Weak vs. Strong Finite Context and Kernel Properties

Size: px
Start display at page:

Download "Weak vs. Strong Finite Context and Kernel Properties"

Transcription

1 ISSN NII Technical Report Weak vs. Strong Finite Context and Kernel Properties Makoto Kanazawa NII E July 2016

2 Weak vs. Strong Finite Context and Kernel Properties Makoto Kanazawa National Institute of Informatics and SOKENDAI Let L Σ be given. For C Σ Σ, we put For K Σ, we put C L = { x Σ uxv L for all (u, v) C }. K L = { (u, v) Σ Σ ukv L }. When the language L is understood from context, these are simply written C and K. A subset K of Σ is closed if K = K. Equivalently, K is closed if and only if there exists a C Σ Σ such that K = C. (The notion of a closed set as well as the operations and are always relative to the given language L.) We allow a context-free grammar (CFG) to have multiple initial nonterminals. If X is a nonterminal of a context-free grammar G over the terminal alphabet Σ, we write L(G, X) for { x Σ X G x }, the set of terminal strings derivable from X. If I is the set of initial nonterminals of a context-free grammar G, then L(G) = X I L(G, X). Let G = (N, Σ, P, I ) be a CFG, and let the operators and be understood relative to L(G). We say that G has the weak finite context property (FCP) if for each nonterminal X of G, there is a finite C X Σ Σ such that L(G, X) = CX. If L(G, X) = C X for each nonterminal X, then G has the strong FCP. We say that G has the weak finite kernel property (FKP) if for each nonterminal X of G, there is a finite set K X Σ such that L(G, X) = KX. If L(G, X) = KX for each nonterminal X, then G has the strong FKP. Clearly, a CFG G has the strong FCP (FKP) if and only if G has the weak FCP (FKP) and moreover L(G, X) is a closed set for each nonterminal X of G. What Clark (2010) called the finite context property was what we here call the strong finite context property. The weaker definition was adopted by Yoshinaka (2011) and Leiß (2014). According to Yoshinaka (2015), it has been an open question whether or not every language that has a CFG satisfying the weak FCP has a CFG satisfying the strong FCP. The present note settles this question in the negative, and establishes a similar separation between the two variants of the FKP. 1

3 We write x R for the reversal of a string x, and x a for the number of occurrences of a symbol a in x. Let Σ = {a, b, c, d, e, #, $}, L = L 1 L 2 L 3, L 1 = { w 1 #w 2 #... #w n $w R n... w R 2 w R 1 n 1, w 1,..., w n {a, b} }, L 2 = { wyc i d i e j z w, z {a, b}, y (#{a, b} ), i, j 0, w a w b }, L 3 = { wyc i d j e j z w, z {a, b}, y (#{a, b} ), i, j 0, w a w b }. Lemma 1. Every CFG G for L has a nonterminal X such that L(G, X) is not a closed set. Proof. Let G be a CFG for L. By applying Ogden s (1968) lemma 1 to a derivation tree of a sufficiently long string in L 1 of the form we obtain a p b p #a p $a p b p a p, S 1 + a m1 Aa l1, A + a n1 Aa n1, A + a m2 b m3 Bb l3 a l2, B + b n2 Bb n2, B + b m4 #a m5 Da l5 b l4, D + a m6 $a l6, for some n 1, n 2, m 1, m 2, m 3, m 4, m 5, m 6, l 1, l 2, l 3, l 4, l 5, l 6 1 such that m 1 +n 1 + m 2 = m 3 + n 2 + m 4 = m 5 + m 6 = l 1 + n 1 + l 2 = l 3 + n 2 + l 4 = l 5 + l 6 = p, where S 1 is an initial nonterminal. We show that L(G, D) is not a closed set. Let (u, v) L(G, D). Then ua m6 $a l6 v L. Since y$z L implies yc i d i e i z L for every y, z Σ and i 0, we have ua m6 c i d i e i a l6 v L for every i 0. This shows On the other hand, since { a m6 c i d i e i a l6 i 0 } L(G, D). (1) S 1 a m1 (a n1 ) i a m2 b m3 (b n2 ) j b m4 #a m5 Da l5 b l4 (b n2 ) j b l3 a l2 (a n1 ) i a l1 for all i, j 0, there are w, w, z, z {a, b} such that S 1 w#a m5 Dz S 1 w #a m5 Dz (2) 1 It is clear from Ogden s proof that the lemma is really about one particular derivation tree of a context-free grammar. If p is the constant of Ogden s lemma for G, we obtain the required decomposition of the derivation tree by first marking the initial a p, then the b p preceding #, and then the a p immediately following #. 2

4 w a > w b, w a < w b. Now suppose a m6 c i d j e k a l6 L(G, D). Since (2) implies we must have It follows that By (1) and (3), (w#a m5, z) L(G, D) (w #a m5, z ) L(G, D), w#a m5 a m6 c i d j e k a l6 z L 2, w #a m5 a m6 c i d j e k a l6 z L 3. a m6 c i d j e k a l6 L(G, D) only if i = j = k. (3) L(G, D) a m6 c d e a l6 = { a m6 c i d i e i a l6 i 0 }, which implies that L(G, D) is not context-free. Therefore, L(G, D) L(G, D) and L(G, D) is not a closed set. The above lemma implies that L has no CFG that has either the strong FCP or the strong FKP. Lemma 2. There is a CFG for L that has both the weak FCP and the weak FKP. Proof. Let G be the following CFG, where S 1, S 2, S 3 are the initial nonterminals. We have L(G, S 1 ) = L 1, S 1 $ as 1 a bs 1 b #S 1 Q ε aqbq bqaq F Q# F a F b F # H ε chd E ε Ee C ε cc J ε dje S 2 HE F S 2 QS 2 as 2 S 2 a S 2 b S 3 CJ F S 3 QS 3 bs 3 S 3 a S 3 b L(G, S 1 ) = { (w 1 #w 2 #... #w n, w R n... w R 2 w R 1 ) n 1, w 1,..., w n {a, b} }, 3

5 L(G, S 1 ) = L 1 { yc i d i e i z y {a, b, #}, z {a, b}, i 0 } = {(a#, a), (b#, b)} = {$}, L(G, Q) = { w {a, b} w a = w b } = {(ε, #cd), (a, b#de)} = {ab}, L(G, F ) = { w#y w {a, b}, w a = w b, y {a, b, #} } = {(ε, cd), (ε, ade) } = {#}, L(G, H) = { c i d i i 0 } = {(a#c, d)} = {ε, cd}, L(G, E) = e = {(a#cd, e)} = {ε, e}, L(G, C) = c = {(b#c, de)} = {ε, c}, L(G, J) = { d i e i i 0 } = {(b#d, e)} = {ε, de}, L(G, S 2 ) = L 2 = {(ε, ε), (a#, b)} = {cda}, L(G, S 3 ) = L 3 = {(ε, ε), (b#, a)} = {#de}. (Recall that K = C implies K = K.) This shows that G has both the weak FCP and the weak FKP. 2 Theorem 3. There is a language that is generated by a CFG that has both the weak FCP and the weak FKP but is not generated by any CFG that has either the strong FCP or the strong FKP. A CFG G is said to have the weak k-fcp if for each nonterminal X, there is a C X Σ Σ such that C X k and L(G, X) = CX. Similarly, G is 2 Sometimes the definition of the weak FCP requires that L(G, X) = CX for some finite subset C X of { (u, v) S uxv for some initial nonterminal S } (Kanazawa and Yoshinaka, to appear). This property is satisfied by the present grammar. 4

6 said to have the weak k-fkp if for each nonterminal X, there is a K X Σ such that K X k and L(G, X) = KX. (The strong k-fcp (k-fkp) may be defined similarly.) The CFG in the proof of Lemma 2 has both the weak 2-FCP and the weak 2-FKP. The language L used in this note has the following two notable properties: (i) L is inherently ambiguous. In particular, using Ogden s lemma in a familiar way, one can show that every CFG for L assigns more than one derivation tree to some string in L 2 L 3. (ii) L has no CFG that has the weak 1-FCP. This follows from the proof of Lemma 1 since if L is context-free and C 1, then C L is also context-free. It would be interesting to see whether one or both of these properties of L are essential for Lemma 1 to hold. In particular, if a context-free language L has a CFG that has the weak 1-FCP, does it follow that L has a CFG that has the strong 1-FCP? References Clark, A. (2010). Learning context free grammars with the syntactic concept lattice. In J. M. Sempere and P. García (Eds.), Grammatical Inference: Theoretical Results and Applications, 10th International Colloquium, ICGI 2010, Lecture Notes in Artificial Intelligence, Berlin, pp Springer- Verlag. Kanazawa, M. and R. Yoshinaka (to appear). Distributional learning and context/substructure enumerability in nonlinear tree grammars. In A. Foret, G. Morrill, R. Muskens, R. Osswald, and S. Pogodalla (Eds.), Formal Grammar 2015/2016, Lecture Notes in Computer Science, Berlin. Springer-Verlag. Leiß, H. (2014). Learning context free grammars with the finite context property: A correction of A. Clark s algorithm. In G. Morrill, R. Muskens, R. Osswald, and F. Richter (Eds.), Formal Grammar 2014, Lecture Notes in Computer Science, Berlin, pp Springer-Verlag. Ogden, W. (1968). A helpful result for proving inherent ambiguity. Mathematical Systems Theory 2 (3), Yoshinaka, R. (2011). Towards dual approaches for learning context-free grammars based on syntactic concept lattices. In G. Mauri and A. Leporati (Eds.), Developments in Language Theory, 15th International Conference, DLT 2011, Lecture Notes in Computer Science, Berlin, pp Springer-Verlag. Yoshinaka, R. (2015). Learning conjunctive grammars and contextual binary feature grammars. In A.-H. Dediu, E. Formenti, C. Martín-Vide, and B. Truthe (Eds.), Language and Automata Theory and Applications: LATA 2015, Lecture Notes in Computer Science, pp Springer. 5

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26

Parsing. Context-Free Grammars (CFG) Laura Kallmeyer. Winter 2017/18. Heinrich-Heine-Universität Düsseldorf 1 / 26 Parsing Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Winter 2017/18 1 / 26 Table of contents 1 Context-Free Grammars 2 Simplifying CFGs Removing useless symbols Eliminating

More information

CPS 220 Theory of Computation

CPS 220 Theory of Computation CPS 22 Theory of Computation Review - Regular Languages RL - a simple class of languages that can be represented in two ways: 1 Machine description: Finite Automata are machines with a finite number of

More information

Learning Context Free Grammars with the Syntactic Concept Lattice

Learning Context Free Grammars with the Syntactic Concept Lattice Learning Context Free Grammars with the Syntactic Concept Lattice Alexander Clark Department of Computer Science Royal Holloway, University of London alexc@cs.rhul.ac.uk ICGI, September 2010 Outline Introduction

More information

Improved TBL algorithm for learning context-free grammar

Improved TBL algorithm for learning context-free grammar Proceedings of the International Multiconference on ISSN 1896-7094 Computer Science and Information Technology, pp. 267 274 2007 PIPS Improved TBL algorithm for learning context-free grammar Marcin Jaworski

More information

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write:

Languages. Languages. An Example Grammar. Grammars. Suppose we have an alphabet V. Then we can write: Languages A language is a set (usually infinite) of strings, also known as sentences Each string consists of a sequence of symbols taken from some alphabet An alphabet, V, is a finite set of symbols, e.g.

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 22 CFG (1) Example: Grammar G telescope : Productions: S NP VP NP

More information

Section 1 (closed-book) Total points 30

Section 1 (closed-book) Total points 30 CS 454 Theory of Computation Fall 2011 Section 1 (closed-book) Total points 30 1. Which of the following are true? (a) a PDA can always be converted to an equivalent PDA that at each step pops or pushes

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF)

CS5371 Theory of Computation. Lecture 7: Automata Theory V (CFG, CFL, CNF) CS5371 Theory of Computation Lecture 7: Automata Theory V (CFG, CFL, CNF) Announcement Homework 2 will be given soon (before Tue) Due date: Oct 31 (Tue), before class Midterm: Nov 3, (Fri), first hour

More information

Stochastic Finite Learning of Some Mildly Context-Sensitive Languages

Stochastic Finite Learning of Some Mildly Context-Sensitive Languages Stochastic Finite Learning of Some Mildly Context-Sensitive Languages John Case 1, Ryo Yoshinaka 2, and Thomas Zeugmann 3 1 Department of Computer and Information Sciences, University of Delaware case@mail.eecis.udel.edu

More information

Automata Theory CS F-08 Context-Free Grammars

Automata Theory CS F-08 Context-Free Grammars Automata Theory CS411-2015F-08 Context-Free Grammars David Galles Department of Computer Science University of San Francisco 08-0: Context-Free Grammars Set of Terminals (Σ) Set of Non-Terminals Set of

More information

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions

CFG Simplification. (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions CFG Simplification (simplify) 1. Eliminate useless symbols 2. Eliminate -productions 3. Eliminate unit productions 1 Eliminating useless symbols 1. A symbol X is generating if there exists: X * w, for

More information

Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition

Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition Salil Vadhan October 11, 2012 Reading: Sipser, Section 2.3 and Section 2.1 (material on Chomsky Normal Form). Pumping Lemma for

More information

Context-Free Grammars and Languages. Reading: Chapter 5

Context-Free Grammars and Languages. Reading: Chapter 5 Context-Free Grammars and Languages Reading: Chapter 5 1 Context-Free Languages The class of context-free languages generalizes the class of regular languages, i.e., every regular language is a context-free

More information

PUSHDOWN AUTOMATA (PDA)

PUSHDOWN AUTOMATA (PDA) PUSHDOWN AUTOMATA (PDA) FINITE STATE CONTROL INPUT STACK (Last in, first out) input pop push ε,ε $ 0,ε 0 1,0 ε ε,$ ε 1,0 ε PDA that recognizes L = { 0 n 1 n n 0 } Definition: A (non-deterministic) PDA

More information

5 Context-Free Languages

5 Context-Free Languages CA320: COMPUTABILITY AND COMPLEXITY 1 5 Context-Free Languages 5.1 Context-Free Grammars Context-Free Grammars Context-free languages are specified with a context-free grammar (CFG). Formally, a CFG G

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 10 : Context-Free Grammars

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 10 : Context-Free Grammars COMP-330 Theory of Computation Fall 2017 -- Prof. Claude Crépeau Lec. 10 : Context-Free Grammars COMP 330 Fall 2017: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic finite

More information

Introduction to Formal Languages, Automata and Computability p.1/42

Introduction to Formal Languages, Automata and Computability p.1/42 Introduction to Formal Languages, Automata and Computability Pushdown Automata K. Krithivasan and R. Rama Introduction to Formal Languages, Automata and Computability p.1/42 Introduction We have considered

More information

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where

Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x where Recitation 11 Notes Context Free Grammars Definition: A grammar G = (V, T, P,S) is a context free grammar (cfg) if all productions in P have the form A x A V, and x (V T)*. Examples Problem 1. Given the

More information

Context-Free Grammar

Context-Free Grammar Context-Free Grammar CFGs are more powerful than regular expressions. They are more powerful in the sense that whatever can be expressed using regular expressions can be expressed using context-free grammars,

More information

This lecture covers Chapter 7 of HMU: Properties of CFLs

This lecture covers Chapter 7 of HMU: Properties of CFLs This lecture covers Chapter 7 of HMU: Properties of CFLs Chomsky Normal Form Pumping Lemma for CFs Closure Properties of CFLs Decision Properties of CFLs Additional Reading: Chapter 7 of HMU. Chomsky Normal

More information

Theory of Computation (IX) Yijia Chen Fudan University

Theory of Computation (IX) Yijia Chen Fudan University Theory of Computation (IX) Yijia Chen Fudan University Review The Definition of Algorithm Polynomials and their roots A polynomial is a sum of terms, where each term is a product of certain variables and

More information

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages Context Free Languages Automata Theory and Formal Grammars: Lecture 6 Context Free Languages Last Time Decision procedures for FAs Minimum-state DFAs Today The Myhill-Nerode Theorem The Pumping Lemma Context-free

More information

Computational Models - Lecture 4 1

Computational Models - Lecture 4 1 Computational Models - Lecture 4 1 Handout Mode Iftach Haitner. Tel Aviv University. November 21, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

P Systems with Symport/Antiport of Rules

P Systems with Symport/Antiport of Rules P Systems with Symport/Antiport of Rules Matteo CAVALIERE Research Group on Mathematical Linguistics Rovira i Virgili University Pl. Imperial Tárraco 1, 43005 Tarragona, Spain E-mail: matteo.cavaliere@estudiants.urv.es

More information

Introduction to Theory of Computing

Introduction to Theory of Computing CSCI 2670, Fall 2012 Introduction to Theory of Computing Department of Computer Science University of Georgia Athens, GA 30602 Instructor: Liming Cai www.cs.uga.edu/ cai 0 Lecture Note 3 Context-Free Languages

More information

Context Free Grammars

Context Free Grammars Automata and Formal Languages Context Free Grammars Sipser pages 101-111 Lecture 11 Tim Sheard 1 Formal Languages 1. Context free languages provide a convenient notation for recursive description of languages.

More information

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar TAFL 1 (ECS-403) Unit- III 3.1 Definition of CFG (Context Free Grammar) and problems 3.2 Derivation 3.3 Ambiguity in Grammar 3.3.1 Inherent Ambiguity 3.3.2 Ambiguous to Unambiguous CFG 3.4 Simplification

More information

Pushdown Automata. Reading: Chapter 6

Pushdown Automata. Reading: Chapter 6 Pushdown Automata Reading: Chapter 6 1 Pushdown Automata (PDA) Informally: A PDA is an NFA-ε with a infinite stack. Transitions are modified to accommodate stack operations. Questions: What is a stack?

More information

6.1 The Pumping Lemma for CFLs 6.2 Intersections and Complements of CFLs

6.1 The Pumping Lemma for CFLs 6.2 Intersections and Complements of CFLs CSC4510/6510 AUTOMATA 6.1 The Pumping Lemma for CFLs 6.2 Intersections and Complements of CFLs The Pumping Lemma for Context Free Languages One way to prove AnBn is not regular is to use the pumping lemma

More information

On rigid NL Lambek grammars inference from generalized functor-argument data

On rigid NL Lambek grammars inference from generalized functor-argument data 7 On rigid NL Lambek grammars inference from generalized functor-argument data Denis Béchet and Annie Foret Abstract This paper is concerned with the inference of categorial grammars, a context-free grammar

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form:

More information

Chapter 3. Regular grammars

Chapter 3. Regular grammars Chapter 3 Regular grammars 59 3.1 Introduction Other view of the concept of language: not the formalization of the notion of effective procedure, but set of words satisfying a given set of rules Origin

More information

Context-Free Grammars (and Languages) Lecture 7

Context-Free Grammars (and Languages) Lecture 7 Context-Free Grammars (and Languages) Lecture 7 1 Today Beyond regular expressions: Context-Free Grammars (CFGs) What is a CFG? What is the language associated with a CFG? Creating CFGs. Reasoning about

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information

Theory of Computation - Module 3

Theory of Computation - Module 3 Theory of Computation - Module 3 Syllabus Context Free Grammar Simplification of CFG- Normal forms-chomsky Normal form and Greibach Normal formpumping lemma for Context free languages- Applications of

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

Context-free Grammars and Languages

Context-free Grammars and Languages Context-free Grammars and Languages COMP 455 002, Spring 2019 Jim Anderson (modified by Nathan Otterness) 1 Context-free Grammars Context-free grammars provide another way to specify languages. Example:

More information

Chapter 6. Properties of Regular Languages

Chapter 6. Properties of Regular Languages Chapter 6 Properties of Regular Languages Regular Sets and Languages Claim(1). The family of languages accepted by FSAs consists of precisely the regular sets over a given alphabet. Every regular set is

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013 Q.2 a. Prove by mathematical induction n 4 4n 2 is divisible by 3 for n 0. Basic step: For n = 0, n 3 n = 0 which is divisible by 3. Induction hypothesis: Let p(n) = n 3 n is divisible by 3. Induction

More information

Computational Models - Lecture 3

Computational Models - Lecture 3 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models - Lecture 3 Equivalence of regular expressions and regular languages (lukewarm leftover

More information

Left-Forbidding Cooperating Distributed Grammar Systems

Left-Forbidding Cooperating Distributed Grammar Systems Left-Forbidding Cooperating Distributed Grammar Systems Filip Goldefus a, Tomáš Masopust b,, Alexander Meduna a a Faculty of Information Technology, Brno University of Technology Božetěchova 2, Brno 61266,

More information

Plan for 2 nd half. Just when you thought it was safe. Just when you thought it was safe. Theory Hall of Fame. Chomsky Normal Form

Plan for 2 nd half. Just when you thought it was safe. Just when you thought it was safe. Theory Hall of Fame. Chomsky Normal Form Plan for 2 nd half Pumping Lemma for CFLs The Return of the Pumping Lemma Just when you thought it was safe Return of the Pumping Lemma Recall: With Regular Languages The Pumping Lemma showed that if a

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES JUNE 2014

AC68 FINITE AUTOMATA & FORMULA LANGUAGES JUNE 2014 Q.2 a. Show by using Mathematical Induction that n i= 1 i 2 n = ( n + 1) ( 2 n + 1) 6 b. Define language. Let = {0; 1} denote an alphabet. Enumerate five elements of the following languages: (i) Even binary

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars formal properties Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2018 1 / 20 Normal forms (1) Hopcroft and Ullman (1979) A normal

More information

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3},

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3}, Code No: 07A50501 R07 Set No. 2 III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All

More information

Formal Languages, Grammars and Automata Lecture 5

Formal Languages, Grammars and Automata Lecture 5 Formal Languages, Grammars and Automata Lecture 5 Helle Hvid Hansen helle@cs.ru.nl http://www.cs.ru.nl/~helle/ Foundations Group Intelligent Systems Section Institute for Computing and Information Sciences

More information

Pushdown Automata (2015/11/23)

Pushdown Automata (2015/11/23) Chapter 6 Pushdown Automata (2015/11/23) Sagrada Familia, Barcelona, Spain Outline 6.0 Introduction 6.1 Definition of PDA 6.2 The Language of a PDA 6.3 Euivalence of PDA s and CFG s 6.4 Deterministic PDA

More information

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis

Suppose h maps number and variables to ɛ, and opening parenthesis to 0 and closing parenthesis 1 Introduction Parenthesis Matching Problem Describe the set of arithmetic expressions with correctly matched parenthesis. Arithmetic expressions with correctly matched parenthesis cannot be described

More information

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u,

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, 1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, v, x, y, z as per the pumping theorem. 3. Prove that

More information

CISC4090: Theory of Computation

CISC4090: Theory of Computation CISC4090: Theory of Computation Chapter 2 Context-Free Languages Courtesy of Prof. Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Spring, 2014 Overview In Chapter

More information

Computational Models - Lecture 4

Computational Models - Lecture 4 Computational Models - Lecture 4 Regular languages: The Myhill-Nerode Theorem Context-free Grammars Chomsky Normal Form Pumping Lemma for context free languages Non context-free languages: Examples Push

More information

Ogden s Lemma, Multiple Context-Free Grammars, and the Control Language Hierarchy

Ogden s Lemma, Multiple Context-Free Grammars, and the Control Language Hierarchy Ogden s Lemma, Multiple Context-Free Grammars, and the Control Language Hierarchy Makoto Kanazawa? National Institute of Informatics and SOKENDAI, 2 1 2 Hitotsubashi, Chiyoda-ku, Tokyo, 101 8430, Japan

More information

Chapter 16: Non-Context-Free Languages

Chapter 16: Non-Context-Free Languages Chapter 16: Non-Context-Free Languages Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu Please read the corresponding chapter

More information

Context-Free Grammars. 2IT70 Finite Automata and Process Theory

Context-Free Grammars. 2IT70 Finite Automata and Process Theory Context-Free Grammars 2IT70 Finite Automata and Process Theory Technische Universiteit Eindhoven May 18, 2016 Generating strings language L 1 = {a n b n n > 0} ab L 1 if w L 1 then awb L 1 production rules

More information

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST

Discrete Mathematics. CS204: Spring, Jong C. Park Computer Science Department KAIST Discrete Mathematics CS204: Spring, 2008 Jong C. Park Computer Science Department KAIST Today s Topics Sequential Circuits and Finite-State Machines Finite-State Automata Languages and Grammars Nondeterministic

More information

ECS 120: Theory of Computation UC Davis Phillip Rogaway February 16, Midterm Exam

ECS 120: Theory of Computation UC Davis Phillip Rogaway February 16, Midterm Exam ECS 120: Theory of Computation Handout MT UC Davis Phillip Rogaway February 16, 2012 Midterm Exam Instructions: The exam has six pages, including this cover page, printed out two-sided (no more wasted

More information

Properties of Context-free Languages. Reading: Chapter 7

Properties of Context-free Languages. Reading: Chapter 7 Properties of Context-free Languages Reading: Chapter 7 1 Topics 1) Simplifying CFGs, Normal forms 2) Pumping lemma for CFLs 3) Closure and decision properties of CFLs 2 How to simplify CFGs? 3 Three ways

More information

Linear conjunctive languages are closed under complement

Linear conjunctive languages are closed under complement Linear conjunctive languages are closed under complement Alexander Okhotin okhotin@cs.queensu.ca Technical report 2002-455 Department of Computing and Information Science, Queen s University, Kingston,

More information

SCHEME FOR INTERNAL ASSESSMENT TEST 3

SCHEME FOR INTERNAL ASSESSMENT TEST 3 SCHEME FOR INTERNAL ASSESSMENT TEST 3 Max Marks: 40 Subject& Code: Automata Theory & Computability (15CS54) Sem: V ISE (A & B) Note: Answer any FIVE full questions, choosing one full question from each

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 14 Ana Bove May 14th 2018 Recap: Context-free Grammars Simplification of grammars: Elimination of ǫ-productions; Elimination of

More information

CPS 220 Theory of Computation Pushdown Automata (PDA)

CPS 220 Theory of Computation Pushdown Automata (PDA) CPS 220 Theory of Computation Pushdown Automata (PDA) Nondeterministic Finite Automaton with some extra memory Memory is called the stack, accessed in a very restricted way: in a First-In First-Out fashion

More information

MTH401A Theory of Computation. Lecture 17

MTH401A Theory of Computation. Lecture 17 MTH401A Theory of Computation Lecture 17 Chomsky Normal Form for CFG s Chomsky Normal Form for CFG s For every context free language, L, the language L {ε} has a grammar in which every production looks

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science C1. Formal Languages and Grammars Malte Helmert University of Basel March 14, 2016 Introduction Example: Propositional Formulas from the logic part: Definition (Syntax of Propositional

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic and Theory of Computing Fuhua (Frank) Cheng Department of Computer Science University of Kentucky 1 Table of Contents: Week 1: Preliminaries (set algebra, relations, functions) (read Chapters

More information

Theory of Computation (II) Yijia Chen Fudan University

Theory of Computation (II) Yijia Chen Fudan University Theory of Computation (II) Yijia Chen Fudan University Review A language L is a subset of strings over an alphabet Σ. Our goal is to identify those languages that can be recognized by one of the simplest

More information

Address for Correspondence

Address for Correspondence Proceedings of BITCON-2015 Innovations For National Development National Conference on : Research and Development in Computer Science and Applications Research Paper SUBSTRING MATCHING IN CONTEXT FREE

More information

Recitation 4: Converting Grammars to Chomsky Normal Form, Simulation of Context Free Languages with Push-Down Automata, Semirings

Recitation 4: Converting Grammars to Chomsky Normal Form, Simulation of Context Free Languages with Push-Down Automata, Semirings Recitation 4: Converting Grammars to Chomsky Normal Form, Simulation of Context Free Languages with Push-Down Automata, Semirings 11-711: Algorithms for NLP October 10, 2014 Conversion to CNF Example grammar

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

Properties of context-free Languages

Properties of context-free Languages Properties of context-free Languages We simplify CFL s. Greibach Normal Form Chomsky Normal Form We prove pumping lemma for CFL s. We study closure properties and decision properties. Some of them remain,

More information

FLAC Context-Free Grammars

FLAC Context-Free Grammars FLAC Context-Free Grammars Klaus Sutner Carnegie Mellon Universality Fall 2017 1 Generating Languages Properties of CFLs Generation vs. Recognition 3 Turing machines can be used to check membership in

More information

NPDA, CFG equivalence

NPDA, CFG equivalence NPDA, CFG equivalence Theorem A language L is recognized by a NPDA iff L is described by a CFG. Must prove two directions: ( ) L is recognized by a NPDA implies L is described by a CFG. ( ) L is described

More information

Harvard CS 121 and CSCI E-207 Lecture 9: Regular Languages Wrap-Up, Context-Free Grammars

Harvard CS 121 and CSCI E-207 Lecture 9: Regular Languages Wrap-Up, Context-Free Grammars Harvard CS 121 and CSCI E-207 Lecture 9: Regular Languages Wrap-Up, Context-Free Grammars Salil Vadhan October 2, 2012 Reading: Sipser, 2.1 (except Chomsky Normal Form). Algorithmic questions about regular

More information

Structural Induction

Structural Induction Structural Induction In this lecture we ll extend the applicability of induction to many universes, ones where we can define certain kinds of objects by induction, in addition to proving their properties

More information

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA.

Outline. CS21 Decidability and Tractability. Machine view of FA. Machine view of FA. Machine view of FA. Machine view of FA. Outline CS21 Decidability and Tractability Lecture 5 January 16, 219 and Languages equivalence of NPDAs and CFGs non context-free languages January 16, 219 CS21 Lecture 5 1 January 16, 219 CS21 Lecture

More information

Notes on the Catalan problem

Notes on the Catalan problem Notes on the Catalan problem Daniele Paolo Scarpazza Politecnico di Milano March 16th, 2004 Daniele Paolo Scarpazza Notes on the Catalan problem [1] An overview of Catalan problems

More information

Properties of Context-Free Languages

Properties of Context-Free Languages Properties of Context-Free Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

CS481F01 Prelim 2 Solutions

CS481F01 Prelim 2 Solutions CS481F01 Prelim 2 Solutions A. Demers 7 Nov 2001 1 (30 pts = 4 pts each part + 2 free points). For this question we use the following notation: x y means x is a prefix of y m k n means m n k For each of

More information

CA320 - Computability & Complexity

CA320 - Computability & Complexity CA320 - Computability & Complexity David Sinclair Context-Sensitive Grammars An unrestricted grammar is a 4-tuple G = (V,Σ,S,P), where V and Σ are disjoint sets of variables and terminals respectively.

More information

CS 275 Automata and Formal Language Theory. Proof of Lemma II Lemma (II )

CS 275 Automata and Formal Language Theory. Proof of Lemma II Lemma (II ) CS 275 Automata and Formal Language Theory Course Notes Part II: The Recognition Problem (II) Additional Material (This material is no longer taught and not exam relevant) Sect II.2.: Basics of Regular

More information

Properties of Context-Free Languages. Closure Properties Decision Properties

Properties of Context-Free Languages. Closure Properties Decision Properties Properties of Context-Free Languages Closure Properties Decision Properties 1 Closure Properties of CFL s CFL s are closed under union, concatenation, and Kleene closure. Also, under reversal, homomorphisms

More information

What Is a Language? Grammars, Languages, and Machines. Strings: the Building Blocks of Languages

What Is a Language? Grammars, Languages, and Machines. Strings: the Building Blocks of Languages Do Homework 2. What Is a Language? Grammars, Languages, and Machines L Language Grammar Accepts Machine Strings: the Building Blocks of Languages An alphabet is a finite set of symbols: English alphabet:

More information

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis

Syntactical analysis. Syntactical analysis. Syntactical analysis. Syntactical analysis Context-free grammars Derivations Parse Trees Left-recursive grammars Top-down parsing non-recursive predictive parsers construction of parse tables Bottom-up parsing shift/reduce parsers LR parsers GLR

More information

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES

SYLLABUS. Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 3 : REGULAR EXPRESSIONS AND LANGUAGES Contents i SYLLABUS UNIT - I CHAPTER - 1 : AUT UTOMA OMATA Introduction to Finite Automata, Central Concepts of Automata Theory. CHAPTER - 2 : FINITE AUT UTOMA OMATA An Informal Picture of Finite Automata,

More information

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4 Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A context-free grammar is in Chomsky normal form if every rule is of the form: A BC A a S ε B and C aren t start variables a is

More information

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions?

Before We Start. The Pumping Lemma. Languages. Context Free Languages. Plan for today. Now our picture looks like. Any questions? Before We Start The Pumping Lemma Any questions? The Lemma & Decision/ Languages Future Exam Question What is a language? What is a class of languages? Context Free Languages Context Free Languages(CFL)

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 7 Last time: Proving a language is not regular Pushdown automata (PDAs) Today: Context-free grammars (CFG) Equivalence of CFGs and PDAs Sofya Raskhodnikova 1/31/2016

More information

Grammars and Context Free Languages

Grammars and Context Free Languages Grammars and Context Free Languages H. Geuvers and J. Rot Institute for Computing and Information Sciences Version: fall 2016 H. Geuvers & J. Rot Version: fall 2016 Talen en Automaten 1 / 24 Outline Grammars

More information

What we have done so far

What we have done so far What we have done so far DFAs and regular languages NFAs and their equivalence to DFAs Regular expressions. Regular expressions capture exactly regular languages: Construct a NFA from a regular expression.

More information

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata.

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata. Code No: R09220504 R09 Set No. 2 II B.Tech II Semester Examinations,December-January, 2011-2012 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer

More information

C1.1 Introduction. Theory of Computer Science. Theory of Computer Science. C1.1 Introduction. C1.2 Alphabets and Formal Languages. C1.

C1.1 Introduction. Theory of Computer Science. Theory of Computer Science. C1.1 Introduction. C1.2 Alphabets and Formal Languages. C1. Theory of Computer Science March 20, 2017 C1. Formal Languages and Grammars Theory of Computer Science C1. Formal Languages and Grammars Malte Helmert University of Basel March 20, 2017 C1.1 Introduction

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 6 CHAPTER 2 FINITE AUTOMATA 2. Nondeterministic Finite Automata NFA 3. Finite Automata and Regular Expressions 4. Languages

More information

Context-Free and Noncontext-Free Languages

Context-Free and Noncontext-Free Languages Examples: Context-Free and Noncontext-Free Languages a*b* is regular. A n B n = {a n b n : n 0} is context-free but not regular. A n B n C n = {a n b n c n : n 0} is not context-free The Regular and the

More information

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols Finite Automata and Formal Languages TMV026/DIT321 LP4 2012 Lecture 13 Ana Bove May 7th 2012 Overview of today s lecture: Normal Forms for Context-Free Languages Pumping Lemma for Context-Free Languages

More information

ON MINIMAL CONTEXT-FREE INSERTION-DELETION SYSTEMS

ON MINIMAL CONTEXT-FREE INSERTION-DELETION SYSTEMS ON MINIMAL CONTEXT-FREE INSERTION-DELETION SYSTEMS Sergey Verlan LACL, University of Paris XII 61, av. Général de Gaulle, 94010, Créteil, France e-mail: verlan@univ-paris12.fr ABSTRACT We investigate the

More information

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS 1. [6 POINTS] For language L 1 = {0 n 1 m n, m 1, m n}, which string is in L 1? ANSWER: 0001111 is in L 1 (with n =

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 10/22, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Context-free grammars and languages

Context-free grammars and languages Context-free grammars and languages The next class of languages we will study in the course is the class of context-free languages. They are defined by the notion of a context-free grammar, or a CFG for

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Push-Down Automata CAS 705 Ryszard Janicki Department of Computing and Software McMaster University Hamilton, Ontario, Canada janicki@mcmaster.ca Ryszard Janicki Computability

More information