6.867 Machine learning, lecture 14 (Jaakkola)

Size: px
Start display at page:

Download "6.867 Machine learning, lecture 14 (Jaakkola)"

Transcription

1 6.867 Machie learig, lecture 14 (Jaakkla) 1 Lecture tpics: argi ad geeralizati liear classifiers esebles iture dels Margi ad geeralizati: liear classifiers As we icrease the uber f data pits, ay set f classifiers we are csiderig ay lger be able t label the pits i all pssible ways. Such eergig cstraits are critical t be able t predict labels fr ew pits. This tivates a key easure f cpleity f the set f classifiers, the Vapik-Chervekis diesi. The VC-diesi is defied as the aiu uber f pits that a classifier ca shatter. The VC-diesi f liear classifiers the plae is three (see previus lecture). Nte that the defiiti ivlves a aiu ver the pssible pits. I ther wrds, we ay fid less tha d V C pits that the set f classifiers cat shatter (e.g., liear classifiers with pits eactly a lie i 2 d) but there cat be ay set f re tha d V C pits that the classifier ca shatter. The VC-diesi f the set f liear classifiers i d diesis is d+1, i.e., the uber f paraeters. This relati t the uber f paraeters is typical albeit certaily t always true (e.g., the VC-diesi ay be ifiite fr a classifier with a sigle real paraeter!). The VC-diesi iediately geeralizes ur previus results fr budig the epected errr fr a fiite uber f classifiers. There are a uber f techical steps ivlved that we w t get it, hwever. Lsely speakig, d V C takes the place f the lgarith f the uber f classifiers i ur set. I ther wrds, we are cutig the uber f classifiers the basis f hw they ca label pits, t based their idetities i the set. Mre precisely, we have fr ay set f classifiers F: with prbability at least 1 δ ver the chice f the traiig set, R(f) R (f) + ɛ(, d V C, δ), uifrly fr all f F (1) where the cpleity pealty is w a fucti f d V C = d V C (F): d V C (lg(2/d V C ) + 1) + lg(1/(4δ)) ɛ(, d V C, δ) = (2) Cite as: Ti Jaakkla, curse aterials fr Machie Learig, Fall MIT OpeCurseWare ( Massachusetts Istitute f Techlgy. Dwladed [DD Mth YYYY].

2 6.867 Machie learig, lecture 14 (Jaakkla) 2 The result is prbleatic fr kerel ethds. Fr eaple, the VC-diesi f kerel classifiers with the radial basis kerel is. We ca, hwever, icrprate the ti f argi i the classifier diesi. Oe such defiiti is V γ diesi that easures the VC-diesi with the cstrait that distict labeligs have t be btaied with a fied argi γ. Suppse all the eaples fall withi a eclsig sphere f radius R. The, as we icrease γ, there will be very few eaples we ca classify i all pssible ways with this cstrait (especially whe γ R; cf. Figure 1). Put ather way, the VCdiesi f a set f liear classifiers required t attai a prescribed argi ca be uch lwer (decreasig as a fucti f the argi). I fact, V γ diesi fr liear classifiers is buded by R 2 /γ 2, i.e., iversely prprtial t the squared argi. Nte that this result is idepedet f the diesi f iput eaples, ad is eactly the istake bud fr the perceptr algrith! Figure 1: The set f liear classifiers required t btai a specific geetric argi has a lwer VC-diesi whe the eaples reai withi a eclsig sphere. The previus geeralizati guaratees ca be used with V γ diesi as well s lg as we replace the traiig errr with argi vilatis, i.e., we cut the fracti f eaples that cat be separated with argi at least γ. Margi ad geeralizati: esebles A eseble classifier ca be writte as a cve cbiati f sipler base classifiers h () = α j h(; θ j ) (3) j=1 Cite as: Ti Jaakkla, curse aterials fr Machie Learig, Fall MIT OpeCurseWare ( Massachusetts Istitute f Techlgy. Dwladed [DD Mth YYYY].

3 6.867 Machie learig, lecture 14 (Jaakkla) 3 where α j 0 ad j=1 α j = 1. Bstig geerates such esebles but des t ralized the cefficiets α j t su t e. The ralizati ca be easily perfred after the fact. We are iterested i uderstadig the cpleity f such esebles ad hw geeralizati guaratees depeds the vtig argi achieved, e.g., thrugh bstig algrith. Nte that ur discussi here will t refer t hw such esebles are geerated. Let s start by defiig what the esebles are t. They are t decisi trees. A decisi (classificati) tree is a ethd f recursively partitiig the set f eaples it regis such that withi each regi the eaples wuld have as uifr labels as pssible. The partitiig i a decisi tree culd be based the sae type f decisi stups as we have used fr the eseble. I the eseble, hwever, the dai fr all the stups is the whle space. I ther wrds, yu cat restrict the applicati f the stup withi a specific partiti. I the eseble, each stup ctributes t the classificati f all the eaples. Hw pwerful are esebles based the decisi stups? T uderstad this further let s shw hw we ca shatter ay pits with 2 stups eve i e diesis. It suffices t shw that we ca fid a eseble with 2 stups that reprduces ay specific labelig y 1,..., y f pits 1,..., (w real ubers). T d s, we will cstruct a eseble f tw stups t reprduce the label y t fr t but withut affectig the classificati f ther traiig eaples. If ɛ is less tha the sallest distace betwee ay tw traiig eaples, the 1 1 h pair (; t, y t ) = sig (y t ( t + ɛ)) + sig ( y t ( t ɛ)) (4) 2 2 has value y t withi iterval [ t ɛ, t + ɛ] is zer everywhere else. Thus, settig α t = 1/, h 2 () = α t h pair (; t, y t ) (5) t=1 has the crrect sig fr all the traiig eaples. The eseble f 2 cpets therefre has VC-diesi at least. Esebles are pwerful as classifiers i this sese ad their VC-diesi prly eplais their success i practice. Each eaple i the abve cstructi ly has a very lw vtig argi 1/, hwever. Perhaps we ca siilarly refie the aalysis t icrprate the vtig argi as we did abve with liear classifiers ad the geetric argi. The key idea is t reduce a eseble with ay cpets t a carse eseble with few cpets but e that evertheless classifies the eaples i the sae way. Whe the rigial eseble achieves a large vtig argi this is ideed pssible, ad the size f the carse appriati that Cite as: Ti Jaakkla, curse aterials fr Machie Learig, Fall MIT OpeCurseWare ( Massachusetts Istitute f Techlgy. Dwladed [DD Mth YYYY].

4 6.867 Machie learig, lecture 14 (Jaakkla) 4 we eed decreases with icreasig vtig argi. I ther wrds, if we achieve a large vtig argi, we culd have slved the sae classificati prble with uch saller eseble isfar as we ly pay atteti t the classificati errr. Based this ad ther re techical ideas we ca shw that with prbability at least 1 δ ver the chice f the traiig data, ( ) d V C /ρ R (ĥ) R (ĥ; ρ) + Õ 2, (6) where the Õ( ) tati hides cstats ad lgarithic ters, R (ĥ; ρ) cuts the uber f traiig eaples with vtig argi less tha ρ, ad d V C is the VC-diesi f the base classifiers. Nte that the result des t deped the uber f base classifiers i the eseble ĥ. Nte als that the effective diesi d V C /ρ 2 that the uber f traiig eaples is cpared t has a siilar fr as befre, decreasig with the argi ρ. See Schapire et al. (1998) fr details. The paper is available fr the curse website as ptial readig. Miture dels There are ay prbles i achie learig that are t siple classificati prbles but rather delig prbles (e.g., clusterig, diagsis, cbiig ultiple ifrati surces fr sequece atati, ad s ). Mrever, eve withi classificati prbles, we fte have ubserved variables that wuld ake a differece i ters f classificati. Fr eaple, if we are iterested i classifyig tissue saples it specific categries (e.g., tur type), it wuld be useful t kw the cpsiti f the tissue saple i ters f cells that are preset ad i what prprtis. While such variables are t typically bserved, we ca still del the ad ake use f their presece i predicti. Miture dels are siple prbability dels that try t capture abiguities i the available data. They are siple, widely used ad useful. As the ae suggests, a iture del ies differet predictis the prbability scale. The iig is based alterative ways f geeratig the bserved data. Let be a vectr f bservatis. A iture del ver vectrs is defied as fllws. We assue each culd be f pssible types. If we kew the type, j, we wuld del with a cditial distributi P ( j) (e.g., Gaussia with a specific ea). If the verall frequecy f type j i the data is P (j), the the Cite as: Ti Jaakkla, curse aterials fr Machie Learig, Fall MIT OpeCurseWare ( Massachusetts Istitute f Techlgy. Dwladed [DD Mth YYYY].

5 6.867 Machie learig, lecture 14 (Jaakkla) 5 iture distributi ver is give by P () = P ( j)p (j) (7) j=1 I ther wrds, culd be geerated i pssible ways. We iagie the geerative prcess t be as fllws: saple j fr the frequecies P (j), the fr the crrespdig cditial distributi P ( j). Sice we d t bserve the particular way the eaple was geerated (assuig the del is crrect), we su ver the pssibilities, weighted by the verall frequecies. We have already ecutered iture dels. Take, fr eaple, the Naive Bayes del P ( y)p (y) ver the feature vectr ad label y. If we pl tgether eaples labeled +1 ad thse labeled 1, ad thrw away the label ifrati, the the Naive Bayes del predicts feature vectrs accrdig t [ ] d P () = P ( y)p (y) = P ( i y) P (y) (8) y=±1 y=±1 i=1 I ther wrds, the distributi P () assues that the eaples ce i tw differet varieties crrespdig t their label. This type f ubserved label ifrati is precisely what the itures ai t capture. Let s start with a siple tw cpet iture f Gaussias del (i tw diesis): P ( θ) = P (1)N(; µ 1, σ 1 2 I) + P (2)N(; µ 2, σ 2 2 I) (9) The paraeters θ defiig the iture del are P (1), P (2), µ 1, µ 2, σ 2 2 1, ad σ 2. Figure 2 shws data geerated fr such a del. Nte that the frequecies P (j) (a.k.a. iig prprtis) ctrl the size f the resultig clusters i the data i ters f hw ay eaples they ivlve, µ j s specify the lcati f cluster ceters, ad σ 2 j s ctrl hw spread ut the clusters are. Nte that each eaple i the figure culd i priciple have bee geerated i tw pssible ways (which iture cpet it was sapled fr). There are ay ways f usig itures. Csider, fr eaple, the prble f predictig fial ea scre vectrs fr studets i achie learig. Each bservati is a vectr with cpets that specify the pits the studet received i a particular questi. We wuld epect that differet types f studets succeed i differet types f questis. This studet type ifrati is t available i the ea scre vectrs, hwever, but we ca del it. Suppse there are studets takig the curse s that we have vectr Cite as: Ti Jaakkla, curse aterials fr Machie Learig, Fall MIT OpeCurseWare ( Massachusetts Istitute f Techlgy. Dwladed [DD Mth YYYY].

6 6.867 Machie learig, lecture 14 (Jaakkla) 6 Figure 2: Saples fr a iture f tw Gaussias bservatis 1,...,. Suppse there are uderlyig types f studets (the uber f types ca be iferred fr the data; this is a del selecti prble). We als d t kw hw ay studets takig the curse are f particular type, i.e., we have t estiate the iig prprtis P (j) as well. The iture distributi ver a sigle eaple scre vectr is w give by P ( θ) = P ( j)p (j) (10) j=1 We w t ccer urselves at this pit with the prble f decidig hw t paraeterize the cditial distributis P ( j). Suffice it t say that it wuld t be ureasable t assue that P ( j) = d i=1 P ( i j) as i the Naive Bayes del but each i wuld take values i the rage f scres fr the crrespdig ea questi. Nw, ur iture del assues that each studet is f particular type. If see gave us this ifrati, i.e., j t fr t, the we wuld del the bservatis with the cditial distributi P ( 1,..., j 1,..., j, θ) = P ( t j t ) (11) assuig each studet btais their scre idepedetly fr thers. But the type ifrati is t preset i the data s we will have t su ver the pssible values f j t fr each studet, weighted by the prir prbabilities f types, P (j t ) (sae fr all studets): [ ] [ ] P ( 1,..., θ) = P ( t j t )P (j t ) = P ( t j)p (j) (12) t=1 j t=1 t=1 t=1 j=1 Cite as: Ti Jaakkla, curse aterials fr Machie Learig, Fall MIT OpeCurseWare ( Massachusetts Istitute f Techlgy. Dwladed [DD Mth YYYY].

7 6.867 Machie learig, lecture 14 (Jaakkla) 7 This is the likelihd f the bserved data accrdig t ur iture del. It is iprtat t uderstad that the del wuld be very differet if we echaged the prduct ad the su i the abve epressi, i.e., defie the del as [ ] P ( 1,..., θ) = P ( t j) P (j) (13) j=1 t=1 This is als a iture del but e that assues that all studets i the class are f specific sigle type, we just d t kw which e, ad are suig ver the pssibilities (i the previus del there were pssible assigets f types ver studets). Cite as: Ti Jaakkla, curse aterials fr Machie Learig, Fall MIT OpeCurseWare ( Massachusetts Istitute f Techlgy. Dwladed [DD Mth YYYY].

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

A New Method for Finding an Optimal Solution. of Fully Interval Integer Transportation Problems

A New Method for Finding an Optimal Solution. of Fully Interval Integer Transportation Problems Applied Matheatical Scieces, Vl. 4, 200,. 37, 89-830 A New Methd fr Fidig a Optial Sluti f Fully Iterval Iteger Trasprtati Prbles P. Padia ad G. Nataraja Departet f Matheatics, Schl f Advaced Scieces,

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

5.1 Two-Step Conditional Density Estimator

5.1 Two-Step Conditional Density Estimator 5.1 Tw-Step Cditial Desity Estimatr We ca write y = g(x) + e where g(x) is the cditial mea fucti ad e is the regressi errr. Let f e (e j x) be the cditial desity f e give X = x: The the cditial desity

More information

Identical Particles. We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table

Identical Particles. We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table We wuld like t ve fr the quatu thery f hydrge t that fr the rest f the peridic table Oe electr at t ultielectr ats This is cplicated by the iteracti f the electrs with each ther ad by the fact that the

More information

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS STATISTICAL FOURIER ANALYSIS The Furier Represetati f a Sequece Accrdig t the basic result f Furier aalysis, it is always pssible t apprximate a arbitrary aalytic fucti defied ver a fiite iterval f the

More information

6.867 Machine learning, lecture 13 (Jaakkola)

6.867 Machine learning, lecture 13 (Jaakkola) Lecture topics: Boostig, argi, ad gradiet descet copleity of classifiers, geeralizatio Boostig Last tie we arrived at a boostig algorith for sequetially creatig a eseble of base classifiers. Our base classifiers

More information

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ]

ENGI 4421 Central Limit Theorem Page Central Limit Theorem [Navidi, section 4.11; Devore sections ] ENGI 441 Cetral Limit Therem Page 11-01 Cetral Limit Therem [Navidi, secti 4.11; Devre sectis 5.3-5.4] If X i is t rmally distributed, but E X i, V X i ad is large (apprximately 30 r mre), the, t a gd

More information

Mixture models (cont d)

Mixture models (cont d) 6.867 Machie learig, lecture 5 (Jaakkola) Lecture topics: Differet types of ixture odels (cot d) Estiatig ixtures: the EM algorith Mixture odels (cot d) Basic ixture odel Mixture odels try to capture ad

More information

Ch. 1 Introduction to Estimation 1/15

Ch. 1 Introduction to Estimation 1/15 Ch. Itrducti t stimati /5 ample stimati Prblem: DSB R S f M f s f f f ; f, φ m tcsπf t + φ t f lectrics dds ise wt usually white BPF & mp t s t + w t st. lg. f & φ X udi mp cs π f + φ t Oscillatr w/ f

More information

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010 BIO752: Advaced Methds i Bistatistics, II TERM 2, 2010 T. A. Luis BIO 752: MIDTERM EXAMINATION: ANSWERS 30 Nvember 2010 Questi #1 (15 pits): Let X ad Y be radm variables with a jit distributi ad assume

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

Intermediate Division Solutions

Intermediate Division Solutions Itermediate Divisi Slutis 1. Cmpute the largest 4-digit umber f the frm ABBA which is exactly divisible by 7. Sluti ABBA 1000A + 100B +10B+A 1001A + 110B 1001 is divisible by 7 (1001 7 143), s 1001A is

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Solutions. Definitions pertaining to solutions

Solutions. Definitions pertaining to solutions Slutis Defiitis pertaiig t slutis Slute is the substace that is disslved. It is usually preset i the smaller amut. Slvet is the substace that des the disslvig. It is usually preset i the larger amut. Slubility

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quatum Mechaics fr Scietists ad Egieers David Miller Time-depedet perturbati thery Time-depedet perturbati thery Time-depedet perturbati basics Time-depedet perturbati thery Fr time-depedet prblems csider

More information

Chapter 2. Asymptotic Notation

Chapter 2. Asymptotic Notation Asyptotic Notatio 3 Chapter Asyptotic Notatio Goal : To siplify the aalysis of ruig tie by gettig rid of details which ay be affected by specific ipleetatio ad hardware. [1] The Big Oh (O-Notatio) : It

More information

cannot commute.) this idea, we can claim that the average value of the energy is the sum of such terms over all points in space:

cannot commute.) this idea, we can claim that the average value of the energy is the sum of such terms over all points in space: Che 441 Quatu Cheistry Ntes May, 3 rev VI. Apprxiate Slutis A. Variati Methd ad Huckel Mlecular Orbital (HMO) Calculatis Refereces: Liberles, Ch. 4, Atkis, Ch. 8, Paulig ad Wils Streitweiser, "MO Thery

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Statistics for Applications Fall Problem Set 7

Statistics for Applications Fall Problem Set 7 18.650. Statistics for Applicatios Fall 016. Proble Set 7 Due Friday, Oct. 8 at 1 oo Proble 1 QQ-plots Recall that the Laplace distributio with paraeter λ > 0 is the cotiuous probaλ bility easure with

More information

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht. The Excel FFT Fucti v P T Debevec February 2, 26 The discrete Furier trasfrm may be used t idetify peridic structures i time ht series data Suppse that a physical prcess is represeted by the fucti f time,

More information

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools Ctet Grade 3 Mathematics Curse Syllabus Price Gerge s Cuty Public Schls Prerequisites: Ne Curse Descripti: I Grade 3, istructial time shuld fcus fur critical areas: (1) develpig uderstadig f multiplicati

More information

Multi-objective Programming Approach for. Fuzzy Linear Programming Problems

Multi-objective Programming Approach for. Fuzzy Linear Programming Problems Applied Mathematical Scieces Vl. 7 03. 37 8-87 HIKARI Ltd www.m-hikari.cm Multi-bective Prgrammig Apprach fr Fuzzy Liear Prgrammig Prblems P. Padia Departmet f Mathematics Schl f Advaced Scieces VIT Uiversity

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

ACTIVE FILTERS EXPERIMENT 2 (EXPERIMENTAL)

ACTIVE FILTERS EXPERIMENT 2 (EXPERIMENTAL) EXPERIMENT ATIVE FILTERS (EXPERIMENTAL) OBJETIVE T desig secd-rder lw pass ilters usig the Salle & Key (iite psitive- gai) ad iiite-gai apliier dels. Oe circuit will exhibit a Butterwrth respse ad the

More information

MATH Midterm Examination Victor Matveev October 26, 2016

MATH Midterm Examination Victor Matveev October 26, 2016 MATH 33- Midterm Examiati Victr Matveev Octber 6, 6. (5pts, mi) Suppse f(x) equals si x the iterval < x < (=), ad is a eve peridic extesi f this fucti t the rest f the real lie. Fid the csie series fr

More information

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

MATHEMATICS 9740/01 Paper 1 14 Sep hours

MATHEMATICS 9740/01 Paper 1 14 Sep hours Cadidate Name: Class: JC PRELIMINARY EXAM Higher MATHEMATICS 9740/0 Paper 4 Sep 06 3 hurs Additial Materials: Cver page Aswer papers List f Frmulae (MF5) READ THESE INSTRUCTIONS FIRST Write yur full ame

More information

Axial Temperature Distribution in W-Tailored Optical Fibers

Axial Temperature Distribution in W-Tailored Optical Fibers Axial Temperature Distributi i W-Tailred Optical ibers Mhamed I. Shehata (m.ismail34@yah.cm), Mustafa H. Aly(drmsaly@gmail.cm) OSA Member, ad M. B. Saleh (Basheer@aast.edu) Arab Academy fr Sciece, Techlgy

More information

Contents Two Sample t Tests Two Sample t Tests

Contents Two Sample t Tests Two Sample t Tests Cotets 3.5.3 Two Saple t Tests................................... 3.5.3 Two Saple t Tests Setup: Two Saples We ow focus o a sceario where we have two idepedet saples fro possibly differet populatios. Our

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

AP Statistics Notes Unit Eight: Introduction to Inference

AP Statistics Notes Unit Eight: Introduction to Inference AP Statistics Ntes Uit Eight: Itrducti t Iferece Syllabus Objectives: 4.1 The studet will estimate ppulati parameters ad margis f errrs fr meas. 4.2 The studet will discuss the prperties f pit estimatrs,

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

[1 & α(t & T 1. ' ρ 1

[1 & α(t & T 1. ' ρ 1 NAME 89.304 - IGNEOUS & METAMORPHIC PETROLOGY DENSITY & VISCOSITY OF MAGMAS I. Desity The desity (mass/vlume) f a magma is a imprtat parameter which plays a rle i a umber f aspects f magma behavir ad evluti.

More information

Lecture 21: Signal Subspaces and Sparsity

Lecture 21: Signal Subspaces and Sparsity ECE 830 Fall 00 Statistical Sigal Prcessig istructr: R. Nwak Lecture : Sigal Subspaces ad Sparsity Sigal Subspaces ad Sparsity Recall the classical liear sigal mdel: X = H + w, w N(0, where S = H, is a

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

INDEPENDENT COMPONENT ANALYSIS USING JAYNES MAXIMUM ENTROPY PRINCIPLE. Deniz Erdogmus, Kenneth E. Hild II, Yadunandana N. Rao, Jose C.

INDEPENDENT COMPONENT ANALYSIS USING JAYNES MAXIMUM ENTROPY PRINCIPLE. Deniz Erdogmus, Kenneth E. Hild II, Yadunandana N. Rao, Jose C. IDEPEDE COMPOE AALYSIS USIG JAYES MAXIMUM EROPY PRICIPLE Deiz Erdgus, Keeth E. Hild II, Yaduadaa. Ra, Jse C. Pricipe CEL, ECE Departet, Uiversity f Flrida, Gaiesville, FL 326, USA ABSRAC ICA deals with

More information

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope The agle betwee the tagets draw t the parabla y = frm the pit (-,) 5 9 6 Here give pit lies the directri, hece the agle betwee the tagets frm that pit right agle Ratig :EASY The umber f values f c such

More information

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces Lecture : Bouded Liear Operators ad Orthogoality i Hilbert Spaces 34 Bouded Liear Operator Let ( X, ), ( Y, ) i i be ored liear vector spaces ad { } X Y The, T is said to be bouded if a real uber c such

More information

10.6 ALTERNATING SERIES

10.6 ALTERNATING SERIES 0.6 Alteratig Series Cotemporary Calculus 0.6 ALTERNATING SERIES I the last two sectios we cosidered tests for the covergece of series whose terms were all positive. I this sectio we examie series whose

More information

Markov processes and the Kolmogorov equations

Markov processes and the Kolmogorov equations Chapter 6 Markv prcesses ad the Klmgrv equatis 6. Stchastic Differetial Equatis Csider the stchastic differetial equati: dx(t) =a(t X(t)) dt + (t X(t)) db(t): (SDE) Here a(t x) ad (t x) are give fuctis,

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Lecture 11. Solution of Nonlinear Equations - III

Lecture 11. Solution of Nonlinear Equations - III Eiciecy o a ethod Lecture Solutio o Noliear Equatios - III The eiciecy ide o a iterative ethod is deied by / E r r: rate o covergece o the ethod : total uber o uctios ad derivative evaluatios at each step

More information

On Modeling On Minimum Description Length Modeling. M-closed

On Modeling On Minimum Description Length Modeling. M-closed O Modelig O Miiu Descriptio Legth Modelig M M-closed M-ope Do you believe that the data geeratig echais really is i your odel class M? 7 73 Miiu Descriptio Legth Priciple o-m-closed predictive iferece

More information

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification

A Study on Estimation of Lifetime Distribution with Covariates Under Misspecification Prceedigs f the Wrld Cgress Egieerig ad Cmputer Sciece 2015 Vl II, Octber 21-23, 2015, Sa Fracisc, USA A Study Estimati f Lifetime Distributi with Cvariates Uder Misspecificati Masahir Ykyama, Member,

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Every gas consists of a large number of small particles called molecules moving with very high velocities in all possible directions.

Every gas consists of a large number of small particles called molecules moving with very high velocities in all possible directions. Kietic thery f gases ( Kietic thery was develped by Berlli, Jle, Clasis, axwell ad Bltzma etc. ad represets dyamic particle r micrscpic mdel fr differet gases sice it thrws light the behir f the particles

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Statistics and Data Analysis in MATLAB Kendrick Kay, February 28, Lecture 4: Model fitting

Statistics and Data Analysis in MATLAB Kendrick Kay, February 28, Lecture 4: Model fitting Statistics ad Data Aalysis i MATLAB Kedrick Kay, kedrick.kay@wustl.edu February 28, 2014 Lecture 4: Model fittig 1. The basics - Suppose that we have a set of data ad suppose that we have selected the

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture 3 Tolstikhi Ilya Abstract I this lecture we will prove the VC-boud, which provides a high-probability excess risk boud for the ERM algorithm whe

More information

COMP 2804 Solutions Assignment 1

COMP 2804 Solutions Assignment 1 COMP 2804 Solutios Assiget 1 Questio 1: O the first page of your assiget, write your ae ad studet uber Solutio: Nae: Jaes Bod Studet uber: 007 Questio 2: I Tic-Tac-Toe, we are give a 3 3 grid, cosistig

More information

We have also learned that, thanks to the Central Limit Theorem and the Law of Large Numbers,

We have also learned that, thanks to the Central Limit Theorem and the Law of Large Numbers, Cofidece Itervals III What we kow so far: We have see how to set cofidece itervals for the ea, or expected value, of a oral probability distributio, both whe the variace is kow (usig the stadard oral,

More information

Solution of Final Exam : / Machine Learning

Solution of Final Exam : / Machine Learning Solutio of Fial Exam : 10-701/15-781 Machie Learig Fall 2004 Dec. 12th 2004 Your Adrew ID i capital letters: Your full ame: There are 9 questios. Some of them are easy ad some are more difficult. So, if

More information

, the random variable. and a sample size over the y-values 0:1:10.

, the random variable. and a sample size over the y-values 0:1:10. Lecture 3 (4//9) 000 HW PROBLEM 3(5pts) The estimatr i (c) f PROBLEM, p 000, where { } ~ iid bimial(,, is 000 e f the mst ppular statistics It is the estimatr f the ppulati prprti I PROBLEM we used simulatis

More information

E o and the equilibrium constant, K

E o and the equilibrium constant, K lectrchemical measuremets (Ch -5 t 6). T state the relati betwee ad K. (D x -b, -). Frm galvaic cell vltage measuremet (a) K sp (D xercise -8, -) (b) K sp ad γ (D xercise -9) (c) K a (D xercise -G, -6)

More information

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data Lecture 9 Curve fittig I Itroductio Suppose we are preseted with eight poits of easured data (x i, y j ). As show i Fig. o the left, we could represet the uderlyig fuctio of which these data are saples

More information

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data.

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data. STAT-UB.003 NOTES for Wedesday 0.MAY.0 We will use the file JulieApartet.tw. We ll give the regressio of Price o SqFt, show residual versus fitted plot, save residuals ad fitted. Give plot of (Resid, Price,

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b Logistic Regressio Step : Fuctio Set We wat to fid P w,b C x σ z = + exp z If P w,b C x.5, output C Otherwise, output C 2 z P w,b C x = σ z z = w x + b = w i x i + b i z Fuctio set: f w,b x = P w,b C x

More information

Solutions to Homework 7

Solutions to Homework 7 Solutios to Homework 7 Due Wedesday, August 4, 004. Chapter 4.1) 3, 4, 9, 0, 7, 30. Chapter 4.) 4, 9, 10, 11, 1. Chapter 4.1. Solutio to problem 3. The sum has the form a 1 a + a 3 with a k = 1/k. Sice

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials

A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent Behavior of Viscoelastic Materials Wrld Jural f Mechaics, 20,, 58-67 di:0.4236/wj.20.302 Published Olie Jue 20 (http://www.scirp.rg/jural/wj) A Siplified Nliear Geeralized Maxwell Mdel fr Predictig the Tie Depedet Behavir f Viscelastic

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpeCurseWare http://cw.mit.edu 5.8 Small-Mlecule Spectrscpy ad Dyamics Fall 8 Fr ifrmati abut citig these materials r ur Terms f Use, visit: http://cw.mit.edu/terms. 5.8 Lecture #33 Fall, 8 Page f

More information

) is a square matrix with the property that for any m n matrix A, the product AI equals A. The identity matrix has a ii

) is a square matrix with the property that for any m n matrix A, the product AI equals A. The identity matrix has a ii square atrix is oe that has the sae uber of rows as colus; that is, a atrix. he idetity atrix (deoted by I, I, or [] I ) is a square atrix with the property that for ay atrix, the product I equals. he

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

X. Perturbation Theory

X. Perturbation Theory X. Perturbatio Theory I perturbatio theory, oe deals with a ailtoia that is coposed Ĥ that is typically exactly solvable of two pieces: a referece part ad a perturbatio ( Ĥ ) that is assued to be sall.

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Evaluation of Bessel Functions Using a Computer Program

Evaluation of Bessel Functions Using a Computer Program Evaluatio of Bessel Fuctios Usig a Coputer Progra P. S. Yeh, Ph.D. Abstract I cylidrical coordiate, there are two types of Bessel fuctios. These fuctios are the Bessel fuctio ad the odified Bessel fuctio.

More information

Author. Introduction. Author. o Asmir Tobudic. ISE 599 Computational Modeling of Expressive Performance

Author. Introduction. Author. o Asmir Tobudic. ISE 599 Computational Modeling of Expressive Performance ISE 599 Cmputatial Mdelig f Expressive Perfrmace Playig Mzart by Aalgy: Learig Multi-level Timig ad Dyamics Strategies by Gerhard Widmer ad Asmir Tbudic Preseted by Tsug-Ha (Rbert) Chiag April 5, 2006

More information

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D.

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D. ample ie Estimatio i the Proportioal Haards Model for K-sample or Regressio ettigs cott. Emerso, M.D., Ph.D. ample ie Formula for a Normally Distributed tatistic uppose a statistic is kow to be ormally

More information

Bertrand s postulate Chapter 2

Bertrand s postulate Chapter 2 Bertrad s postulate Chapter We have see that the sequece of prie ubers, 3, 5, 7,... is ifiite. To see that the size of its gaps is ot bouded, let N := 3 5 p deote the product of all prie ubers that are

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Notes on iteration and Newton s method. Iteration

Notes on iteration and Newton s method. Iteration Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

More information

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others Chater 3. Higher Order Liear ODEs Kreyszig by YHLee;4; 3-3. Hmgeeus Liear ODEs The stadard frm f the th rder liear ODE ( ) ( ) = : hmgeeus if r( ) = y y y y r Hmgeeus Liear ODE: Suersiti Pricile, Geeral

More information

Cokriging and its effect on the estimation precision

Cokriging and its effect on the estimation precision Ckrigig ad its effect the estiati precisi by E. Yalçi* Sypsis The data set fte ctais e r re secdary variables. These secdary variables are usually spatially crss crrelated with the priary variable. The

More information

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006 MATH 34 Summer 006 Elemetary Number Theory Solutios to Assigmet Due: Thursday July 7, 006 Departmet of Mathematical ad Statistical Scieces Uiversity of Alberta Questio [p 74 #6] Show that o iteger of the

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Orthogonal transformations

Orthogonal transformations Orthogoal trasformatios October 12, 2014 1 Defiig property The squared legth of a vector is give by takig the dot product of a vector with itself, v 2 v v g ij v i v j A orthogoal trasformatio is a liear

More information

K [f(t)] 2 [ (st) /2 K A GENERALIZED MEIJER TRANSFORMATION. Ku(z) ()x) t -)-I e. K(z) r( + ) () (t 2 I) -1/2 e -zt dt, G. L. N. RAO L.

K [f(t)] 2 [ (st) /2 K A GENERALIZED MEIJER TRANSFORMATION. Ku(z) ()x) t -)-I e. K(z) r( + ) () (t 2 I) -1/2 e -zt dt, G. L. N. RAO L. Iterat. J. Math. & Math. Scl. Vl. 8 N. 2 (1985) 359-365 359 A GENERALIZED MEIJER TRANSFORMATION G. L. N. RAO Departmet f Mathematics Jamshedpur C-perative Cllege f the Rachi Uiversity Jamshedpur, Idia

More information

Axis Aligned Ellipsoid

Axis Aligned Ellipsoid Machie Learig for Data Sciece CS 4786) Lecture 6,7 & 8: Ellipsoidal Clusterig, Gaussia Mixture Models ad Geeral Mixture Models The text i black outlies high level ideas. The text i blue provides simple

More information

Physical Chemistry Laboratory I CHEM 445 Experiment 2 Partial Molar Volume (Revised, 01/13/03)

Physical Chemistry Laboratory I CHEM 445 Experiment 2 Partial Molar Volume (Revised, 01/13/03) Physical Chemistry Labratry I CHEM 445 Experimet Partial Mlar lume (Revised, 0/3/03) lume is, t a gd apprximati, a additive prperty. Certaily this apprximati is used i preparig slutis whse ccetratis are

More information

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014 Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group

More information

Birth-Death Processes. Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Relationship Among Stochastic Processes.

Birth-Death Processes. Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Relationship Among Stochastic Processes. EEC 686/785 Modelig & Perforace Evaluatio of Couter Systes Lecture Webig Zhao Deartet of Electrical ad Couter Egieerig Clevelad State Uiversity webig@ieee.org based o Dr. Raj jai s lecture otes Relatioshi

More information

CS 70 Second Midterm 7 April NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt):

CS 70 Second Midterm 7 April NAME (1 pt): SID (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt): CS 70 Secod Midter 7 April 2011 NAME (1 pt): SID (1 pt): TA (1 pt): Nae of Neighbor to your left (1 pt): Nae of Neighbor to your right (1 pt): Istructios: This is a closed book, closed calculator, closed

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

The Hypergeometric Coupon Collection Problem and its Dual

The Hypergeometric Coupon Collection Problem and its Dual Joural of Idustrial ad Systes Egieerig Vol., o., pp -7 Sprig 7 The Hypergeoetric Coupo Collectio Proble ad its Dual Sheldo M. Ross Epstei Departet of Idustrial ad Systes Egieerig, Uiversity of Souther

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Unit -2 THEORY OF DILUTE SOLUTIONS

Unit -2 THEORY OF DILUTE SOLUTIONS Uit - THEORY OF DILUTE SOLUTIONS 1) hat is sluti? : It is a hmgeus mixture f tw r mre cmpuds. ) hat is dilute sluti? : It is a sluti i which slute ccetrati is very less. 3) Give a example fr slid- slid

More information