Theoretical Aspects for Testing Impedance Data Basics of the Kramers-Kronig- and the Z-Hit algorithms

Size: px
Start display at page:

Download "Theoretical Aspects for Testing Impedance Data Basics of the Kramers-Kronig- and the Z-Hit algorithms"

Transcription

1 Theoretical Aspects for Testing Impedance Data Basics of the Kramers-Kronig- and the Z-Hit algorithms Lecture at the Kronach Impedance Days 1 Dr. Werner Strunz

2 The validation of experimental impedance data Detection and reconstruction (!! of non- steady and/or disturbed systems Fuel cells Batteries Rechargeable batteries Solar cells Coatings Motivation Development and/or improvement of important technical products NN-STATINARY UnderCNDITINS load (may result in Under illumination Water NN-STATINARY uptake SPECTRA 1 Spectrum of a fuel cell under load (I EIS-principle at a single frequency Z / mω 3 1 phase / o 3 artifact functions E(t & I(t Excitation at constant frequency µ 1m 1.m m.m 3m ϕ -3 1m 1m K 1K 1K frequency / Hz Reliable detection of artifacts How to validate EIS-spectra? What s the specific property? 3 Re Im The Kramers-Kronig Kronig Relations { H ( } = Re{ H (} { H ( } = PV - PV { H ( } Im { H ( } Re d d BUT WHERE ARE THE PRBLEMS? function y(t function y(t Mathematical relations (real real-valued quantity 3 1 λ y( t = e t y( t = m y( t = sin( t µ 1m 1.m m.m 3m function y(t a t Unequivocal relationship between dependent and independent variables => y(t is determined / measured with a distinct accuracy

3 Mathematical relations (EIS (complex complex-valued quantity The Sensitivity of bjects (Z & ϕ - Excellent Examples: : Sensors! functions E(t & I(t Excitation at constant frequency µ 1m 1.m m.m 3m ϕ - Z & ϕ : measured independently with different accuracy and sensitivity - Z & ϕ : strongly correlated (in theory BUT IN PRACTICE? Z - Temperature Dependent Resistor (NTC, PTC Pt 1, Pt 1, KTY 81, - Light Dependent Resistor (LDR - Magnetic Dependent Resistor (MDR - Humidity Dependent Capacity The course of Phase and Impedance when heating NTC/PTC The approximation (evaluation of impedance modulus from the phase angle ln H ( const. + ϕ( ln γ d + dln S Detection of artifacts Detection of instationarities (drift Reconstruction of causal spectra Z & ϕ : Phase ϕ is more stable than impedance Z => Reliable interpretation of spectra 9 1 Deduction of the (I Deduction of the (II Find a general relationship between impedance and phase Based on an empirical observation (Bode plot ( Integral / Hilbert transformation log H R = 1 Ω Phase Impedance of R H (R f (ln( = const Phase shift of R ϕ(r f (ln(= const = ln H ( ~ ϕ( d ln +? Integral = = > Integral ϕ ( = Must hold for all impedance elements (-pole ln H ( ~ ϕ( d ln+ const. 11 1

4 Deduction of the (III Impedance of C 1 pf H (C = f (ln( ~ (C -1 log H Phase Phase shift of C ϕ(c f (ln( = const = -9 = > Integral ϕ ( s = Integral log Z j Deduction of the (IV: - Relationship of elementary two-poles R L C W Z ' = - 1 Z ' = Z ' = 1 Z ' = -1 H ( j = const( j ϕ = ( dln H = α dln α α s ln H ( ~ ϕ( d ln+ const. Z' = α 13 1 Randle circuit Deduction of the (V ln Z E [A] - refinement Phase / rad S (, 1 -, -, -, 1 -,8 13-1, -1, 1-1, [B] Integral (shifted ln Z ln The approximation ln H ( const. + - frequency boundaries ϕ( ln γ d + dln S,,,3,,1, -,1 -, -,3 -, -, -, [C] ln Z - Integral (ϕ dϕ / dln -, ,,,3,,1, -,1 -, -,3 -, -, -, -,7 [D] ln Z - Integral (ϕ / * dϕ / d ln Considering Kramers Kronig relations Im { H ( } = PV { H ( } Re d 1 The limited bandwidth problem (I Simulation of a coating during water up-take The limited bandwidth problem (II 1 pf log H Phase Changing frequency boundary Measured frequency range 1 KHz mhz :? :? s s s to s nly Shift of const LCAL relationship between impedance and phase Not affected by the limited bandwidth 17 18

5 Implementation of the Z algorithm in the THALES analysis software package Spectrum of a fuel cell under load 1 The experimental data are filtered by a smoothing algorithm. The result is a set of continuous samples equidistant in. Z / mω 3 phase / o 1. Z / mω 3 phase / o The integral term is calculated by numerical integration The first derivate is taken from the smoothing function. The integration constant is determined by a least squares fit m 1m K 1K 1K frequency / Hz. FIT 1-3 1m 1m K 1K 1K frequency / Hz ln H ( ϕ( d ln + γ d ln + c S onst. 19 Fuel cell under C poisoning (I Fuel cell under C poisoning (II cell voltage / mv 7 3 Series measurement ~ 1 minutes per spectrum Strong influence No. Rapid changes,, 1, 1,, time / h - imaginary part / hm m 1m m -m -1m 1, m m 3m m real part / hm imaginary part / Ω,1, -,1 -, 1K Raw data.1 Hz DATA FIT Hz 3 Hz imaginary part / Ω,1, -,1 -, Refined data.1 Hz 1 KHz DATA FIT Hz 3 Hz Relaxation impedance as a model for the deactivation mechanism of fuel cells due to C poisoning C. A. Schiller, F. Richter, E. Gülzow, N. Wagner; J. Phys. Chem. Chem. Phys. 3 (1 113,,1,,3,, real part / Ω,,1,,3,, real part / Ω 1 Batteries: optimising wiring Water uptake of coatings (I Series measurement ~ minutes / spectrum log(impedance / Ω phase shift / log(impedance / Ω phase shift / spec 1. spec. spec ( min.. spec ( min. 8. spec ( h 33. spec (11 h requency /Hz requency /Hz => Water uptake: a very slow process 3

6 Water uptake of coatings (II log(impedance / Ω 1, 1, 1, 9,8 9, spec Data -1,8-1, -1, -1, -1, -,8 -, 1. spec complete Data 1st zoomed 9, -1,8-1, -1, -1, -1, -,8 -, log(frequency / Hz nly the lowest frequencies are affected nly at the earliest spectra 1, 1, 1, 9,8 9,. spec Data Coating A (11 µm nd zoomed capacity / F p p 3p 3p p p p 1p Water uptake of coatings (III C CTRW- C C 111 ± 1 pf 1 time / h Evaluation of series Wide frequency range Confirmation of model (dielectric & pores = > only pores affected Prerequisite: Reliable handling of drift affected data Conclusion approximation ln H ( const. + ϕ( d ln γ + dln S Local relationship between impedance and phase => Not affected by the limited bandwidth problem => Reliable detection of artifacts and instationarities (drift => Reconstruction (!! of causal spectra => Reliable interpretation of spectra Thank you for your attention 7 8

Basics of the Kramers-Kronig- and the Z-Hit algorithms Lecture at the Kronach Impedance Days 2015 Dr. Werner Strunz

Basics of the Kramers-Kronig- and the Z-Hit algorithms Lecture at the Kronach Impedance Days 2015 Dr. Werner Strunz Theoretical Aspects for Testing Impedance Data Basics of the Kramers-Kronig- and the Z-Hit algorithms Lecture at the Kronach Impedance Days 215 Dr. Werner Strunz 1 Motivation The entire process of measurement,

More information

Werner Strunz, Zahner-elektrik.

Werner Strunz, Zahner-elektrik. Werner Strunz, Zahner-elektrik www.zahner.de Outline 1. Resistor [ R ] Spannung Strom 0 1 2 3 4 5 6 2 2. Inductance [ L ] Spannung Strom 0 1 2 3 4 5 6 2 3. Capacitor [ C ] Spannung Strom 0 1 2 3 4 5 6

More information

Werner Strunz, Zahner-elektrik.

Werner Strunz, Zahner-elektrik. Werner Strunz, Zahner-elektrik www.zahner.de Overview Experimental Challenges for Battery-Measurements Magnetical Artefacts Time-Drift From Single Cell to Multi-Cell (Stack) Set-Up for High Power Handling

More information

Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy Electrochemical Impedance Spectroscopy May 2012 Designing the Solution for Electrochemistry Potentiostat/Galvanostat І Battery Cycler І Fuel Cell Test Station +82-2-578-6516 І sales@wonatech.com www.wonatech.com

More information

Relaxation Impedance

Relaxation Impedance Relaxation Impedance One Reason for Inductive and Capacitive Behavior in Low Frequency Impedance Spectra of Corroding Electrodes, Batteries and Fuel Cells C.A. Schiller a, F. Richter a,, W. Strunz a, N.

More information

Basics of Impedance Spectroscopy

Basics of Impedance Spectroscopy Basics of Impedance Spectroscopy (

More information

Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell

Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell Journal of Power Sources 127 (4) 341 347 Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell N. Wagner, E. Gülzow Deutsches Zentrum für

More information

Qualification of tabulated scattering parameters

Qualification of tabulated scattering parameters Qualification of tabulated scattering parameters Stefano Grivet Talocia Politecnico di Torino, Italy IdemWorks s.r.l. stefano.grivet@polito.it 4 th IEEE Workshop on Signal Propagation on Interconnects

More information

Metallized Polypropylene Film Capacitor Related Document: IEC

Metallized Polypropylene Film Capacitor Related Document: IEC MKP 184 Metallized Polypropylene Film Capacitor Related Document: IEC 6084-16 MAIN APPLICATIONS: High voltage, high current and high pulse operations, deflection circuits in TV sets (S-correction and fly-back

More information

Electrochemical methods : Fundamentals and Applications

Electrochemical methods : Fundamentals and Applications Electrochemical methods : Fundamentals and Applications Lecture Note 7 May 19, 2014 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Electrochemical

More information

Metallized Polypropylene Film Capacitor Related Document: IEC

Metallized Polypropylene Film Capacitor Related Document: IEC Related Document: IEC 6084-16 MKP 184 Dimensions in millimeters 40.0 ±.0 L 40.0 ±.0 Max. MAIN APPLICATIONS High voltage, high current and high pulse operations, deflection circuits in TV sets (S-correction

More information

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2 Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + = is (A) 1 (B) 2 (C) 3 (D) 4 2. The Fourier series of a real periodic function has only P. Cosine terms if it is

More information

161 Electrochemical Impedance Spectroscopy Goals Experimental Apparatus Background Electrochemical impedance spectroscopy

161 Electrochemical Impedance Spectroscopy Goals Experimental Apparatus Background Electrochemical impedance spectroscopy Goals 161 Electrochemical Impedance Spectroscopy XXGoals To learn the effect of placing capacitors and resistors in series and parallel To model electrochemical impedance spectroscopy data XXExperimental

More information

Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) CHEM465/865, 24-3, Lecture 26-28, 19 th Nov., 24 Please, note the following error in the notes lecture19+2 (Hydrodynamic electrodes and Microelectrodes: on page two, 3 rd line, the correct expression for

More information

1000 to pf (E3 series) Dielectric material K2000 K5000 K14000 Rated DC voltage 100 V 100 V 63 V Tolerance on capacitance ±10% 20/+50% 20/+80%

1000 to pf (E3 series) Dielectric material K2000 K5000 K14000 Rated DC voltage 100 V 100 V 63 V Tolerance on capacitance ±10% 20/+50% 20/+80% , Class 2, 63,, V and 1 V (DC) handbook, 4 columns FEATURES General purpose Coupling and decoupling Space saving. APPLICATIONS In electronic circuits where non-linear change of capacitance with temperature

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/08

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/08 AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/08 Introduction The HAH1BVW family is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Exam 3--PHYS 202--S15

Exam 3--PHYS 202--S15 Name: Class: Date: Exam 3--PHYS 202--S15 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Consider this circuit Which of these equations is correct? 3 Which

More information

Demystifying Transmission Lines: What are They? Why are They Useful?

Demystifying Transmission Lines: What are They? Why are They Useful? Demystifying Transmission Lines: What are They? Why are They Useful? Purpose of This Note This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission

More information

MODULE-4 RESONANCE CIRCUITS

MODULE-4 RESONANCE CIRCUITS Introduction: MODULE-4 RESONANCE CIRCUITS Resonance is a condition in an RLC circuit in which the capacitive and inductive Reactance s are equal in magnitude, there by resulting in purely resistive impedance.

More information

Conventional Paper I-2010

Conventional Paper I-2010 Conventional Paper I-010 1. (a) Sketch the covalent bonding of Si atoms in a intrinsic Si crystal Illustrate with sketches the formation of bonding in presence of donor and acceptor atoms. Sketch the energy

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Figure 1.1.1: Magnitude ratio as a function of time using normalized temperature data

Figure 1.1.1: Magnitude ratio as a function of time using normalized temperature data 9Student : Solutions to Technical Questions Assignment : Lab 3 Technical Questions Date : 1 November 212 Course Title : Introduction to Measurements and Data Analysis Course Number : AME 2213 Instructor

More information

An Introduction to Electrochemical Impedance Spectroscopy (EIS)

An Introduction to Electrochemical Impedance Spectroscopy (EIS) An Introduction to Electrochemical Impedance Spectroscopy (EIS) Dr. Robert S Rodgers, Ph.D. PO Box 7561 Princeton, NJ 08543 Delivered at June 18, 2009 Meeting of ACS Princeton Local Section Outline A Little

More information

EMC Considerations for DC Power Design

EMC Considerations for DC Power Design EMC Considerations for DC Power Design Tzong-Lin Wu, Ph.D. Department of Electrical Engineering National Sun Yat-sen University Power Bus Noise below 5MHz 1 Power Bus Noise below 5MHz (Solution) Add Bulk

More information

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature... Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

VI. EIS STUDIES LEAD NANOPOWDER

VI. EIS STUDIES LEAD NANOPOWDER VI. EIS STUDIES LEAD NANOPOWDER 74 26. EIS Studies of Pb nanospheres Impedance (valid for both DC and AC), a complex resistance occurs when current flows through a circuit (composed of various resistors,

More information

Contents. I Background 1. Contents... Preface... Acknowledgments... The Blind Men and the Elephant... xxi. History of Impedance Spectroscopy...

Contents. I Background 1. Contents... Preface... Acknowledgments... The Blind Men and the Elephant... xxi. History of Impedance Spectroscopy... Contents Contents...................................... Preface....................................... Acknowledgments................................. v xv xix The Blind Men and the Elephant.......................

More information

Lecture 4: R-L-C Circuits and Resonant Circuits

Lecture 4: R-L-C Circuits and Resonant Circuits Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L

More information

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ 27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: small-signal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential

More information

Photovoltaic Characterizations: Polarization and Mott Schottky plot

Photovoltaic Characterizations: Polarization and Mott Schottky plot Application note #4 Photovoltaic Characterizations: Polarization and Mott Schottky plot I- Introduction With the greenhouse effect and the increase of the price of the energy, new ways to produce energy

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

PHYS General Physics for Engineering II FIRST MIDTERM

PHYS General Physics for Engineering II FIRST MIDTERM Çankaya University Department of Mathematics and Computer Sciences 2010-2011 Spring Semester PHYS 112 - General Physics for Engineering II FIRST MIDTERM 1) Two fixed particles of charges q 1 = 1.0µC and

More information

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I Physics 3 Jonathan Dowling Lecture 35: FRI 7 APR Electrical Oscillations, LC Circuits, Alternating Current I Nikolai Tesla What are we going to learn? A road map Electric charge è Electric force on other

More information

GATE 2009 Electronics and Communication Engineering

GATE 2009 Electronics and Communication Engineering GATE 2009 Electronics and Communication Engineering Question 1 Question 20 carry one mark each. 1. The order of the differential equation + + y =e (A) 1 (B) 2 (C) 3 (D) 4 is 2. The Fourier series of a

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

SEM-2016(02)-I ELECTRICAL ENGINEERING. Paper -1. Please read the following instructions carefully before attempting questions.

SEM-2016(02)-I ELECTRICAL ENGINEERING. Paper -1. Please read the following instructions carefully before attempting questions. Roll No. Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 8 SEM-2016(02)-I ELECTRICAL ENGINEERING Paper -1 Time : 3 Hours ] [ Total Marks ; 300 Instructions

More information

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown. Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

More information

Pascal ET is an handheld multifunction calibrator for the measurement and simulation of the following parameters: - pressure

Pascal ET is an handheld multifunction calibrator for the measurement and simulation of the following parameters: - pressure DATASHEET Pascal ET Pascal ET is an handheld multifunction calibrator for the measurement and simulation of the following parameters: - pressure - electrical signals (ma, mv, V, ) - temperature (TC and

More information

16.1 Electrical Current

16.1 Electrical Current 16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

More information

Performance analysis of Lithium-ion-batteries: status and prospects

Performance analysis of Lithium-ion-batteries: status and prospects Performance analysis of Lithium-ion-batteries: status and prospects DPG conference Erlangen March 218 Ellen Ivers-Tiffée, Philipp Braun, Michael Weiss Karlsruhe Institute of Technology (KIT), Germany KIT

More information

COURSE OF Prepared By: MUHAMMAD MOEEN SULTAN Department of Mechanical Engineering UET Lahore, KSK Campus

COURSE OF Prepared By: MUHAMMAD MOEEN SULTAN Department of Mechanical Engineering UET Lahore, KSK Campus COURSE OF Active and passive instruments Null-type and deflection-type instruments Analogue and digital instruments In active instruments, the external power source is usually required to produce an output

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

Dielectric Properties of Composite Films Made from Tin(IV) Oxide and Magnesium Oxide

Dielectric Properties of Composite Films Made from Tin(IV) Oxide and Magnesium Oxide OUSL Journal (2014) Vol 7, (pp67-75) Dielectric Properties of Composite Films Made from Tin(IV) Oxide and Magnesium Oxide C. N. Nupearachchi* and V. P. S. Perera Department of Physics, The Open University

More information

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO Better pproach of Dealing with ipple Noise of Introduction It has been a trend that cellular phones, audio systems, cordless phones and portable appliances have a requirement for low noise power supplies.

More information

WW25R ±1%, ±5%, 2W Metal plate low ohm power chip resistors Size 2512 (6432)

WW25R ±1%, ±5%, 2W Metal plate low ohm power chip resistors Size 2512 (6432) WW25R ±1%, ±5%, 2W Metal plate low ohm power chip resistors Size 2512 (6432) Current Sensing Type Automotive AEC Q200 compliant *Contents in this sheet are subject to change without prior notice. Page

More information

WW25Q ±1%, ±5%, 1W Metal plate low ohm power chip resistors Size 2512 (6432)

WW25Q ±1%, ±5%, 1W Metal plate low ohm power chip resistors Size 2512 (6432) WW25Q ±1%, ±5%, 1W Metal plate low ohm power chip resistors Size 2512 (6432) Current Sensing Type Automotive AEC Q200 compliant *Contents in this sheet are subject to change without prior notice. Page

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Capacitor. Capacitor (Cont d)

Capacitor. Capacitor (Cont d) 1 2 1 Capacitor Capacitor is a passive two-terminal component storing the energy in an electric field charged by the voltage across the dielectric. Fixed Polarized Variable Capacitance is the ratio of

More information

Current Interrupt Technique - Measuring low impedances at high frequencies

Current Interrupt Technique - Measuring low impedances at high frequencies 1/22 Advances in electrochemical applications of spectroscopy ssued and by ZAHNER-elektrik GmbH & o. KG in June 22 First of all we have to say sorry for the long time you had to wait for this new issue

More information

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1 ( Answers at the end of all questions ) Page ) The self inductance of the motor of an electric fan is 0 H. In order to impart maximum power at 50 Hz, it should be connected to a capacitance of 8 µ F (

More information

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MARK E. ORAZEM University of Florida BERNARD TRIBOLLET Universite Pierre et Marie Curie WILEY A JOHN WILEY & SONS, INC., PUBLICATION Contents Contents Preface Acknowledgments

More information

0805 CG 102 J 500 N T

0805 CG 102 J 500 N T NPO/COG for General-use is class I high frequency capacitor, its capacitance is very stable, almost will not change along with the temperature, voltage and time. Specially be suitable for high frequency

More information

Large, light-induced capacitance enhancement in semiconductor junctions simulated by capacitor-resistor nets

Large, light-induced capacitance enhancement in semiconductor junctions simulated by capacitor-resistor nets 1 Large, light-induced capacitance enhancement in semiconductor junctions simulated by capacitor-resistor nets B. Vainas The Weizmann Institute of Science, Rehovot (Israel) (arxiv, dated 20 July 2015)

More information

Design of Narrow Band Filters Part 2

Design of Narrow Band Filters Part 2 E.U.I.T. Telecomunicación 200, Madrid, Spain, 27.09 30.09.200 Design of Narrow Band Filters Part 2 Thomas Buch Institute of Communications Engineering University of Rostock Th. Buch, Institute of Communications

More information

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brick-wall characteristic shown in Figure

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

The Basic Capacitor. Dielectric. Conductors

The Basic Capacitor. Dielectric. Conductors Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Electrochemical Impedance Spectroscopy. Part 1: Polarization Resistance: Familiar parameter measured in a new way June 6, 2008

Electrochemical Impedance Spectroscopy. Part 1: Polarization Resistance: Familiar parameter measured in a new way June 6, 2008 Electrochemical Impedance Spectroscopy Part 1: Polarization Resistance: Familiar parameter measured in a new way June 6, 2008 Objective The purpose of this lecture series is to generate a set of notes

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

9702 PHYSICS. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

9702 PHYSICS. Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers. CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the May/June 2013 series 9702 PHYSICS 9702/42 Paper 4 (A2 Structured Questions), maximum raw mark

More information

Class 1, 100 V (DC) (flanged types) Miniature ceramic plate capacitors

Class 1, 100 V (DC) (flanged types) Miniature ceramic plate capacitors FEATURES High-frequency circuits Temperature compensating High stability Space saving. APPLICATIONS In a great variety of electronic circuits, e.g. in filters and tuning circuits where high stability and/or

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

Feedback design for the Buck Converter

Feedback design for the Buck Converter Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation

More information

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1

Miniature Electronically Trimmable Capacitor V DD. Maxim Integrated Products 1 19-1948; Rev 1; 3/01 Miniature Electronically Trimmable Capacitor General Description The is a fine-line (geometry) electronically trimmable capacitor (FLECAP) programmable through a simple digital interface.

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

ECNG3032 Control and Instrumentation I

ECNG3032 Control and Instrumentation I sensor ECNG3032 Control and Instrumentation I Lecture 1 Temperature Sensors Sensors The sensor is the first element in the measurement system. Measurand Transducer Principle Excitation Signal Interface

More information

Lecture 21: Packaging, Power, & Clock

Lecture 21: Packaging, Power, & Clock Lecture 21: Packaging, Power, & Clock Outline Packaging Power Distribution Clock Distribution 2 Packages Package functions Electrical connection of signals and power from chip to board Little delay or

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 April 23, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 April 23, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam 3 Section Version April 3, 03 Total Weight: 00 points. Check your examination for completeness prior to starting. There are a

More information

The current source. The Active Current Source

The current source. The Active Current Source V ref + - The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 Name: Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can

More information

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors

Inductors. Hydraulic analogy Duality with capacitor Charging and discharging. Lecture 12: Inductors Lecture 12: nductors nductors Hydraulic analogy Duality with capacitor Charging and discharging Robert R. McLeod, University of Colorado http://hilaroad.com/camp/projects/magnet.html 99 Lecture 12: nductors

More information

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf 1. Fig.1 shows two capacitors, A of capacitance 2µF, and B of capacitance 4µF, connected in parallel. Fig. 2 shows them connected in series. A two-way switch S can connect the capacitors either to a d.c.

More information

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/3 Physics 201 p. 1/3 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/3 Summary of last lecture Equipotential surfaces: Surfaces where the potential is the same everywhere, e.g. the

More information

Conventional Paper-I Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy

Conventional Paper-I Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy EE-Conventional Paper-I IES-01 www.gateforum.com Conventional Paper-I-01 Part A 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy impedance for a lossy dielectric

More information

EIS of Organic Coatings and Paints

EIS of Organic Coatings and Paints EIS of Organic Coatings and Paints Introduction All My Impedance Spectra Look the Same! "I m an experienced polymer chemist. I m trying to use Electrochemical Impedance Spectroscopy (EIS) to predict the

More information

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam.

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam. ECE 35 Spring - Final Exam 9 May ECE 35 Signals and Systems Spring Final Exam - Solutions Three 8 ½ x sheets of notes, and a calculator are allowed during the exam Write all answers neatly and show your

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 013 Eugene V. Colla Definition Distributed parameters networ Pulses in transmission line Wave equation and wave propagation eflections. esistive load Thévenin's

More information

Introduction to Electric Circuit Analysis

Introduction to Electric Circuit Analysis EE110300 Practice of Electrical and Computer Engineering Lecture 2 and Lecture 4.1 Introduction to Electric Circuit Analysis Prof. Klaus Yung-Jane Hsu 2003/2/20 What Is An Electric Circuit? Electrical

More information

Characteristics and Definitions Used for Film Capacitors

Characteristics and Definitions Used for Film Capacitors Characteristics and Definitions Used for Film Capacitors COMMON FILM DIELECTRICS USED IN FILM CAPACITORS PRODUCTS PARAMETER DIELECTRIC (1) UNIT Dielectric constant 1 khz 3.3 3 3. - Dissipation factor 1

More information

coil of the circuit. [8+8]

coil of the circuit. [8+8] Code No: R05310202 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 ELECTRICAL MEASUREMENTS (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

ERROR SOURCE IDENTIFICATION AND STABILITY TEST OF A PRECISION CAPACITANCE MEASUREMENT SYSTEM

ERROR SOURCE IDENTIFICATION AND STABILITY TEST OF A PRECISION CAPACITANCE MEASUREMENT SYSTEM 106 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS Vol.101(3) September 2010 ERROR SOURCE IDENTIFICATION AND STABILITY TEST OF A PRECISION CAPACITANCE MEASUREMENT SYSTEM S. Nihtianov* and X. Guo* # *

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

Resonant Matching Networks

Resonant Matching Networks Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that

More information

P114 University of Rochester NAME S. Manly Spring 2010

P114 University of Rochester NAME S. Manly Spring 2010 Exam 2 (March 23, 2010) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show your work where indicated. Problem 1 ( 8 pts): In each

More information

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell

Electrochemical Impedance Spectroscopy of a LiFePO 4 /Li Half-Cell Electrochemical Impedance Spectroscopy of a ifepo 4 /i Half-Cell Mikael Cugnet*, Issam Baghdadi and Marion Perrin French Institute of Solar Energy (INES), CEA / ITEN *Corresponding author: 50 Avenue du

More information

From this analogy you can deduce some rules that you should keep in mind during all your electronics work:

From this analogy you can deduce some rules that you should keep in mind during all your electronics work: Resistors, Volt and Current Posted on April 4, 2008, by Ibrahim KAMAL, in General electronics, tagged In this article we will study the most basic component in electronics, the resistor and its interaction

More information

Level 2 Physics, 2011

Level 2 Physics, 2011 90257 902570 2SUPERVISOR S Level 2 Physics, 2011 90257 Demonstrate understanding of electricity and electromagnetism 2.00 pm ednesday Wednesday 1 November 2011 Credits: Five Check that the National Student

More information

Temperature Sensors & Measurement

Temperature Sensors & Measurement Temperature Sensors & Measurement E80 Spring 2014 Contents Why measure temperature? Characteristics of interest Types of temperature sensors 1. Thermistor 2. RTD Sensor 3. Thermocouple 4. Integrated Silicon

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

R-L-C Circuits and Resonant Circuits

R-L-C Circuits and Resonant Circuits P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0

More information