

More information

ADDENDA TO GEOMETRY OF A GENERALIZED SIMSON'S FORMULA

ADDENDA TO GEOMETRY OF A GENERALIZED SIMSON'S FORMULA o^o^ GERALD E. BERGUM South Dakota State University, Brookings, SD 57007 (Submitted June 1982) 1. INTRODUCTION In [3], the author considers the loci in the Euclidean plane satisfied by points whose Cartesian

More information

Infinite arctangent sums involving Fibonacci and Lucas numbers

Infinite arctangent sums involving Fibonacci and Lucas numbers Notes on Number Theory and Discrete Mathematics ISSN 30 3 Vol., 0, No., 6 66 Infinite arctangent sums involving Fibonacci and Lucas numbers Kunle Adegoke Department of Physics, Obafemi Awolowo University

More information

1. INTRODUCTION. Fn 2 = F j F j+1 (1.1)

1. INTRODUCTION. Fn 2 = F j F j+1 (1.1) CERTAIN CLASSES OF FINITE SUMS THAT INVOLVE GENERALIZED FIBONACCI AND LUCAS NUMBERS The beautiful identity R.S. Melham Deartment of Mathematical Sciences, University of Technology, Sydney PO Box 23, Broadway,

More information

F A M I L I E S OF IDENTITIES INVOLVING SUMS OF POWERS OF THE FIBONACCI AND LUCAS NUMBERS

F A M I L I E S OF IDENTITIES INVOLVING SUMS OF POWERS OF THE FIBONACCI AND LUCAS NUMBERS F A M I L I E S OF IDENTITIES INVOLVING SUMS OF POWERS OF THE FIBONACCI AND LUCAS NUMBERS R. S. Melham School of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007 Australia

More information

Infinite arctangent sums involving Fibonacci and Lucas numbers

Infinite arctangent sums involving Fibonacci and Lucas numbers Infinite arctangent sums involving Fibonacci and Lucas numbers Kunle Adegoke Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, 0005 Nigeria Saturday 3 rd July, 06, 6:43

More information

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 8 >< 0, if 0 n < r 1; G n = 1, if n = r

More information

F. T. HOWARD AND CURTIS COOPER

F. T. HOWARD AND CURTIS COOPER SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 0, if 0 n < r 1; G n = 1, if n = r 1; G

More information

EVERY POSITIVE K-BONACCI-LIKE SEQUENCE EVENTUALLY AGREES WITH A ROW OF THE K-ZECKENDORF ARRAY

EVERY POSITIVE K-BONACCI-LIKE SEQUENCE EVENTUALLY AGREES WITH A ROW OF THE K-ZECKENDORF ARRAY EVERY POSITIVE K-BONACCI-LIKE SEQUENCE EVENTUALLY AGREES WITH A ROW OF THE K-ZECKENDORF ARRAY PETER G. ANDERSON AND CURTIS COOPER Abstract. For k 2, a fixed integer, we work with the k-bonacci sequence,

More information

Fibonacci and Lucas Identities the Golden Way

Fibonacci and Lucas Identities the Golden Way Fibonacci Lucas Identities the Golden Way Kunle Adegoe adegoe00@gmail.com arxiv:1810.12115v1 [math.nt] 25 Oct 2018 Department of Physics Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife,

More information

DIOPHANTINE EQUATIONS, FIBONACCI HYPERBOLAS, AND QUADRATIC FORMS. Keith Brandt and John Koelzer

DIOPHANTINE EQUATIONS, FIBONACCI HYPERBOLAS, AND QUADRATIC FORMS. Keith Brandt and John Koelzer DIOPHANTINE EQUATIONS, FIBONACCI HYPERBOLAS, AND QUADRATIC FORMS Keith Brandt and John Koelzer Introduction In Mathematical Diversions 4, Hunter and Madachy ask for the ages of a boy and his mother, given

More information

Reciprocal Sums of Elements Satisfying Second Order Linear Recurrences

Reciprocal Sums of Elements Satisfying Second Order Linear Recurrences Chamchuri Journal of Mathematics Volume 00 Number, 93 00 http://wwwmathscchulaacth/cjm Reciprocal Sums of Elements Satisfying Second Order Linear Recurrences Kantaphon Kuhapatanakul and Vichian Laohakosol

More information

Summation of certain infinite Fibonacci related series

Summation of certain infinite Fibonacci related series arxiv:52.09033v (30 Dec 205) Summation of certain infinite Fibonacci related series Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes Université de Bejaia 06000 Bejaia Algeria

More information

#A40 INTEGERS 13 (2013) FINITE SUMS THAT INVOLVE RECIPROCALS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS

#A40 INTEGERS 13 (2013) FINITE SUMS THAT INVOLVE RECIPROCALS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS #A40 INTEGERS 3 (203) FINITE SUMS THAT INVOLVE RECIPROCALS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS R S Melham School of Mathematical Sciences, University of Technology, Sydney, Australia raymelham@utseduau

More information

DIOPHANTINE REPRESENTATION OF LUCAS SEQUENCES. Wayne L, McDanlel University of Missouri-St. Louis, St. Louis, MO (Submitted June 1993)

DIOPHANTINE REPRESENTATION OF LUCAS SEQUENCES. Wayne L, McDanlel University of Missouri-St. Louis, St. Louis, MO (Submitted June 1993) Wayne L, McDanlel University of Missouri-St. Louis, St. Louis, MO 63121 (Submitted June 1993) 1. INTROBUCTION The Lucas sequences {U n (P, 0 }, with parameters P and g, are defined by U Q (P, Q) = 0, ^

More information

arxiv: v1 [math.co] 20 Aug 2015

arxiv: v1 [math.co] 20 Aug 2015 arxiv:1508.04953v1 [math.co] 20 Aug 2015 On Polynomial Identities for Recursive Sequences Ivica Martinak and Iva Vrsalko Faculty of Science University of Zagreb Bienička cesta 32, HR-10000 Zagreb Croatia

More information

U 0 = > U l = *> 0) W =(Wl-PW0>n +W 0 U n + l> (5) W n= W lhi-fi W 0Vl- ( 6 )

U 0 = > U l = *> 0) W =(Wl-PW0>n +W 0 U n + l> (5) W n= W lhi-fi W 0Vl- ( 6 ) ALGORITHMIC MANIPULATION OF SECOND-ORDER LINEAR RECURRENCES Stanley Rabinowltz MathPro Press, 12 Vine Brook Road, Westford, MA 01886 stanley@tiac.net (Submitted June 1997) 1. INTRODUCTION Consider the

More information

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia A. F, HORADAM University of New England, Armidale, Australia Bro. J. M. MAHON Catholic College of Education, Sydney, Australia (Submitted April 1985) 1. INTRODUCTION Pell polynomials P n (x) are defined

More information

#A61 INTEGERS 12 (2012) ON FINITE SUMS OF GOOD AND SHAR THAT INVOLVE RECIPROCALS OF FIBONACCI NUMBERS

#A61 INTEGERS 12 (2012) ON FINITE SUMS OF GOOD AND SHAR THAT INVOLVE RECIPROCALS OF FIBONACCI NUMBERS #A6 INTEGERS 2 (202) ON INITE SUMS O GOOD AND SHAR THAT INVOLVE RECIPROCALS O IBONACCI NUMBERS R. S. Melham School of Mathematical Sciences, University of Technology, Sydney, Australia ray.melham@uts.edu.au

More information

SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL, PELL- LUCAS AND MODIFIED PELL SEQUENCES

SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL, PELL- LUCAS AND MODIFIED PELL SEQUENCES SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL PELL- LUCAS AND MODIFIED PELL SEQUENCES Serpil HALICI Sakarya Üni. Sciences and Arts Faculty Dept. of Math. Esentepe Campus Sakarya. shalici@ssakarya.edu.tr

More information

Trigonometric Pseudo Fibonacci Sequence

Trigonometric Pseudo Fibonacci Sequence Notes on Number Theory and Discrete Mathematics ISSN 30 532 Vol. 2, 205, No. 3, 70 76 Trigonometric Pseudo Fibonacci Sequence C. N. Phadte and S. P. Pethe 2 Department of Mathematics, Goa University Taleigao

More information

A PROOF OF A CONJECTURE OF MELHAM

A PROOF OF A CONJECTURE OF MELHAM A PROOF OF A CONJECTRE OF MELHAM EMRAH KILIC, ILKER AKKS, AND HELMT PRODINGER Abstract. In this paper, we consider Melha s conecture involving Fibonacci and Lucas nubers. After rewriting it in ters of

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR. RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

Sums of fourth powers of Fibonacci and Lucas numbers

Sums of fourth powers of Fibonacci and Lucas numbers Sums of fourth powers of Fibonacci Lucas numbers arxiv:1706.00407v1 [math.nt] 28 May 2017 Kunle Adegoke Department of Physics Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria Abstract

More information

A PROOF OF MELHAM S CONJECTURE

A PROOF OF MELHAM S CONJECTURE A PROOF OF MELHAM S CONJECTRE EMRAH KILIC 1, ILKER AKKS, AND HELMT PRODINGER 3 Abstract. In this paper, we consider Melha s conecture involving Fibonacci and Lucas nubers. After rewriting it in ters of

More information

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples International Journal of Mathematical Analysis Vol. 8, 2014, no. 36, 1757-1766 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47203 s-generalized Fibonacci Numbers: Some Identities,

More information

1. Definitions and Closed Form Bisht [6] defined a generalized Lucas integral sequence of order k 1 as follows:

1. Definitions and Closed Form Bisht [6] defined a generalized Lucas integral sequence of order k 1 as follows: LUCAS (a 1, a 2,..., a k = 1) SEQUENCES AND PSEUDOPRIMES CURTIS COOPER AND LAWRENCE SOMER Abstract. Bisht defined a generalized Lucas integral sequence of order k 1 for nonnegative integers n as G n =

More information

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

On Two New Classes of Fibonacci and Lucas Reciprocal Sums with Subscripts in Arithmetic Progression Applied Mathematical Sciences Vol. 207 no. 25 2-29 HIKARI Ltd www.m-hikari.com https://doi.org/0.2988/ams.207.7392 On Two New Classes of Fibonacci Lucas Reciprocal Sums with Subscripts in Arithmetic Progression

More information

Diophantine quadruples and Fibonacci numbers

Diophantine quadruples and Fibonacci numbers Diophantine quadruples and Fibonacci numbers Andrej Dujella Department of Mathematics, University of Zagreb, Croatia Abstract A Diophantine m-tuple is a set of m positive integers with the property that

More information

DIOPHANTINE QUADRUPLES FOR SQUARES OF FIBONACCI AND LUCAS NUMBERS

DIOPHANTINE QUADRUPLES FOR SQUARES OF FIBONACCI AND LUCAS NUMBERS PORTUGALIAE MATHEMATICA Vol. 52 Fasc. 3 1995 DIOPHANTINE QUADRUPLES FOR SQUARES OF FIBONACCI AND LUCAS NUMBERS Andrej Dujella Abstract: Let n be an integer. A set of positive integers is said to have the

More information

Summation of Certain Infinite Lucas-Related Series

Summation of Certain Infinite Lucas-Related Series J. Integer Sequences 22 (209) Article 9..6. Summation of Certain Infinite Lucas-Related Series arxiv:90.04336v [math.nt] Jan 209 Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences

More information

1. INTRODUCTION. Figure 1: An ellipse with b < 0. are the image of the n th roots of unity under the mapping. n,j ) + (a n + b n ) (2) j=0

1. INTRODUCTION. Figure 1: An ellipse with b < 0. are the image of the n th roots of unity under the mapping. n,j ) + (a n + b n ) (2) j=0 PRODUCTS OF ELLIPTICAL CHORD LENGTHS AND THE FIBONACCI NUMBERS Thomas E. Price Department of Theoretical and Applied Mathematics, The University of Akron, Akron, OH 44325 e-mail: teprice@uakron.edu (Submitted

More information

PELL IDENTITIES A. F. HORADAIVI University of New England, Armidale, Australia

PELL IDENTITIES A. F. HORADAIVI University of New England, Armidale, Australia PELL IDENTITIES A. F. HORADAIVI University of New England, Armidale, Australia 1. INTRODUCTION Recent issues of this Journal have contained several interesting special results involving Pell numbers* Allowing

More information

Z J7 TT I?2 17 n r n+l''' r n+4m+l (1 A \

Z J7 TT I?2 17 n r n+l''' r n+4m+l (1 A \ SUMS O F CERTAIN PRODUCTS O F F I B O N A C C I AND LUCAS N U M B E R S - P A R T II R. S* Melham School of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007 Australia

More information

A closed form formulation for the general term of a scaled triple power product recurrence sequence.

A closed form formulation for the general term of a scaled triple power product recurrence sequence. A closed form formulation for the general term of a scaled triple power product recurrence sequence. Item type Article Authors Larcombe, Peter J.; Fennessey, Eric J. Citation Publisher Journal Larcombe,

More information

On Some Identities and Generating Functions

On Some Identities and Generating Functions Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1877-1884 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.35131 On Some Identities and Generating Functions for k- Pell Numbers Paula

More information

YE OLDE FIBONACCI CURIOSITY SHOPPE REVISITED

YE OLDE FIBONACCI CURIOSITY SHOPPE REVISITED R.S. Melham Department of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007 Australia (Submitted. September 2001) 1. INTRODUCTION There are many Fibonacci identities

More information

arxiv: v1 [math.co] 11 Aug 2015

arxiv: v1 [math.co] 11 Aug 2015 arxiv:1508.02762v1 [math.co] 11 Aug 2015 A Family of the Zeckendorf Theorem Related Identities Ivica Martinjak Faculty of Science, University of Zagreb Bijenička cesta 32, HR-10000 Zagreb, Croatia Abstract

More information

SOME SUMMATION IDENTITIES USING GENERALIZED g-matrices

SOME SUMMATION IDENTITIES USING GENERALIZED g-matrices SOME SUMMATION IDENTITIES USING GENERALIZED g-matrices R. S. Melham and A. G. Shannon University of Technology, Sydney, 2007, Australia {Submitted June 1993) 1. INTRODUCTION In a belated acknowledgment,

More information

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES*

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES* CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES* Alwyn F. Horadam University of New England, Armidale, Australia Piero FilipponI Fondazione Ugo Bordoni, Rome, Italy

More information

HORADAM FUNCTIONS AND POWERS OF IRRATIONALS

HORADAM FUNCTIONS AND POWERS OF IRRATIONALS HORADAM FUNCTIONS AND POWERS OF IRRATIONALS MARTIN W. BUNDER Abstract. This paper generalizes a result of Gerdemann to show (with slight variations in some special cases) that, for any real number m and

More information

UNIQUENESS OF REPRESENTATIONS BY MORGAN-VOYCE NUMBERS. A. F. Horadam The University of New England, Armidale, Australia 2351 (Submitted June 1998)

UNIQUENESS OF REPRESENTATIONS BY MORGAN-VOYCE NUMBERS. A. F. Horadam The University of New England, Armidale, Australia 2351 (Submitted June 1998) with Consider the recurrence UNIQUENESS OF REPRESENTATIONS BY MORGAN-VOYCE NUMBERS A. F. Horadam The University of New England, Armidale, Australia 5 (Submitted June 99). MORGAN-VOYCE NUMBERS X n + = ^,,

More information

DIFFERENTIAL PROPERTIES OF A GENERAL CLASS OF POLYNOMIALS. Richard Andre-Jeannin IUT GEA, Route de Romain, Longwy, France (Submitted April 1994)

DIFFERENTIAL PROPERTIES OF A GENERAL CLASS OF POLYNOMIALS. Richard Andre-Jeannin IUT GEA, Route de Romain, Longwy, France (Submitted April 1994) DIFFERENTIAL PROPERTIES OF A GENERAL CLASS OF POLYNOMIALS Richard Andre-Jeannin IUT GEA, Route de Romain, 54400 Longwy, France (Submitted April 1994) 1. INTRODUCTION Let us consider the generalized Fibonacci

More information

On the properties of k-fibonacci and k-lucas numbers

On the properties of k-fibonacci and k-lucas numbers Int J Adv Appl Math Mech (1) (01) 100-106 ISSN: 37-59 Available online at wwwijaammcom International Journal of Advances in Applied Mathematics Mechanics On the properties of k-fibonacci k-lucas numbers

More information

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n 0 5 6 7 8 9 0 F n 0 5 8 55 89

More information

A NOTE ON MULTIPLICATIVE TRIPLE FIBONACCI SEQUENCES Satish Kumar, Hari Kishan and Deepak Gupta

A NOTE ON MULTIPLICATIVE TRIPLE FIBONACCI SEQUENCES Satish Kumar, Hari Kishan and Deepak Gupta The Bulletin of Society for Mathematical Services and Standards Online: 2015-03-02 ISSN: 2277-8020, Vol. 13, pp 1-6 doi:10.18052/www.scipress.com/bsmass.13.1 2015 SciPress Ltd., Switzerland A NOTE ON MULTIPLICATIVE

More information

REPRESENTATION GRIDS FOR CERTAIN MORGAN-VOYCE NUMBERS A. F. Horadam The University of New England, Annidale, 2351, Australia (Submitted February 1998)

REPRESENTATION GRIDS FOR CERTAIN MORGAN-VOYCE NUMBERS A. F. Horadam The University of New England, Annidale, 2351, Australia (Submitted February 1998) REPRESENTATION GRIDS FOR CERTAIN MORGAN-VOYCE NUMBERS A. F. Horadam The University of New Engl, Annidale, 2351, Australia (Submitted February 1998) 1. BACKGROUND Properties of representation number sequences

More information

The problem of Diophantus and Davenport

The problem of Diophantus and Davenport Mathematical Communications 2(1997), 153 160 153 The problem of Diophantus and Davenport Andrej Dujella Abstract. In this paper we describe the author s results concerning the problem of the existence

More information

On Generalized k-fibonacci Sequence by Two-Cross-Two Matrix

On Generalized k-fibonacci Sequence by Two-Cross-Two Matrix Global Journal of Mathematical Analysis, 5 () (07) -5 Global Journal of Mathematical Analysis Website: www.sciencepubco.com/index.php/gjma doi: 0.449/gjma.v5i.6949 Research paper On Generalized k-fibonacci

More information

198 VOLUME 46/47, NUMBER 3

198 VOLUME 46/47, NUMBER 3 LAWRENCE SOMER Abstract. Rotkiewicz has shown that there exist Fibonacci pseudoprimes having the forms p(p + 2), p(2p 1), and p(2p + 3), where all the terms in the products are odd primes. Assuming Dickson

More information

REDUCTION FORMULAS FOR THE SUMMATION OF RECIPROCALS IN CERTAIN SECOND-ORDER RECURRING SEQUENCES

REDUCTION FORMULAS FOR THE SUMMATION OF RECIPROCALS IN CERTAIN SECOND-ORDER RECURRING SEQUENCES REDUCTION FORMULAS FOR THE SUMMATION OF RECIPROCALS IN CERTAIN SECOND-ORDER RECURRING SEQUENCES R. S. Melham Department of Mathematical Sciences, University of Technology, Sydney PO Box 23, Broadway, NSW

More information

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES NATHAN HAMLIN AND WILLIAM A. WEBB Abstract. The Zeckendorf representation, using sums of Fibonacci numbers, is widely known. Fraenkel

More information

ALTERNATING SUMS OF FIBONACCI PRODUCTS

ALTERNATING SUMS OF FIBONACCI PRODUCTS ALTERNATING SUMS OF FIBONACCI PRODUCTS ZVONKO ČERIN Abstract. We consider alternating sums of squares of odd even terms of the Fibonacci sequence alternating sums of their products. These alternating sums

More information

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997)

NOTE ON FIBONACCI PRIMALITY TESTING John Brillhart University of Arizona, Tucson, AZ (Submitted August 1996-Final Revision January 1997) John Brillhart University of Arizona, Tucson, AZ 85721 (Submitted August 1996-Final Revision January 1997) 1. INTRODUCTION One of the most effective ways of proving an integer N is prime is to show first

More information

SOME FORMULAE FOR THE FIBONACCI NUMBERS

SOME FORMULAE FOR THE FIBONACCI NUMBERS SOME FORMULAE FOR THE FIBONACCI NUMBERS Brian Curtin Department of Mathematics, University of South Florida, 4202 E Fowler Ave PHY4, Tampa, FL 33620 e-mail: bcurtin@mathusfedu Ena Salter Department of

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS #A3 INTEGERS 14 (014) THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS Kantaphon Kuhapatanakul 1 Dept. of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand fscikpkk@ku.ac.th

More information

Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence

Gaussian Modified Pell Sequence and Gaussian Modified Pell Polynomial Sequence Aksaray University Journal of Science and Engineering e-issn: 2587-1277 http://dergipark.gov.tr/asujse http://asujse.aksaray.edu.tr Aksaray J. Sci. Eng. Volume 2, Issue 1, pp. 63-72 doi: 10.29002/asujse.374128

More information

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results

On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Asia Pacific Journal of Multidisciplinary Research, Vol 3, No 4, November 05 Part I On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results Romer C Castillo, MSc Batangas

More information

On Gaussian Pell Polynomials and Their Some Properties

On Gaussian Pell Polynomials and Their Some Properties Palestine Journal of Mathematics Vol 712018, 251 256 Palestine Polytechnic University-PPU 2018 On Gaussian Pell Polynomials and Their Some Properties Serpil HALICI and Sinan OZ Communicated by Ayman Badawi

More information

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices

k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities and Norms of Hankel Matrices International Journal of Mathematical Analysis Vol. 9, 05, no., 3-37 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.4370 k-pell, k-pell-lucas and Modified k-pell Numbers: Some Identities

More information

Fibonacci and k Lucas Sequences as Series of Fractions

Fibonacci and k Lucas Sequences as Series of Fractions DOI: 0.545/mjis.06.4009 Fibonacci and k Lucas Sequences as Series of Fractions A. D. GODASE AND M. B. DHAKNE V. P. College, Vaijapur, Maharashtra, India Dr. B. A. M. University, Aurangabad, Maharashtra,

More information

Divisibility properties of Fibonacci numbers

Divisibility properties of Fibonacci numbers South Asian Journal of Mathematics 2011, Vol. 1 ( 3 ) : 140 144 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE Divisibility properties of Fibonacci numbers K. Raja Rama GANDHI 1 1 Department of Mathematics,

More information

DEDICATED TO THE MEMORY OF R.J. WEINSHENK 1. INTRODUCTION

DEDICATED TO THE MEMORY OF R.J. WEINSHENK 1. INTRODUCTION CONVOLUTION TRIANGLES FOR GENERALIZED FIBONACCI NUMBERS VERNER E. HOGGATT, JR. San Jse State Cllege, San Jse, Califrnia DEDICATED TO THE MEMORY OF R.J. WEINSHENK. INTRODUCTION The sequence f integers Fj

More information

A GENERALIZATION OF STIRLING NUMBERS

A GENERALIZATION OF STIRLING NUMBERS Hongquan Yu Institute of Mathematical Sciences, Dalian University of Technology, Dalian 6024, China (Submitted September 996-Final Revision December 996). INTRODUCTION Let W(x), fix), g(x) be formal power

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD f AM 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HA PA 17745, This department

More information

Here, logx denotes the natural logarithm of x. Mrsky [7], and later Cheo and Yien [2], proved that iz;.(»)=^io 8 "0(i).

Here, logx denotes the natural logarithm of x. Mrsky [7], and later Cheo and Yien [2], proved that iz;.(»)=^io 8 0(i). Curtis Cooper f Robert E* Kennedy, and Milo Renberg Dept. of Mathematics, Central Missouri State University, Warrensburg, MO 64093-5045 (Submitted January 1997-Final Revision June 1997) 0. INTRODUCTION

More information

ON SUMS OF SQUARES OF ODD AND EVEN TERMS OF THE LUCAS SEQUENCE

ON SUMS OF SQUARES OF ODD AND EVEN TERMS OF THE LUCAS SEQUENCE ON SUMS OF SQUARES OF ODD AND EVEN TERMS OF THE LUCAS SEQUENCE ZVONKO ČERIN 1. Introduction The Fibonacci and Lucas sequences F n and L n are defined by the recurrence relations and F 1 = 1, F 2 = 1, F

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rablnowltz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rablnowltz Edited by Stanley Rablnowltz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also he sent to

More information

On the Pell Polynomials

On the Pell Polynomials Applied Mathematical Sciences, Vol. 5, 2011, no. 37, 1833-1838 On the Pell Polynomials Serpil Halici Sakarya University Department of Mathematics Faculty of Arts and Sciences 54187, Sakarya, Turkey shalici@sakarya.edu.tr

More information

CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p

CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p CALCULATING EXACT CYCLE LENGTHS IN THE GENERALIZED FIBONACCI SEQUENCE MODULO p DOMINIC VELLA AND ALFRED VELLA. Introduction The cycles that occur in the Fibonacci sequence {F n } n=0 when it is reduced

More information

Chris Smyth School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK.

Chris Smyth School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK. THE DIVISIBILITY OF a n b n BY POWERS OF n Kálmán Győry Institute of Mathematics, University of Debrecen, Debrecen H-4010, Hungary. gyory@math.klte.hu Chris Smyth School of Mathematics and Maxwell Institute

More information

Linear recurrence relations with the coefficients in progression

Linear recurrence relations with the coefficients in progression Annales Mathematicae et Informaticae 4 (013) pp. 119 17 http://ami.ektf.hu Linear recurrence relations with the coefficients in progression Mircea I. Cîrnu Department of Mathematics, Faculty of Applied

More information

arxiv: v1 [math.nt] 9 May 2017

arxiv: v1 [math.nt] 9 May 2017 The spectral norm of a Horadam circulant matrix Jorma K Merikoski a, Pentti Haukkanen a, Mika Mattila b, Timo Tossavainen c, arxiv:170503494v1 [mathnt] 9 May 2017 a Faculty of Natural Sciences, FI-33014

More information

GOLDEN PROPORTIONS IN HIGHER DIMENSIONS BASSEM GHALAYINI AND JOSEPH MALKOUN

GOLDEN PROPORTIONS IN HIGHER DIMENSIONS BASSEM GHALAYINI AND JOSEPH MALKOUN GOLDEN PROPORTIONS IN HIGHER DIMENSIONS BASSEM GHALAYINI AND JOSEPH MALKOUN Abstract The golden ratio φ = (+ 5)/2 appears in numerous contexts in the literature A study is made to generalize φ to dimension

More information

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution

Logic and Discrete Mathematics. Section 6.7 Recurrence Relations and Their Solution Logic and Discrete Mathematics Section 6.7 Recurrence Relations and Their Solution Slides version: January 2015 Definition A recurrence relation for a sequence a 0, a 1, a 2,... is a formula giving a n

More information

ON POLYNOMIAL IDENTITIES FOR RECURSIVE SEQUENCES

ON POLYNOMIAL IDENTITIES FOR RECURSIVE SEQUENCES Miskolc Mathematical Notes HU e-issn 1787-2413 Vol. 18 (2017), No. 1, pp. 327 336 DOI: 10.18514/MMN.2017.1776 ON POLYNOMIAL IDENTITIES FOR RECURSIVE SEQUENCES I. MARTINJAK AND I. VRSALJKO Received 09 September,

More information

DIFFERENCE EQUATIONS Renato M. Capocelli* Dipartimento di Informatica e Sistemtica Universita' di Roma "La Sapienza", Roma, Italy 00198

DIFFERENCE EQUATIONS Renato M. Capocelli* Dipartimento di Informatica e Sistemtica Universita' di Roma La Sapienza, Roma, Italy 00198 R O U N D I N G T H E S O L U T I O N S O F F I B O N A C C I - L I K E DIFFERENCE EQUATIONS Renato M. Capocelli* Dipartimento di Informatica e Sistemtica Universita' di Roma "La Sapienza", Roma, Italy

More information

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S.

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S. International Journal of Pure and Applied Mathematics Volume 11 No 1 017, 3-10 ISSN: 1311-8080 (printed version); ISSN: 1314-335 (on-line version) url: http://wwwijpameu doi: 10173/ijpamv11i17 PAijpameu

More information

The Star of David and Other Patterns in Hosoya Polynomial Triangles

The Star of David and Other Patterns in Hosoya Polynomial Triangles 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6 The Star of David and Other Patterns in Hosoya Polynomial Triangles Rigoberto Flórez Department of Mathematics and Computer

More information

AREAS OF POLYGONS WITH COORDINATES OF VERTICES FROM HORADAM AND LUCAS NUMBERS. 1. Introduction

AREAS OF POLYGONS WITH COORDINATES OF VERTICES FROM HORADAM AND LUCAS NUMBERS. 1. Introduction SARAJEVO JOURNAL OF MATHEMATICS Vol.13 (26), No.2, (2017), 179188 DOI: 10.5644/SJM.13.2.05 AREAS OF POLYGONS WITH COORDINATES OF VERTICES FROM HORADAM AND LUCAS NUMBERS ZVONKO ƒerin In memory of my dear

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail

More information

arxiv: v1 [math.ra] 13 Jun 2018

arxiv: v1 [math.ra] 13 Jun 2018 arxiv:1806.05038v1 [math.ra] 13 Jun 2018 Bicomplex Lucas and Horadam Numbers Serpil HALICI and Adnan KARATAŞ Abstract. In this work, we made a generalization that includes all bicomplex Fibonacci-like

More information

-P" -p. and V n = a n + ft\ (1.2)

-P -p. and V n = a n + ft\ (1.2) R. S. Melham School of Mathematical Sciences, University of Technology, Sydney, PO Box 123, Broadway, NSW 27 Australia {Submitted November 1997-Final Revision April 1998) 1. INTRODUCTION Define the sequences

More information

arxiv: v1 [math.ra] 30 Nov 2016

arxiv: v1 [math.ra] 30 Nov 2016 arxiv:1611.10143v1 [math.ra] 30 Nov 2016 HORADAM OCTONIONS Adnan KARATAŞ and Serpil HALICI Abstract. In this paper, first we define Horadam octonions by Horadam sequence which is a generalization of second

More information

Elliptic Nets and Points on Elliptic Curves

Elliptic Nets and Points on Elliptic Curves Department of Mathematics Brown University http://www.math.brown.edu/~stange/ Algorithmic Number Theory, Turku, Finland, 2007 Outline Geometry and Recurrence Sequences 1 Geometry and Recurrence Sequences

More information

^z^=ff] log " x+0 ( lo8t " lx )-

^z^=ff] log  x+0 ( lo8t  lx )- Robert E. Kennedy and Curtis Cooper Department of Mathematics, Central Missouri State University, Warrensburg, MO 64093 (Submitted January 1992) 1. INTRODUCTION In a recent article [2], the authors showed

More information

ON SUMS OF SQUARES OF PELL-LUCAS NUMBERS. Gian Mario Gianella University of Torino, Torino, Italy, Europe.

ON SUMS OF SQUARES OF PELL-LUCAS NUMBERS. Gian Mario Gianella University of Torino, Torino, Italy, Europe. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A15 ON SUMS OF SQUARES OF PELL-LUCAS NUMBERS Zvonko Čerin University of Zagreb, Zagreb, Croatia, Europe cerin@math.hr Gian Mario Gianella

More information

Diophantine m-tuples and elliptic curves

Diophantine m-tuples and elliptic curves Diophantine m-tuples and elliptic curves Andrej Dujella (Zagreb) 1 Introduction Diophantus found four positive rational numbers 1 16, 33 16, 17 4, 105 16 with the property that the product of any two of

More information

Solutions to Practice Final 3

Solutions to Practice Final 3 s to Practice Final 1. The Fibonacci sequence is the sequence of numbers F (1), F (2),... defined by the following recurrence relations: F (1) = 1, F (2) = 1, F (n) = F (n 1) + F (n 2) for all n > 2. For

More information

Formulas for sums of squares and products of Pell numbers

Formulas for sums of squares and products of Pell numbers Formulas for sums of squares and products of Pell numbers TEORIA DEI NUMERI Nota di Zvonko ČERIN e Gian Mario GIANELLA presentata dal socio Corrispondente Marius I. STOKA nell adunanza del 1 Giugno 2006.

More information

Edited by Russ Euler and Jawad Sadek

Edited by Russ Euler and Jawad Sadek Edited by Russ Euler and Jawad Sadek Please submit all new problem proposals and corresponding solutions to the Problems Editor, DR RUSS EULER, Department of Mathematics and Statistics, Northwest Missouri

More information

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES Zhizheng Zhang and Jingyu Jin Department of mathematics, Luoyang Teachers College, Luoyang, Henan, 471022,

More information

L U C A S SEQUENCES AND FUNCTIONS O F A 3-BY-3 M A T R I X

L U C A S SEQUENCES AND FUNCTIONS O F A 3-BY-3 M A T R I X L U C A S SEQUENCES AND FUNCTIONS O F A 3-BY-3 M A T R I X R. S. Melham School of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007 Australia {SubmittedMay 1997-Final

More information

LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS

LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS LONGEST SUCCESS RUNS AND FIBONACCI-TYPE POLYNOMIALS ANDREAS N. PHILIPPOU & FROSSO S. MAKRI University of Patras, Patras, Greece (Submitted January 1984; Revised April 1984) 1. INTRODUCTION AND SUMMARY

More information

AND RELATED NUMBERS. GERHARD ROSENBERGER Dortmund, Federal Republic of Germany (Submitted April 1982)

AND RELATED NUMBERS. GERHARD ROSENBERGER Dortmund, Federal Republic of Germany (Submitted April 1982) ON SOME D I V I S I B I L I T Y PROPERTIES OF FIBONACCI AND RELATED NUMBERS Universitat GERHARD ROSENBERGER Dortmund, Federal Republic of Germany (Submitted April 1982) 1. Let x be an arbitrary natural

More information