Probabilistic Theorem Proving. Vibhav Gogate (Joint work with Pedro Domingos)

Size: px
Start display at page:

Download "Probabilistic Theorem Proving. Vibhav Gogate (Joint work with Pedro Domingos)"

Transcription

1 Probabilistic Theorem Proving Vibhav Gogate (Joint work with Pedro Domingos)

2 Progress to Date First-order variable elimination [Poole, 2003; de Salvo Braz, 2007; etc.] Lifted belief propagation [Singla & Domingos, 2008; etc.] Hot topic in UAI, IJCAI, etc.

3 Limitations FOVE does not scale Lifted BP cannot handle determinism, etc. Neither exploits logical structure Unclear relation to logical inference

4 Probabilistic Theorem Proving addresses all of these limitations. Probabilistic Theorem Proving is a single inference procedure with graphical model inference and theorem proving as special cases.

5 Probabilistic Theorem Proving Given Probabilistic knowledge base K Query formula Q Output P(Q K)

6 Propositional Logic Atoms: Symbols representing propositions Logical connectives:, Λ, V, etc. Knowledge base: Set of formulas Every KB can be converted to CNF CNF: Conjunction of clauses Clause: Disjunction of literals Literal: Atom or its negation Entailment: Does KB entail query?

7 Theorem Proving TP(KB, Query) KB Q KB U { Query} return SAT(CNF(KB Q ))

8 Satisfiability (DPLL) SAT(CNF) if CNF is empty return True if CNF contains empty clause return False choose an atom A return SAT(CNF(A)) V SAT(CNF( A))

9 First-Order Logic Atom: Predicate(Variables,Constants) E.g.: Ground atom: All arguments are constants Quantifiers: Friends ( Anna, x), This talk: Finite, Herbrand interpretations

10 First-Order Theorem Proving Propositionalization 1. Form all possible ground atoms 2. Apply propositional theorem prover Lifted Inference: Resolution Resolve pairs of clauses until empty clause derived x Bob Friends ( Anna, Bob) Unify literals by substitution, e.g.: unifies Friends ( Anna, x) and Friends ( Anna, x) Happy( x) Friends ( Anna, Bob) Happy( Bob)

11 Probabilistic Knowledge Bases PKB = Set of formulas and their probabilities + Consistency + Maximum entropy = Set of formulas and their weights (a.k.a. Markov logic network) = Set of formulas and their potentials i (1 if formula true, if formula false) 1 P( world ) Z i n i i ( world)

12 Weighted Model Counting ModelCount(CNF) = # worlds that satisfy CNF Assign a weight to each literal Weight(world) = П weights(true literals) Weighted model counting: Given CNF C and literal weights W Output Σ weights(worlds that satisfy C) PTP is reducible to lifted WMC

13 Inference Problems

14 Propositional Case All conditional probabilities are ratios of partition functions: P( Query PKB) worlds ( world ) Z( PKB) All partition functions can be computed by weighted model counting 1 Query Z( PKB {( Query,0)}) Z( PKB) i i ( world )

15 Conversion to CNF + Weights WCNF(PKB) for all (F i, Φ i ) є PKB s.t. Φ i > 0 do PKB PKB U {(F i A i, 0)} \ {(F i, Φ i )} CNF CNF(PKB) for all A i literals do W Ai Φ i for all other literals L do w L 1 return (CNF, weights)

16 Probabilistic Theorem Proving PTP(PKB, Query) PKB Q PKB U {(Query,0)} return WMC(WCNF(PKB Q )) / WMC(WCNF(PKB))

17 Probabilistic Theorem Proving PTP(PKB, Query) PKB Q PKB U {(Query,0)} return WMC(WCNF(PKB Q )) / WMC(WCNF(PKB)) Compare: TP(KB, Query) KB Q KB U { Query} return SAT(CNF(KB Q ))

18 Weighted Model Counting WMC(CNF, weights) if all clauses in CNF are satisfied return Base Case ( w w ) A A( CNF) A A if CNF has empty unsatisfied clause return 0

19 Weighted Model Counting WMC(CNF, weights) if all clauses in CNF are satisfied return ( w w A A( CNF) A A if CNF has empty unsatisfied clause return 0 if CNF can be partitioned into CNFs C 1,, C k sharing no atoms Decomp. k return i 1WMC( C i, weights ) Step )

20 Weighted Model Counting WMC(CNF, weights) if all clauses in CNF are satisfied return ( w w A A( CNF) A A if CNF has empty unsatisfied clause return 0 if CNF can be partitioned into CNFs C 1,, C k sharing no atoms i k return 1WMC( C i, weights ) choose an atom A Splitting return w WMC( CNF A, weights ) Step A WMC( CNF A, weights ) w A )

21 First-Order Case PTP schema remains the same Conversion of PKB to hard CNF and weights: New atom in F i A i is now Predicate i (variables in F i, constants in F i ) Lift each step of WMC

22 Lifted Weighted Model Counting LWMC(CNF, substs, weights) if all clauses in CNF are satisfied Base return ( w w ) na ( substs) A A( CNF) A A Case if CNF has empty unsatisfied clause return 0

23 Lifted Weighted Model Counting LWMC(CNF, substs, weights) if all clauses in CNF are satisfied return if CNF has empty unsatisfied clause return 0 if there exists a lifted decomposition of CNF return A ( w w ) n A( CNF) A A k i 1 [ ( CNFi, 1 A ( substs) LWMC, weights)] m i Decomp. Step

24 Lifted Weighted Model Counting LWMC(CNF, substs, weights) if all clauses in CNF are satisfied return if CNF has empty unsatisfied clause return 0 if there exists a lifted decomposition of CNF return choose an atom A return l i A ( w w ) n A( CNF) A A k i 1 [ ( CNFi, 1 A ( substs) LWMC, weights)] Splitting Step ti fi 1 niwaw ALWMC( CNF j, weights) m i

25 Lifting the Decomposition and Splitting Steps: Details We will assume Normal forms Step 1: Convert to Normal form if not in one

26 Lifting the Decomposition Step Propositional Decomposition: Independent Lifted Decomposition: Independent and Identical (symmetry) How to find independent and identical decompositions by just looking at the logical structure? POWER RULE (Jha-Gogate-Meliou-Suciu, 2010)

27 POWER RULE Decomposer: Given a predicate R, a logical variable x at position i in R is a decomposer if by grounding x to any two constants A and B in its domain yields a decomposable WCNF having two components such that Both components are identical subject to renaming of predicates and constants. R(x) v S(x); S(y) v T(y) --- x is a decomposer R(x) v S(x); S(x) v T(y) --- No decomposer

28 How to use the decomposer? Substitute x with a constant in the domain Return [LWMC (x\a)] n Where n is the number of constants in the domain of x

29 Lifting the Conditioning or Splitting Step Singleton Rule If an atom R is singleton, namely if the predicate symbol contains only one logical variable then splitting on it creates exactly n+1 distinct WCNFs. Moreover, each of these WCNFs appear exactly n choose k times where 0<=k<=n. Examples: R(x) v T(y) R(x) v S(x); S(x) v T(y)

30 How to use the Singleton Rule Split the WCNF into n+1 WCNFs In the i-th WCNF For each clause in which R appears Replace the domain size of all variables which are shared with R by n-i if the literal of R is positive and by i if the literal of R is negative Keep other domain sizes the same Multiply the result by n choose i

31 Extensions Unit propagation, etc. Caching / Memoization Knowledge-based model construction

32 Formal properties PTP can be exponentially more efficient than FOVE (first-order variable elimination) PTP has the same worst-case time and space complexity as FOVE

33 Approximate Inference WMC(CNF, weights) if all clauses in CNF are satisfied return A A( CNF) ( wa w A) if CNF has empty unsatisfied clause return 0 if CNF can be partitioned into CNFs C 1,, C k sharing no atoms k return i 1WMC( C i, weights ) Splitting choose an atom A Step w return A WMC( CNF A, weights ) Q( A CNF, weights ) with probability Q( A CNF, weights ), etc.

34 Link Prediction

35 Coreference (Cora)

36 Conclusion We need inference for first-order models Probabilistic theorem proving is the most powerful approach to date PTP is reducible to lifted weighted model counting A single algorithm solves a lot of problems Empirically very efficient Available in the Alchemy system (alchemy.cs.washington.edu)

Lifted Inference: Exact Search Based Algorithms

Lifted Inference: Exact Search Based Algorithms Lifted Inference: Exact Search Based Algorithms Vibhav Gogate The University of Texas at Dallas Overview Background and Notation Probabilistic Knowledge Bases Exact Inference in Propositional Models First-order

More information

Advanced Machine Learning Techniques for Temporal, Multimedia, and Relational Data

Advanced Machine Learning Techniques for Temporal, Multimedia, and Relational Data Advanced Machine Learning Techniques for Temporal, Multimedia, and Relational Data Vibhav Gogate The University of Texas at Dallas Many slides courtesy of Pedro Domingos Vibhav Gogate 1 Statistical Relational

More information

New Rules for Domain Independent Lifted MAP Inference

New Rules for Domain Independent Lifted MAP Inference New Rules for Domain Independent Lifted MAP Inference Happy Mittal, Prasoon Goyal Dept. of Comp. Sci. & Engg. I.I.T. Delhi, Hauz Khas New Delhi, 116, India happy.mittal@cse.iitd.ac.in prasoongoyal13@gmail.com

More information

Lifted MAP Inference for Markov Logic

Lifted MAP Inference for Markov Logic Lifted MAP Inference for Markov Logic - Somdeb Sarkhel - Deepak Venugopal - Happy Mittal - Parag Singla - Vibhav Gogate Outline Introduction Lifted MAP Inference for Markov Logic Networks S. Sarkhel, D.

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

An Integer Polynomial Programming Based Framework for Lifted MAP Inference

An Integer Polynomial Programming Based Framework for Lifted MAP Inference An Integer Polynomial Programming Based Framework for Lifted MAP Inference Somdeb Sarkhel, Deepak Venugopal Computer Science Department The University of Texas at Dallas {sxs104721,dxv02}@utdallas.edu

More information

Convert to clause form:

Convert to clause form: Convert to clause form: Convert the following statement to clause form: x[b(x) ( y [ Q(x,y) P(y) ] y [ Q(x,y) Q(y,x) ] y [ B(y) E(x,y)] ) ] 1- Eliminate the implication ( ) E1 E2 = E1 E2 x[ B(x) ( y [

More information

Fast Lifted MAP Inference via Partitioning

Fast Lifted MAP Inference via Partitioning Fast Lifted MAP Inference via Partitioning Somdeb Sarkhel The University of Texas at Dallas Parag Singla I.I.T. Delhi Abstract Vibhav Gogate The University of Texas at Dallas Recently, there has been growing

More information

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Introduction to Artificial Intelligence Propositional Logic & SAT Solving UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Today Representation in Propositional Logic Semantics & Deduction

More information

CS 730/730W/830: Intro AI

CS 730/730W/830: Intro AI CS 730/730W/830: Intro AI 1 handout: slides 730W journal entries were due Wheeler Ruml (UNH) Lecture 9, CS 730 1 / 16 Logic First-Order Logic The Joy of Power Wheeler Ruml (UNH) Lecture 9, CS 730 2 / 16

More information

Outline. Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC

Outline. Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC Outline Part 1: Motivation Part 2: Probabilistic Databases Part 3: Weighted Model Counting Part 4: Lifted Inference for WFOMC Part 5: Completeness of Lifted Inference Part 6: Query Compilation Part 7:

More information

Scaling-up Importance Sampling for Markov Logic Networks

Scaling-up Importance Sampling for Markov Logic Networks Scaling-up Importance Sampling for Markov Logic Networks Deepak Venugopal Department of Computer Science University of Texas at Dallas dxv021000@utdallas.edu Vibhav Gogate Department of Computer Science

More information

arxiv: v2 [cs.ai] 27 Jul 2017

arxiv: v2 [cs.ai] 27 Jul 2017 Domain Recursion for Lifted Inference with Existential Quantifiers Seyed Mehran Kazemi 1, Angelika Kimmig 2, Guy Van den Broeck 3 and David Poole 1 1 University of British Columbia, {smkazemi,poole}@cs.ubc.ca

More information

Proof Methods for Propositional Logic

Proof Methods for Propositional Logic Proof Methods for Propositional Logic Logical equivalence Two sentences are logically equivalent iff they are true in the same models: α ß iff α β and β α Russell and Norvig Chapter 7 CS440 Fall 2015 1

More information

Inference in Propositional Logic

Inference in Propositional Logic Inference in Propositional Logic Deepak Kumar November 2017 Propositional Logic A language for symbolic reasoning Proposition a statement that is either True or False. E.g. Bryn Mawr College is located

More information

Warm-Up Problem. Is the following true or false? 1/35

Warm-Up Problem. Is the following true or false? 1/35 Warm-Up Problem Is the following true or false? 1/35 Propositional Logic: Resolution Carmen Bruni Lecture 6 Based on work by J Buss, A Gao, L Kari, A Lubiw, B Bonakdarpour, D Maftuleac, C Roberts, R Trefler,

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

Lifted Probabilistic Inference with Counting Formulas

Lifted Probabilistic Inference with Counting Formulas Lifted Probabilistic Inference with Counting Formulas Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, Leslie Pack Kaelbling MIT CSAIL Cambridge, MA 02139 {milch,lsz,kersting,mhaimes,lpk}@csail.mit.edu

More information

Logic and Inferences

Logic and Inferences Artificial Intelligence Logic and Inferences Readings: Chapter 7 of Russell & Norvig. Artificial Intelligence p.1/34 Components of Propositional Logic Logic constants: True (1), and False (0) Propositional

More information

Propositional Logic: Review

Propositional Logic: Review Propositional Logic: Review Propositional logic Logical constants: true, false Propositional symbols: P, Q, S,... (atomic sentences) Wrapping parentheses: ( ) Sentences are combined by connectives:...and...or

More information

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning COMP219: Artificial Intelligence Lecture 20: Propositional Reasoning 1 Overview Last time Logic for KR in general; Propositional Logic; Natural Deduction Today Entailment, satisfiability and validity Normal

More information

Resolution for mixed Post logic

Resolution for mixed Post logic Resolution for mixed Post logic Vladimir Komendantsky Institute of Philosophy of Russian Academy of Science, Volkhonka 14, 119992 Moscow, Russia vycom@pochtamt.ru Abstract. In this paper we present a resolution

More information

Inference in first-order logic

Inference in first-order logic CS 2710 Foundations of AI Lecture 15 Inference in first-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Logical inference in FOL Logical inference problem: Given a knowledge base KB

More information

Propositional Logic Part 1

Propositional Logic Part 1 Propositional Logic Part 1 Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Louis Oliphant, Andrew Moore, Jerry Zhu] slide 1 5 is even

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

On First-Order Knowledge Compilation. Guy Van den Broeck

On First-Order Knowledge Compilation. Guy Van den Broeck On First-Order Knowledge Compilation Guy Van den Broeck Beyond NP Workshop Feb 12, 2016 Overview 1. Why first-order model counting? 2. Why first-order model counters? 3. What first-order circuit languages?

More information

Brief Tutorial on Probabilistic Databases

Brief Tutorial on Probabilistic Databases Brief Tutorial on Probabilistic Databases Dan Suciu University of Washington Simons 206 About This Talk Probabilistic databases Tuple-independent Query evaluation Statistical relational models Representation,

More information

Propositional Resolution

Propositional Resolution Computational Logic Lecture 4 Propositional Resolution Michael Genesereth Spring 2005 Stanford University Modified by Charles Ling and TA, for CS2209 Use with permission Propositional Resolution Propositional

More information

Inference in first-order logic

Inference in first-order logic CS 57 Introduction to AI Lecture 5 Inference in first-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Logical inference in FOL Logical inference problem: Given a knowledge base KB (a

More information

First-Order Knowledge Compilation for Probabilistic Reasoning

First-Order Knowledge Compilation for Probabilistic Reasoning First-Order Knowledge Compilation for Probabilistic Reasoning Guy Van den Broeck based on joint work with Adnan Darwiche, Dan Suciu, and many others MOTIVATION 1 A Simple Reasoning Problem...? Probability

More information

Propositional Logic: Methods of Proof. Chapter 7, Part II

Propositional Logic: Methods of Proof. Chapter 7, Part II Propositional Logic: Methods of Proof Chapter 7, Part II Inference in Formal Symbol Systems: Ontology, Representation, ti Inference Formal Symbol Systems Symbols correspond to things/ideas in the world

More information

Exploiting Logical Structure in Lifted Probabilistic Inference

Exploiting Logical Structure in Lifted Probabilistic Inference Exploiting Logical Structure in Lifted Probabilistic Inference Vibhav Gogate and Pedro Domingos Computer Science & Engineering University of Washington Seattle, WA 9895, U.S.A. {vgogate,pedrod}@cs.washington.edu

More information

CS 730/830: Intro AI. 3 handouts: slides, asst 6, asst 7. Wheeler Ruml (UNH) Lecture 12, CS / 16. Reasoning.

CS 730/830: Intro AI. 3 handouts: slides, asst 6, asst 7. Wheeler Ruml (UNH) Lecture 12, CS / 16. Reasoning. CS 730/830: Intro AI 3 handouts: slides, asst 6, asst 7 Wheeler Ruml (UNH) Lecture 12, CS 730 1 / 16 Logic First-Order Logic The Joy of Power in First-order Logic Wheeler Ruml (UNH) Lecture 12, CS 730

More information

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graph model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graph model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5)

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) B.Y. Choueiry 1 Instructor s notes #12 Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) Introduction to Artificial Intelligence CSCE 476-876, Fall 2018 URL: www.cse.unl.edu/ choueiry/f18-476-876

More information

The Wumpus Game. Stench Gold. Start. Cao Hoang Tru CSE Faculty - HCMUT

The Wumpus Game. Stench Gold. Start. Cao Hoang Tru CSE Faculty - HCMUT The Wumpus Game Stench Stench Gold Stench Start 1 The Wumpus Game Stench in the square containing the wumpus and in the directly adjacent squares in the squares directly adjacent to a pit Glitter in the

More information

Artificial Intelligence Chapter 7: Logical Agents

Artificial Intelligence Chapter 7: Logical Agents Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent State University February 20, 2006 AI: Chapter 7: Logical Agents 1 Contents Knowledge Based Agents

More information

Toward Caching Symmetrical Subtheories for Weighted Model Counting

Toward Caching Symmetrical Subtheories for Weighted Model Counting Toward Caching Symmetrical Subtheories for Weighted Model Counting Tim Kopp University of Rochester Rochester, NY Parag Singla Indian Institute of Technology Hauz Khas, New Delhi Henry Kautz University

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Propositional Logic Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Artificial Intelligence Chapter 9: Inference in First-Order Logic

Artificial Intelligence Chapter 9: Inference in First-Order Logic Artificial Intelligence Chapter 9: Inference in First-Order Logic Andreas Zell After the Textbook: Artificial Intelligence, A Modern Approach by Stuart Russell and Peter Norvig (3 rd Edition) 9 Inference

More information

Propositional Resolution

Propositional Resolution Artificial Intelligence Propositional Resolution Marco Piastra Propositional Resolution 1] Deductive systems and automation Is problem decidible? A deductive system a la Hilbert (i.e. derivation using

More information

Inference Methods In Propositional Logic

Inference Methods In Propositional Logic Lecture Notes, Artificial Intelligence ((ENCS434)) University of Birzeit 1 st Semester, 2011 Artificial Intelligence (ENCS434) Inference Methods In Propositional Logic Dr. Mustafa Jarrar University of

More information

The Calculus of Computation: Decision Procedures with Applications to Verification. Part I: FOUNDATIONS. by Aaron Bradley Zohar Manna

The Calculus of Computation: Decision Procedures with Applications to Verification. Part I: FOUNDATIONS. by Aaron Bradley Zohar Manna The Calculus of Computation: Decision Procedures with Applications to Verification Part I: FOUNDATIONS by Aaron Bradley Zohar Manna 1. Propositional Logic(PL) Springer 2007 1-1 1-2 Propositional Logic(PL)

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

Propositional Logic: Methods of Proof (Part II)

Propositional Logic: Methods of Proof (Part II) Propositional Logic: Methods of Proof (Part II) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (previous lecture, Part I) Chapter 7.5 (this lecture, Part II) (optional: 7.6-7.8)

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Constraint Propagation for Efficient Inference in Markov Logic

Constraint Propagation for Efficient Inference in Markov Logic Constraint Propagation for Efficient Inference in Markov Logic Tivadar Papai 1 Parag Singla 2 papai@cs.rochester.edu parag@cs.utexas.edu Henry Kautz 1 kautz@cs.rochester.edu 1 University of Rochester,

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

CS 380: ARTIFICIAL INTELLIGENCE

CS 380: ARTIFICIAL INTELLIGENCE CS 380: RTIFICIL INTELLIGENCE PREDICTE LOGICS 11/8/2013 Santiago Ontañón santi@cs.drexel.edu https://www.cs.drexel.edu/~santi/teaching/2013/cs380/intro.html Summary of last day: Logical gents: The can

More information

StarAI Full, 6+1 pages Short, 2 page position paper or abstract

StarAI Full, 6+1 pages Short, 2 page position paper or abstract StarAI 2015 Fifth International Workshop on Statistical Relational AI At the 31st Conference on Uncertainty in Artificial Intelligence (UAI) (right after ICML) In Amsterdam, The Netherlands, on July 16.

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 31. Propositional Logic: DPLL Algorithm Malte Helmert and Gabriele Röger University of Basel April 24, 2017 Propositional Logic: Overview Chapter overview: propositional

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

Formal Verification Methods 1: Propositional Logic

Formal Verification Methods 1: Propositional Logic Formal Verification Methods 1: Propositional Logic John Harrison Intel Corporation Course overview Propositional logic A resurgence of interest Logic and circuits Normal forms The Davis-Putnam procedure

More information

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5 rtificial Intelligence Topic 12 Logical Inference Reading: Russell and Norvig, Chapter 7, Section 5 c Cara MacNish. Includes material c S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical

More information

Combining logic with probability Motivation

Combining logic with probability Motivation Combining logic with probability Motivation is a powerful language to represent complex relational information Probability is the standard way to represent uncertainty in knowledge Combining the two would

More information

Propositional Logic. Logic. Propositional Logic Syntax. Propositional Logic

Propositional Logic. Logic. Propositional Logic Syntax. Propositional Logic Propositional Logic Reading: Chapter 7.1, 7.3 7.5 [ased on slides from Jerry Zhu, Louis Oliphant and ndrew Moore] Logic If the rules of the world are presented formally, then a decision maker can use logical

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit:

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit: Three days of interesting talks & workshops from industry experts across Australia Explore new computing topics Network with students & employers in Brisbane Price: $25 (incl. T-Shirt, morning tea and

More information

Inference Methods In Propositional Logic

Inference Methods In Propositional Logic Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Inference Methods In Propositional Logic

More information

CS 380: ARTIFICIAL INTELLIGENCE PREDICATE LOGICS. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE PREDICATE LOGICS. Santiago Ontañón CS 380: RTIFICIL INTELLIGENCE PREDICTE LOGICS Santiago Ontañón so367@drexeledu Summary of last day: Logical gents: The can reason from the knowledge they have They can make deductions from their perceptions,

More information

Lifted Marginal MAP Inference

Lifted Marginal MAP Inference Lifted Marginal MAP Inference Vishal Sharma 1, Noman Ahmed Sheikh 2, Happy Mittal 1, Vibhav Gogate 3 and Parag Singla 1 1 IIT Delhi, {vishal.sharma, happy.mittal, parags}@cse.iitd.ac.in 2 IIT Delhi, nomanahmedsheikh@outlook.com

More information

Propositional Calculus

Propositional Calculus Propositional Calculus Dr. Neil T. Dantam CSCI-498/598 RPM, Colorado School of Mines Spring 2018 Dantam (Mines CSCI, RPM) Propositional Calculus Spring 2018 1 / 64 Calculus? Definition: Calculus A well

More information

Knowledge based Agents

Knowledge based Agents Knowledge based Agents Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University Slides prepared from Artificial Intelligence A Modern approach by Russell & Norvig Knowledge Based Agents

More information

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Set 6: Knowledge Representation: The Propositional Calculus Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Outline Representing knowledge using logic Agent that reason logically A knowledge based agent Representing

More information

Deliberative Agents Knowledge Representation I. Deliberative Agents

Deliberative Agents Knowledge Representation I. Deliberative Agents Deliberative Agents Knowledge Representation I Vasant Honavar Bioinformatics and Computational Biology Program Center for Computational Intelligence, Learning, & Discovery honavar@cs.iastate.edu www.cs.iastate.edu/~honavar/

More information

7.5.2 Proof by Resolution

7.5.2 Proof by Resolution 137 7.5.2 Proof by Resolution The inference rules covered so far are sound Combined with any complete search algorithm they also constitute a complete inference algorithm However, removing any one inference

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

Artificial Intelligence. Propositional Logic. Copyright 2011 Dieter Fensel and Florian Fischer

Artificial Intelligence. Propositional Logic. Copyright 2011 Dieter Fensel and Florian Fischer Artificial Intelligence Propositional Logic Copyright 2011 Dieter Fensel and Florian Fischer 1 Where are we? # Title 1 Introduction 2 Propositional Logic 3 Predicate Logic 4 Reasoning 5 Search Methods

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning COMP9414, Monday 26 March, 2012 Propositional Logic 2 COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning Overview Proof systems (including soundness and completeness) Normal Forms

More information

Probabilistic Inference Modulo Theories

Probabilistic Inference Modulo Theories Probabilistic Inference Modulo Theories Rodrigo de Salvo Braz SRI International Menlo Park, CA, USA Ciaran O Reilly SRI International Menlo Park, CA, USA Vibhav Gogate U. of Texas at Dallas Dallas, TX,

More information

A Tableau Calculus for Minimal Modal Model Generation

A Tableau Calculus for Minimal Modal Model Generation M4M 2011 A Tableau Calculus for Minimal Modal Model Generation Fabio Papacchini 1 and Renate A. Schmidt 2 School of Computer Science, University of Manchester Abstract Model generation and minimal model

More information

Language of Propositional Logic

Language of Propositional Logic Logic A logic has: 1. An alphabet that contains all the symbols of the language of the logic. 2. A syntax giving the rules that define the well formed expressions of the language of the logic (often called

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

Propositional Logic: Methods of Proof (Part II)

Propositional Logic: Methods of Proof (Part II) Propositional Logic: Methods of Proof (Part II) You will be expected to know Basic definitions Inference, derive, sound, complete Conjunctive Normal Form (CNF) Convert a Boolean formula to CNF Do a short

More information

Logical Agents. Santa Clara University

Logical Agents. Santa Clara University Logical Agents Santa Clara University Logical Agents Humans know things Humans use knowledge to make plans Humans do not act completely reflexive, but reason AI: Simple problem-solving agents have knowledge

More information

Inference in First-Order Logic

Inference in First-Order Logic Inference in First-Order Logic Dr. Richard J. Povinelli rev 1.0, 10/7/2001 Page 1 Objectives You should! be able to analyze and employ logical inference in first-order logic. rev 1.0, 10/7/2001 Page 2

More information

Class Assignment Strategies

Class Assignment Strategies Class Assignment Strategies ì Team- A'ack: Team a'ack ì Individualis2c: Search for possible ì Poli2cal: look at others and make decision based on who is winning, who is loosing, and conversa;on ì Emo2on

More information

CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms

CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms CS 512, Spring 2017, Handout 10 Propositional Logic: Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms Assaf Kfoury 5 February 2017 Assaf Kfoury, CS 512, Spring

More information

Tutorial 1: Modern SMT Solvers and Verification

Tutorial 1: Modern SMT Solvers and Verification University of Illinois at Urbana-Champaign Tutorial 1: Modern SMT Solvers and Verification Sayan Mitra Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana

More information

Lecture 9: The Splitting Method for SAT

Lecture 9: The Splitting Method for SAT Lecture 9: The Splitting Method for SAT 1 Importance of SAT Cook-Levin Theorem: SAT is NP-complete. The reason why SAT is an important problem can be summarized as below: 1. A natural NP-Complete problem.

More information

Resolution for Predicate Logic

Resolution for Predicate Logic Resolution for Predicate Logic The connection between general satisfiability and Herbrand satisfiability provides the basis for a refutational approach to first-order theorem proving. Validity of a first-order

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Propositional Logic Marc Toussaint University of Stuttgart Winter 2016/17 (slides based on Stuart Russell s AI course) Motivation: Most students will have learnt about propositional

More information

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz )

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) Logic in AI Chapter 7 Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) 2 Knowledge Representation represent knowledge about the world in a manner that

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague, such as: this paint is grey.

How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague, such as: this paint is grey. Major results: (wrt propositional logic) How to reason correctly. How to reason efficiently. How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague,

More information

Resolution for Predicate Logic

Resolution for Predicate Logic Logic and Proof Hilary 2016 James Worrell Resolution for Predicate Logic A serious drawback of the ground resolution procedure is that it requires looking ahead to predict which ground instances of clauses

More information

Intelligent Agents. Pınar Yolum Utrecht University

Intelligent Agents. Pınar Yolum Utrecht University Intelligent Agents Pınar Yolum p.yolum@uu.nl Utrecht University Logical Agents (Based mostly on the course slides from http://aima.cs.berkeley.edu/) Outline Knowledge-based agents Wumpus world Logic in

More information

Propositional logic II.

Propositional logic II. Lecture 5 Propositional logic II. Milos Hauskrecht milos@cs.pitt.edu 5329 ennott quare Propositional logic. yntax yntax: ymbols (alphabet) in P: Constants: True, False Propositional symbols Examples: P

More information

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel Foundations of AI 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard and Bernhard Nebel Contents Agents that think rationally The wumpus world Propositional logic: syntax and semantics

More information

Pruning Search Space for Weighted First Order Horn Clause Satisfiability

Pruning Search Space for Weighted First Order Horn Clause Satisfiability Pruning Search Space for Weighted First Order Horn Clause Satisfiability Naveen Nair 123, Anandraj Govindan 2, Chander Jayaraman 2, Kiran TVS 2, and Ganesh Ramakrishnan 21 1 IITB-Monash Research Academy,

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

Focused search for arguments from propositional knowledge

Focused search for arguments from propositional knowledge Focused search for arguments from propositional knowledge Department of Computer Science University College London Contents Introduction: Framework for argumentation and motivation for efficient search

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

Propositional and First-Order Logic

Propositional and First-Order Logic Propositional and First-Order Logic Chapter 7.4 7.8, 8.1 8.3, 8.5 Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer Logic roadmap overview Propositional logic (review) Problems with

More information