Exponential Regression. Suppose we have paired sample data {{ x 1, y 1 }, { x 2, y 2 },..., { x n, y n }}, with all x i > 0,

Size: px
Start display at page:

Download "Exponential Regression. Suppose we have paired sample data {{ x 1, y 1 }, { x 2, y 2 },..., { x n, y n }}, with all x i > 0,"

Transcription

1 MATH 482 More Regression Dr. Neal, WKU The least-squares regression technique for linear data can be adjusted to paired data that appears to be non-linear but instead exponential, logarithmic, or power-based. Here we explain three basic transformations that are used for these regression models. Exponential Regression Suppose we have paired sample data {{ x 1, y 1 }, { x 2, y 2 },..., { x n, y n }}, with all y i > 0, where it appears that y is an exponential function of x of the form y = a b x. Then ln y will be linear function of x. Indeed, we have ln y = ln (a b x ) = ln a + ln b x = ln a + x (ln b) = a x + b. y = a b x ln y = a x + b, where a = ln b and b = ln a So we can take the natural logarithm of each y i, then apply least-squares linear regression to the data {{ x 1, ln y 1 }, { x 2, ln y 2 },..., { x n, ln y n }} to obtain the function ln y = a x + b, where a = x ln y x ln y x 2 x 2 and b = ln y a x. Then we obtain the exponential regression function y = a b x using a = e b and b = e a. Logarithmic Regression Suppose we have paired sample data {{ x 1, y 1 }, { x 2, y 2 },..., { x n, y n }}, with all x i > 0, where it appears that y is a logarithmic function of x of the form y = a + b ln x with b 0. Then ln x will be linear function of y of the form ln x = 1 b y + a b = a y + b.

2 y ln x x y = a + b ln x y ln x = a y + b, where a = 1 / b and b = a / b Thus we take the natural logarithm of each x i, then apply least-squares linear regression to the data {{ y 1, ln x 1 }, { y 2, ln x 2 },..., { y n, ln x n }} to obtain the function ln x = a y + b, where a = y ln x y ln x y 2 y 2 and b = ln x a y. Then we obtain the logarithmic regression function y = a + b ln x using b = 1 / a and a = b b = b / a. Power Regression Suppose we have paired sample data {{ x 1, y 1 }, { x 2, y 2 },..., { x n, y n }}, with all x i > 0 and all y i > 0, where it appears that y is a power-based function of x of the form y = a x b with a 0. Then ln y will be linear function of ln x. Here we have ln y = ln a + b ln x = a ln x + b. y = a x b ln y = a ln x + b, where a = b and b = ln a

3 We now take the natural logarithm of each x i and of each y i, then apply leastsquares linear regression to the data {{ln x 1, ln y 1 }, {ln x 2, ln y 2 },..., {ln x n, ln y n }} to obtain the function ln y = a ln x + b, where ln x ln y ln x ln y a = (ln x ) 2 ln x 2 and b = ln y a ln x. Then we obtain the power regression function y = a x b using b = a b and a = e. Correlation and Coefficient of Determination In each case, the sample correlation r and the resulting coefficient of determination r 2 are obtained from whatever transformed data is being used. If we are using the data {{c 1, d 1 }, {c 2, d 2 },..., {c n, d n }}, then r is given by r = c d c d c 2 c 2 d 2 d 2. The interpretation of r 2 remains the same. It gives the proportion of y -data that is determined by the x -data when using the given regression model as a predictor. Fortunately, calculators and software have built-in functions that allow us to compute exponential, logarithmic, and power regression functions directly rather than having to make these transformations. We shall do both in the following example. Example 1. Compute the exponential and power regression models for the following data: {{1.4, 3.7}, {1.8, 5.8}, {2.5, 10.4}, {3, 14.5}, {3.6, 20.1}, {4, 24.2} }. Solution. We first plot the data: STAT EDIT STAT PLOT Adjust Settings ZOOM 9 We see that the exponential and power regression models both may be appropriate. We first evaluate the exponential regression by using transformation: Store ln of yi Re-adjust Settings ZOOM 9 LinReg(ax+b) L1,L3

4 Computing linear regression on L1 ( x ) and L3 (ln y ), we find ln y x = a x + b. Thus, y = a b x b, where a = e e a and b = e e We can verify this result by computing exponential regression directly on the original data: ExpReg L1, L2 We now evaluate the power regression by using transformation: Store ln of xi and ln of yi Re-adjust Settings ZOOM 9 LinReg(ax+b) L3,L4 Computing linear regression on L3 (ln x ) and L4 (ln y ), we obtain ln y 1.79 ln x = a ln x + b. Thus, y = a x b, where b = a and b a = e e We can verify this result by computing exponential regression directly on the original data: PwrReg L1, L2 We note that the power regression model has an r 2 of which means that it is a nearly perfect fit. We see that its plot of the transformed data is almost perfectly linear (unlike the plot of the exponentially transformed data). We also note that the r 2 values obtained via transformation are the same as those obtained through nontransformation. Other Regression Models Calculators and software have other built-in regression models that can be used to fit data. These regression models include quadratic, cubic, quartic, sine, and logistic functions. When data does not fit a clear pattern, we can use several models for comparison and then use the one that yields the highest r 2 value to obtain the best fit.

5 Example 2. (a) Plot the following set of paired data of engine size vs. mpg for certain models of cars. (b) Find a good regression fit. (c) Estimate the mpg for a cylinder volume of 110. (d) Find the cylinder volume that would give an mpg of 27. Cylinder Volume MPG VW Rabbit Nissan Chevette Omni Mazda Starfire Capri Celica Nissan Solution. (a) We first plot the data: STAT EDIT STAT PLOT Adjust Settings ZOOM 9 We observe the general tendency that mpg decreases as cylinder volume increases. Before computing a regression model, make sure that the calculator s diagnostics are turned on. Enter the CATALOG (2nd 0) and scroll down to the DiagnosticOn command. Press ENTER to bring the command to the Home screen, then press ENTER again. (b) We now compute various regression models: LinReg(ax+b) L1,L2 LnReg L1,L2 ExpReg L1,L2 CubicReg L1,L2 The cubic regression model y x x x gives a better fit than the linear, logarithmic, and exponential models due to the higher value of r Using this cubic function as a predictor, mpg is 89.15% determined by cylinder volume, and is about 10.85% determined by other factors. Now we will store the cubic regression function into Y1 and graph.

6 Y= VARS 5 EQ 1 GRAPH (c) After graphing, we easily can evaluate the cubic regression function for other x values. To evaluate mpg for a cylinder volume of 110, we use the value option from the CALC screen (2nd Trace). A cylinder volume of 110 should give mpg. (d) We also can solve for the x -value for which y equals a certain amount. For example, using the cubic model, find the x for which we get an mpg of 27. We wish to solve the equation Y1 = 27, or instead Y1-27 = 0. Look at the graph and make an initial guess for x, say x = 90. Then bring up the solve( command from the CATALOG and enter the command solve(y1 27, X, 90). We see that a cylinder volume of about should yield 27 mpg.

7 Exercises 1. For those who have long term exposure to loud machinery, hearing loss is a function of decibel level. Consider the following data: Decibel Level Pct loss (a) Find the linear regression function. (b) Find the logarithmic regression function. (c) Which function from (a) and (b) is a better fit and why? (d) Using the better fit, evaluate the pct hearing loss for long term exposure to a decibel level of 100. (e) According to this model, what decibel level would result in a 40% hearing loss? (i.e., solve for where y = 40, or y 40 = 0) 2. Chlorine residual in a pool is a function of the number of hours after treatment. Consider the following data: Hrs after treatment Chlorine residual Find the exponential regression fit. Using this fit, find the number of hours required for the residual to drop to 0.5 (i.e., solve for where y 0.5 = 0) 3. Small amounts of a chemical were introduced into the food supply of lab mice. The number of mice, per hundred, experiencing side effects is a function of the dosage. Here is some data: Dosage (mg) # mice Determine an appropriate functional fit. How many mice should suffer with 18 mg? What dosage would cause 30 mice to have side effects? 4. The growth of cactus (in inches) is a function of the time after grafting. Here are some data: Weeks Growth Determine an appropriate functional fit. Then find the number of weeks that would give a growth of 25 in.

Session 4 2:40 3:30. If neither the first nor second differences repeat, we need to try another

Session 4 2:40 3:30. If neither the first nor second differences repeat, we need to try another Linear Quadratics & Exponentials using Tables We can classify a table of values as belonging to a particular family of functions based on the math operations found on any calculator. First differences

More information

Lecture 48 Sections Mon, Nov 16, 2009

Lecture 48 Sections Mon, Nov 16, 2009 and and Lecture 48 Sections 13.4-13.5 Hampden-Sydney College Mon, Nov 16, 2009 Outline and 1 2 3 4 5 6 Outline and 1 2 3 4 5 6 and Exercise 13.4, page 821. The following data represent trends in cigarette

More information

Least-Squares Regression

Least-Squares Regression MATH 203 Least-Squares Regression Dr. Neal, Spring 2009 As well as finding the correlation of paired data {{ x 1, y 1 }, { x 2, y 2 },..., { x n, y n }}, we also can plot the data with a scatterplot and

More information

3 9 Curve Fitting with Polynomials

3 9 Curve Fitting with Polynomials 3 9 Curve Fitting with Polynomials Relax! You will do fine today! We will review for quiz!!! (which is worth 10 points, has 20 questions, group, graphing calculator allowed, and will not be on your first

More information

S12 - HS Regression Labs Workshop. Linear. Quadratic (not required) Logarithmic. Exponential. Power

S12 - HS Regression Labs Workshop. Linear. Quadratic (not required) Logarithmic. Exponential. Power Summer 2006 I2T2 Probability & Statistics Page 181 S12 - HS Regression Labs Workshop Regression Types: Needed for Math B Linear Quadratic (not required) Logarithmic Exponential Power You can calculate

More information

Mathematical Modeling

Mathematical Modeling Mathematical Modeling Sample Problem: The chart below gives the profit for a company for the years 1990 to 1999, where 0 corresponds to 1990 and the profit is in millions of dollars. Year 0 1 2 3 4 5 6

More information

Regression Using an Excel Spreadsheet Using Technology to Determine Regression

Regression Using an Excel Spreadsheet Using Technology to Determine Regression Regression Using an Excel Spreadsheet Enter your data in columns A and B for the x and y variable respectively Highlight the entire data series by selecting it with the mouse From the Insert menu select

More information

x is also called the abscissa y is also called the ordinate "If you can create a t-table, you can graph anything!"

x is also called the abscissa y is also called the ordinate If you can create a t-table, you can graph anything! Senior Math Section 6-1 Notes Rectangular Coordinates and Lines Label the following 1. quadrant 1 2. quadrant 2 3. quadrant 3 4. quadrant 4 5. origin 6. x-axis 7. y-axis 8. Ordered Pair (x, y) at (2, 1)

More information

Introduce Exploration! Before we go on, notice one more thing. We'll come back to the derivation if we have time.

Introduce Exploration! Before we go on, notice one more thing. We'll come back to the derivation if we have time. Introduce Exploration! Before we go on, notice one more thing. We'll come back to the derivation if we have time. Simplifying the calculation of variance Notice that we can rewrite the calculation of a

More information

1.2 Supplement: Mathematical Models: A Catalog of Essential Functions

1.2 Supplement: Mathematical Models: A Catalog of Essential Functions Math 131 -copyright Angela Allen, Fall 2011 1 1.2 Supplement: Mathematical Models: A Catalog of Essential Functions Note: Some of these examples and figures come from your textbook Single Variable Calculus:

More information

Bivariate Data Summary

Bivariate Data Summary Bivariate Data Summary Bivariate data data that examines the relationship between two variables What individuals to the data describe? What are the variables and how are they measured Are the variables

More information

Chill Out: How Hot Objects Cool

Chill Out: How Hot Objects Cool Chill Out: How Hot Objects Cool Activity 17 When you have a hot drink, you know that it gradually cools off. Newton s law of cooling provides us with a model for cooling. It states that the temperature

More information

Let the x-axis have the following intervals:

Let the x-axis have the following intervals: 1 & 2. For the following sets of data calculate the mean and standard deviation. Then graph the data as a frequency histogram on the corresponding set of axes. Set 1: Length of bass caught in Conesus Lake

More information

Introduction to Limits

Introduction to Limits MATH 136 Introduction to Limits Given a function y = f (x), we wish to describe the behavior of the function as the variable x approaches a particular value a. We should be as specific as possible in describing

More information

MPM2D - Practice Mastery Test #5

MPM2D - Practice Mastery Test #5 MPM2D - Practice Mastery Test #5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2. If, then x = a. -4 b. -3 c. 1 d. 2 3. Simplify 4. Select the table

More information

Correlation (pp. 1 of 6)

Correlation (pp. 1 of 6) Correlation (pp. 1 of 6) Car dealers want to know how mileage affects price on used Corvettes. Biologists are studying the effects of temperature on cricket chirps. Farmers are trying to determine if there

More information

Prof. Bodrero s Guide to Derivatives of Trig Functions (Sec. 3.5) Name:

Prof. Bodrero s Guide to Derivatives of Trig Functions (Sec. 3.5) Name: Prof. Bodrero s Guide to Derivatives of Trig Functions (Sec. 3.5) Name: Objectives: Understand how the derivatives of the six basic trig functions are found. Be able to find the derivative for each of

More information

Steps to take to do the descriptive part of regression analysis:

Steps to take to do the descriptive part of regression analysis: STA 2023 Simple Linear Regression: Least Squares Model Steps to take to do the descriptive part of regression analysis: A. Plot the data on a scatter plot. Describe patterns: 1. Is there a strong, moderate,

More information

6.1.1 How can I make predictions?

6.1.1 How can I make predictions? CCA Ch 6: Modeling Two-Variable Data Name: Team: 6.1.1 How can I make predictions? Line of Best Fit 6-1. a. Length of tube: Diameter of tube: Distance from the wall (in) Width of field of view (in) b.

More information

Describing Bivariate Relationships

Describing Bivariate Relationships Describing Bivariate Relationships Bivariate Relationships What is Bivariate data? When exploring/describing a bivariate (x,y) relationship: Determine the Explanatory and Response variables Plot the data

More information

Contents 16. Higher Degree Equations

Contents 16. Higher Degree Equations Contents 16. Higher Degree Equations 2 16.3 Finding Roots of Higher Degree Equations................. 2 Example 16.15............................... 2 Example 16.16............................... 2 Example

More information

SWBAT: Graph exponential functions and find exponential curves of best fit

SWBAT: Graph exponential functions and find exponential curves of best fit Algebra II: Exponential Functions Objective: We will analyze exponential functions and their properties SWBAT: Graph exponential functions and find exponential curves of best fit Warm-Up 1) Solve the following

More information

5.1 Bivariate Relationships

5.1 Bivariate Relationships Chapter 5 Summarizing Bivariate Data Source: TPS 5.1 Bivariate Relationships What is Bivariate data? When exploring/describing a bivariate (x,y) relationship: Determine the Explanatory and Response variables

More information

Chapter 6 Logarithmic and Exponential Functions

Chapter 6 Logarithmic and Exponential Functions Chapter 6 Logarithmic and Eponential Functions 6.1 The Definition of e Eample 1 Consider the eponential function f 1 ( ) 1 What happens to f() as gets very large? Type the function into Y=. Let Y 1 1 1/.

More information

Name. The data below are airfares to various cities from Baltimore, MD (including the descriptive statistics).

Name. The data below are airfares to various cities from Baltimore, MD (including the descriptive statistics). Name The data below are airfares to various cities from Baltimore, MD (including the descriptive statistics). 178 138 94 278 158 258 198 188 98 179 138 98 N Mean Std. Dev. Min Q 1 Median Q 3 Max 12 166.92

More information

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power Precalculus Notes: Section. Modeling High Degree Polnomial Functions Graphs of Polnomials Polnomial Notation f ( ) a a a... a a a is a polnomial function of degree n. n n 1 n n n1 n 1 0 n is the degree

More information

Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set?

Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set? Aim #92: How do we interpret and calculate deviations from the mean? How do we calculate the standard deviation of a data set? 5-1-17 Homework: handout Do Now: Using the graph below answer the following

More information

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Chapter 4: 4.1: Exponential Functions Definition: Graphs of y = b x Exponential and Logarithmic Functions The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Graph:

More information

AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY

AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY 1. This packet is to be handed in on the first day of school. 2. All work must be shown in the space provided in the packet.

More information

Unit #2: Linear and Exponential Functions Lesson #13: Linear & Exponential Regression, Correlation, & Causation. Day #1

Unit #2: Linear and Exponential Functions Lesson #13: Linear & Exponential Regression, Correlation, & Causation. Day #1 Algebra I Name Unit #2: Linear and Exponential Functions Lesson #13: Linear & Exponential Regression, Correlation, & Causation Day #1 Period Date When a table of values increases or decreases by the same

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

Pure Math 30: Explained!

Pure Math 30: Explained! Pure Math 30: Eplained! www.puremath30.com 9 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first type of eponential graph

More information

BIVARIATE DATA data for two variables

BIVARIATE DATA data for two variables (Chapter 3) BIVARIATE DATA data for two variables INVESTIGATING RELATIONSHIPS We have compared the distributions of the same variable for several groups, using double boxplots and back-to-back stemplots.

More information

NUMB3RS Activity: How Does it Fit?

NUMB3RS Activity: How Does it Fit? Name Regression 1 NUMB3RS Activity: How Does it Fit? A series of sniper shootings has reduced the city of Los Angeles to a virtual ghost town. To help solve the shootings, the FBI has enlisted the help

More information

(a) EXAMPLE 1 Evaluating Logarithms

(a) EXAMPLE 1 Evaluating Logarithms 300 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions 3.3 Logarithmic Functions and Their Graphs What you ll learn about Inverses of Exponential Functions Common Logarithms Base 0 Natural Logarithms

More information

2.1 Scatterplots. Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102

2.1 Scatterplots. Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102 2.1 Scatterplots Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102 Association Between Variables We now consider the situation where we have two variables. Example Let x be the age of a husband,

More information

4.1 Introduction. 4.2 The Scatter Diagram. Chapter 4 Linear Correlation and Regression Analysis

4.1 Introduction. 4.2 The Scatter Diagram. Chapter 4 Linear Correlation and Regression Analysis 4.1 Introduction Correlation is a technique that measures the strength (or the degree) of the relationship between two variables. For example, we could measure how strong the relationship is between people

More information

Using a graphic display calculator

Using a graphic display calculator 12 Using a graphic display calculator CHAPTER OBJECTIVES: This chapter shows you how to use your graphic display calculator (GDC) to solve the different types of problems that you will meet in your course.

More information

Unit 8: Designs Applied Math 30. Unit 8: Designs

Unit 8: Designs Applied Math 30. Unit 8: Designs 8-1: Reviewing Perimeter, Area, Surface Area and Volume Perimeter: - the length (one-dimensional) around an object. Area: - the amount of space (two-dimensional) a flat-object occupies. Surface Area: -

More information

Chapters 1, 2, 3, 4, 5, 6

Chapters 1, 2, 3, 4, 5, 6 Chapters 1, 2,, 4,, 6 Name Period 2 Revised 201 2 Graph the following on a number line. COMPARING RATIONAL NUMBERS 1) 0.01, 0.001, 0.1, and 0.0001 2) 2.2, 0.2, 0.248, and 2.249 ) 0.8, 1., 0.47, and 2.249

More information

Correlation and Regression

Correlation and Regression A. The Basics of Correlation Analysis 1. SCATTER DIAGRAM A key tool in correlation analysis is the scatter diagram, which is a tool for analyzing potential relationships between two variables. One variable

More information

Overview. 4.1 Tables and Graphs for the Relationship Between Two Variables. 4.2 Introduction to Correlation. 4.3 Introduction to Regression 3.

Overview. 4.1 Tables and Graphs for the Relationship Between Two Variables. 4.2 Introduction to Correlation. 4.3 Introduction to Regression 3. 3.1-1 Overview 4.1 Tables and Graphs for the Relationship Between Two Variables 4.2 Introduction to Correlation 4.3 Introduction to Regression 3.1-2 4.1 Tables and Graphs for the Relationship Between Two

More information

Intermediate Algebra Summary - Part I

Intermediate Algebra Summary - Part I Intermediate Algebra Summary - Part I This is an overview of the key ideas we have discussed during the first part of this course. You may find this summary useful as a study aid, but remember that the

More information

x and y, called the coordinates of the point.

x and y, called the coordinates of the point. P.1 The Cartesian Plane The Cartesian Plane The Cartesian Plane (also called the rectangular coordinate system) is the plane that allows you to represent ordered pairs of real numbers by points. It is

More information

Reminder: Univariate Data. Bivariate Data. Example: Puppy Weights. You weigh the pups and get these results: 2.5, 3.5, 3.3, 3.1, 2.6, 3.6, 2.

Reminder: Univariate Data. Bivariate Data. Example: Puppy Weights. You weigh the pups and get these results: 2.5, 3.5, 3.3, 3.1, 2.6, 3.6, 2. TP: To review Standard Deviation, Residual Plots, and Correlation Coefficients HW: Do a journal entry on each of the calculator tricks in this lesson. Lesson slides will be posted with notes. Do Now: Write

More information

Section 2.2: LINEAR REGRESSION

Section 2.2: LINEAR REGRESSION Section 2.2: LINEAR REGRESSION OBJECTIVES Be able to fit a regression line to a scatterplot. Find and interpret correlation coefficients. Make predictions based on lines of best fit. Key Terms line of

More information

Measuring Momentum: Using distance moved after impact to estimate velocity

Measuring Momentum: Using distance moved after impact to estimate velocity Case File 6 Measuring Momentum: Using distance moved after impact to estimate velocity Explore how the speed of an impacting vehicle causes a stationary object to move. Police Report Last Tuesday night,

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 183 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation!. These measurements should have the following properties:

More information

Prob/Stats Questions? /32

Prob/Stats Questions? /32 Prob/Stats 10.4 Questions? 1 /32 Prob/Stats 10.4 Homework Apply p551 Ex 10-4 p 551 7, 8, 9, 10, 12, 13, 28 2 /32 Prob/Stats 10.4 Objective Compute the equation of the least squares 3 /32 Regression A scatter

More information

Graphing Equations in Slope-Intercept Form 4.1. Positive Slope Negative Slope 0 slope No Slope

Graphing Equations in Slope-Intercept Form 4.1. Positive Slope Negative Slope 0 slope No Slope Slope-Intercept Form y = mx + b m = slope b = y-intercept Graphing Equations in Slope-Intercept Form 4.1 Positive Slope Negative Slope 0 slope No Slope Example 1 Write an equation in slope-intercept form

More information

Binomials defined, 13 division by, FOIL method and, 22 multiplying binomial by trinomial,

Binomials defined, 13 division by, FOIL method and, 22 multiplying binomial by trinomial, 5639_Holtfrerich_Index 6/2/05 11:45 AM Page I-1 Index Absolute value defined, 46 functions and, 126 59 Absolute value equations, solutions, 46 49 Absolute value inequalities, solutions, 263 267 Acceleration,

More information

Unit 3: Relations and Functions

Unit 3: Relations and Functions Unit 3: Relations and Functions 5-1: Binar Relations Binar Relation: - a set ordered pairs (coordinates) that include two variables (elements). (, ) = horizontal = vertical Domain: - all the -values (first

More information

Least-Squares Regression

Least-Squares Regression MATH 482 Least-Squares Regressio Dr. Neal, WKU As well as fidig the correlatio of paired sample data {{ x 1, y 1 }, { x 2, y 2 },..., { x, y }}, we also ca plot the data with a scatterplot ad fid the least

More information

y n 1 ( x i x )( y y i n 1 i y 2

y n 1 ( x i x )( y y i n 1 i y 2 STP3 Brief Class Notes Instructor: Ela Jackiewicz Chapter Regression and Correlation In this chapter we will explore the relationship between two quantitative variables, X an Y. We will consider n ordered

More information

Algebra II Notes Quadratic Functions Unit Applying Quadratic Functions. Math Background

Algebra II Notes Quadratic Functions Unit Applying Quadratic Functions. Math Background Applying Quadratic Functions Math Background Previously, you Graphed and solved quadratic functions. Solved literal equations for a given variable. Found the inverse for a linear function. Verified by

More information

Algebra I Calculator Activities

Algebra I Calculator Activities First Nine Weeks SOL Objectives Calculating Measures of Central Tendency SOL A.17 Organize a set of data Calculate the mean, median, mode, and range of a set of data Describe the relationships between

More information

Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down)

Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down) Two-Variable Statistics Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down) Positive Correlation As one variable

More information

IF YOU HAVE DATA VALUES:

IF YOU HAVE DATA VALUES: Unit 02 Review Ways to obtain a line of best fit IF YOU HAVE DATA VALUES: 1. In your calculator, choose STAT > 1.EDIT and enter your x values into L1 and your y values into L2 2. Choose STAT > CALC > 8.

More information

Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions

Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions For a multivariable function with two input variables described by data given

More information

Chapter 1 Functions and Models

Chapter 1 Functions and Models Chapter 1 Functions and Models 1.2 Mathematical Models: A catalog of Essential Functions A mathematical model is a mathematical description of a real world situations such as the size of a population,

More information

A.P. Chemistry Rates of Reaction Chapter 12 : page 526

A.P. Chemistry Rates of Reaction Chapter 12 : page 526 A.P. Chemistry Rates of Reaction Chapter 12 : page 526 I. Chemical Kinetics A. Definition- B. Requirements for a chemical reaction 1. 2. 3. II. Reaction Rates A. Rate of a reaction- B. Example: 2 N 2 O

More information

MAT 171. August 22, S1.4 Equations of Lines and Modeling. Section 1.4 Equations of Lines and Modeling

MAT 171. August 22, S1.4 Equations of Lines and Modeling. Section 1.4 Equations of Lines and Modeling MAT 171 WebAdvisor: http://reg.cfcc.edu Dr. Claude Moore, CFCC Session 1 introduces the Course, CourseCompass, and Chapter 1: Graphs, Functions, and Models. This session is available in CourseCompass.

More information

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation 3.1: Scatterplots & Correlation Scatterplots A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal

More information

Investigating Nuclear Stability with a Graphing Calculator

Investigating Nuclear Stability with a Graphing Calculator Investigating Nuclear Stability with a Graphing Calculator Obtain the following:: Activity One TI-82/83 graphing calculator with ISOTOPE calculator program General Stability 1.1 Run the program ISOTOPE

More information

Unit 8 - Polynomial and Rational Functions Classwork

Unit 8 - Polynomial and Rational Functions Classwork Unit 8 - Polynomial and Rational Functions Classwork This unit begins with a study of polynomial functions. Polynomials are in the form: f ( x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a

More information

a. Length of tube: Diameter of tube:

a. Length of tube: Diameter of tube: CCA Ch 6: Modeling Two-Variable Data Name: 6.1.1 How can I make predictions? Line of Best Fit 6-1. a. Length of tube: Diameter of tube: Distance from the wall (in) Width of field of view (in) b. Make a

More information

Exploring Physics and Math with the CBL System

Exploring Physics and Math with the CBL System Exploring Physics and Math with the CBL System 48 Lab Activities Using CBL and the TI-82 Chris Brueningsen Wesley Krawiec Table of Contents Preface...... 7 Preparing Lab Reports... 8 Experimental Errors...

More information

MINI LESSON. Lesson 2a Linear Functions and Applications

MINI LESSON. Lesson 2a Linear Functions and Applications MINI LESSON Lesson 2a Linear Functions and Applications Lesson Objectives: 1. Compute AVERAGE RATE OF CHANGE 2. Explain the meaning of AVERAGE RATE OF CHANGE as it relates to a given situation 3. Interpret

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 03 The Chi-Square Distributions Dr. Neal, Spring 009 The chi-square distributions can be used in statistics to analyze the standard deviation of a normally distributed measurement and to test the

More information

Practice Test - Chapter 3

Practice Test - Chapter 3 Sketch and analyze the graph of each function. Describe its domain, range, intercepts, asymptotes, end behavior, and where the function is increasing or decreasing. 1. f (x) = e x + 7 Evaluate the function

More information

Conceptual Explanations: Modeling Data with Functions

Conceptual Explanations: Modeling Data with Functions Conceptual Explanations: Modeling Data with Functions In school, you generally start with a function and work from there to numbers. Newton s Law tells us that F=ma. So if you push on a 3kg object with

More information

You identified, graphed, and described several parent functions. (Lesson 1-5)

You identified, graphed, and described several parent functions. (Lesson 1-5) You identified, graphed, and described several parent functions. (Lesson 1-5) Evaluate, analyze, and graph exponential functions. Solve problems involving exponential growth and decay. algebraic function

More information

CP Algebra 2. Unit 3B: Polynomials. Name: Period:

CP Algebra 2. Unit 3B: Polynomials. Name: Period: CP Algebra 2 Unit 3B: Polynomials Name: Period: Learning Targets 10. I can use the fundamental theorem of algebra to find the expected number of roots. Solving Polynomials 11. I can solve polynomials by

More information

Example: Can an increase in non-exercise activity (e.g. fidgeting) help people gain less weight?

Example: Can an increase in non-exercise activity (e.g. fidgeting) help people gain less weight? Example: Can an increase in non-exercise activity (e.g. fidgeting) help people gain less weight? 16 subjects overfed for 8 weeks Explanatory: change in energy use from non-exercise activity (calories)

More information

Just DOS Difference of Perfect Squares. Now the directions say solve or find the real number solutions :

Just DOS Difference of Perfect Squares. Now the directions say solve or find the real number solutions : 5.4 FACTORING AND SOLVING POLYNOMIAL EQUATIONS To help you with #1-1 THESE BINOMIALS ARE EITHER GCF, DOS, OR BOTH!!!! Just GCF Just DOS Difference of Perfect Squares Both 1. Break each piece down.. Pull

More information

Red Hot Half-Life Modeling Nuclear Decay

Red Hot Half-Life Modeling Nuclear Decay Red Hot Half-Life Modeling Nuclear Decay About this Lesson This lesson can be used in multiple places within a chemistry curriculum. It can be used with the atomic structure unit, a nuclear chemistry unit

More information

Chapter 2.1 Relations and Functions

Chapter 2.1 Relations and Functions Analyze and graph relations. Find functional values. Chapter 2.1 Relations and Functions We are familiar with a number line. A number line enables us to locate points, denoted by numbers, and find distances

More information

Objectives. Materials

Objectives. Materials . Objectives Activity 6 To investigate the relationship between mass and volume To find the x value of a function, given the y value To find the y value of a function, given the x value To use technology

More information

Math 1311 Section 5.5 Polynomials and Rational Functions

Math 1311 Section 5.5 Polynomials and Rational Functions Math 1311 Section 5.5 Polynomials and Rational Functions In addition to linear, exponential, logarithmic, and power functions, many other types of functions occur in mathematics and its applications. In

More information

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet The American School of Marrakesh Algebra Algebra Summer Preparation Packet Summer 016 Algebra Summer Preparation Packet This summer packet contains eciting math problems designed to ensure our readiness

More information

H.Algebra 2 Summer Review Packet

H.Algebra 2 Summer Review Packet H.Algebra Summer Review Packet 1 Correlation of Algebra Summer Packet with Algebra 1 Objectives A. Simplifing Polnomial Epressions Objectives: The student will be able to: Use the commutative, associative,

More information

Least-Squares Regression. Unit 3 Exploring Data

Least-Squares Regression. Unit 3 Exploring Data Least-Squares Regression Unit 3 Exploring Data Regression Line A straight line that describes how a variable,, changes as an variable,, changes unlike, requires an and variable used to predict the value

More information

determine whether or not this relationship is.

determine whether or not this relationship is. Section 9-1 Correlation A correlation is a between two. The data can be represented by ordered pairs (x,y) where x is the (or ) variable and y is the (or ) variable. There are several types of correlations

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Connecticut Common Core Algebra 1 Curriculum. Professional Development Materials. Unit 8 Quadratic Functions

Connecticut Common Core Algebra 1 Curriculum. Professional Development Materials. Unit 8 Quadratic Functions Connecticut Common Core Algebra 1 Curriculum Professional Development Materials Unit 8 Quadratic Functions Contents Activity 8.1.3 Rolling Ball CBR Activity 8.1.7 Galileo in Dubai Activity 8.2.3 Exploring

More information

Math 52 Linear Regression Instructions TI-83

Math 52 Linear Regression Instructions TI-83 Math 5 Linear Regression Instructions TI-83 Use the following data to study the relationship between average hours spent per week studying and overall QPA. The idea behind linear regression is to determine

More information

Lesson 4 Linear Functions and Applications

Lesson 4 Linear Functions and Applications In this lesson, we take a close look at Linear Functions and how real world situations can be modeled using Linear Functions. We study the relationship between Average Rate of Change and Slope and how

More information

Radical and Rational Functions

Radical and Rational Functions Radical and Rational Functions 5 015 College Board. All rights reserved. Unit Overview In this unit, you will etend your study of functions to radical, rational, and inverse functions. You will graph radical

More information

If I see your phone, I wil take it!!! No food or drinks (except for water) are al owed in my room.

If I see your phone, I wil take it!!! No food or drinks (except for water) are al owed in my room. DO NOW Take a seat! Chromebooks out (if charged) SILENCE YOUR PHONE and put it in the pocket that has your number in the bulletin board (back wall). NO EXCEPTION! If I see your phone, I will take it!!!

More information

EXPLORING THE RELATIONSHIP BETWEEN LIGHT INTENSITY AND DISTANCE

EXPLORING THE RELATIONSHIP BETWEEN LIGHT INTENSITY AND DISTANCE Name Partner(s) Section Date EXPLORING THE RELATIONSHIP BETWEEN LIGHT INTENSITY AND DISTANCE We commonly refer to light intensity as brightness. More precisely, intensity is defined as the rate at which

More information

Math 1101 Exam 3 Practice Problems

Math 1101 Exam 3 Practice Problems Math 1101 Exam 3 Practice Problems These problems are not intended to cover all possible test topics. These problems should serve as an activity in preparing for your test, but other study is required

More information

Non-Linear Regression

Non-Linear Regression Non-Linear Regression Recall that linear regression is a technique for finding the equation of the line of best fit (LOBF) when two variables have a linear association (i.e. changes in one variable tend

More information

Chemical Reaction Rates II

Chemical Reaction Rates II 25 Solving Kinetics Problems Involving Integrated Rate Law Chemical kinetics is the study of the speed or rate of a chemical reaction under various conditions. Collisions must occur in order for chemical

More information

ALGEBRA 1 KEYSTONE. Module 1 and Module 2 both have 23 multiple choice questions and 4 CRQ questions.

ALGEBRA 1 KEYSTONE. Module 1 and Module 2 both have 23 multiple choice questions and 4 CRQ questions. Name: ALGEBRA 1 KEYSTONE Module 1 and Module 2 both have 23 multiple choice questions and 4 CRQ questions. Module 1 Topics Numbers, Operations, Linear Equations, and Inequalities 1 Compare and order rational/irrational

More information

Accumulation with a Quadratic Function

Accumulation with a Quadratic Function Accumulation with a Quadratic Function Julián Guerrera, who owns a small farm near San Marcos, Texas, has recently installed a small tank on his property to provide flood control for the creek that flows

More information

CHAPTER. Scatterplots

CHAPTER. Scatterplots CHAPTER 7 Two-Variable Data Analysis IN THIS CHAPTER Summary: In the previous chapter we used eploratory data analysis to help us understand what a one-variable data set was saying to us. In this chapter

More information

Math 12 - for 4 th year math students

Math 12 - for 4 th year math students Math 12 - for 4 th year math students This portion of the entire unit should be completed in 6 days The students will utilize handout notes, measuring tapes, textbooks, and graphing calculators for all

More information

1 Introduction to Minitab

1 Introduction to Minitab 1 Introduction to Minitab Minitab is a statistical analysis software package. The software is freely available to all students and is downloadable through the Technology Tab at my.calpoly.edu. When you

More information

North Toronto Christian School MATH DEPARTMENT

North Toronto Christian School MATH DEPARTMENT North Toronto Christian School MATH DEPARTMENT 2017-2018 Course: Advanced Functions, Grade 12 MHF4U Teacher: D. Brooks (dbrooks@ntcs.on.ca) Course description: This course extends students experience with

More information

Polynomial Functions and Their Graphs. Definition of a Polynomial Function: numbers, with a n 0. The function defined by

Polynomial Functions and Their Graphs. Definition of a Polynomial Function: numbers, with a n 0. The function defined by Polynomial Functions and Their Graphs Definition of a Polynomial Function: Let n be a nonnegative number and let a n, a n 1, a 2, a 1, a 0 be real numbers, with a n 0. The function defined by f(x) = a

More information