Nonconstant Coefficients

Size: px
Start display at page:

Download "Nonconstant Coefficients"

Transcription

1 Chapter 7 Nonconstant Coefficients We return to second-order linear ODEs, but with nonconstant coefficients. That is, we consider (7.1) y + p(t)y + q(t)y = 0, with not both p(t) and q(t) constant. The theory developed in Chapter 3 still holds, and in particular Theorem 3.4 is still valid. Specifically, the general solution is still y(t) = c 1 y 1 + c 2 y 2 with y 1, y 2 independent solutions to (7.1) and c 1, c 2 arbitrary constants. Unfortunately, there is no method to find explicit formulas for y 1 and y 2. There are however some special cases Reduction of Order If somehow we are lucky enough to fine one solution to (7.1), then a method exists to find the other. The method is similar to the technique we employed in the repeated root section of Chapter 3.1.3, and in deriving the variation of parameters in Chapter 3.3. Suppose somehow we find y 1 solving (7.1). We try to find a second independent solution by modifying it; y 2 = u(t)y 1 (t). Substituting this back into (7.1), we find u y 1 + (2y 1 + py 1 )u = 0. Since u does not appear in the ODE, we may immediately integrate. Indeed, set z = u. Then z satisfies the first-order ODE (7.2) z + p(t) + 2 y 1 z = 0. y 1 In principle this can be solved explicitly using methods in Chapter

2 74 7. Nonconstant Coefficients Example 7.1. Consider the second-order, linear, nonconstant coefficient ODE y 1 + x x y + 1 x y = 0 Note that y 1 = e x is a solution. To find another independent solution, we reduce the order. Here p(x) = (1 + x)/x. Equation (7.2) is The integrating factor is (Chapter 1.2) z + x 1 x z = 0. µ = e x 1 x dx = ex x. Thus (e x z/x) = 0. That is, u = z = cxe x or u = c(xe x + e x ), and y 2 = u(x)y 1 (x) = u(x)e x = 1 + x. The general solution is therefore y = c 1 e x + c 2 (1 + x). Homework 7.1 (Reduction of Order) Find the general solution. 1. t 2 y 4ty + 6y = 0, y 1 (t) = t 2 2. t 2 y + 3ty + y = 0, y 1 (t) = t 1 3. xy y + 4x 3 y = 0, y 1 (t) = sin t 2 4. xy (x + 1)y + y = 0, y 1 (t) = e x 5. x 2 y 2xy 4y = 0, y 1 (t) = 1/x Answers 1. y 2 = t 3 2. y 2 = t 1 ln t 3. y 2 = cos t 2 4. y 2 = x y 2 = x Cauchy-Euler Equations The Cauchy-Euler equation is a special form of Equation (7.1). It is given by (7.3) x 2 y + axy + by = 0, where aand b are real numbers. Note that the powers of x match the number of derivatives. The may seem fortuitous, but the ODE arises in many physical settings including heat conduction and electrostatics. The form of the equation suggests y = x α may be a solution. Indeed, y = αx α 1 and y = α(α 1)x α 2. Putting these in (7.3), we find α(α 1) + aα + b = 0.

3 7.3. Series Solutions 75 Using the quadratic formula we can solve for α. If the roots, r 1, r 2 are real, the general solution is y = c 1 x r1 + c 2 x r2. If the roots are complex, λ ± iµ, then y = c 1 x λ x iµ + c 2 x λ x iµ = x λ c 1 e iµ ln x iµ ln + c 2 e x where C 1 = c 1 + c 2 and C 2 = i(c 1 c 2 ). = C 1 x λ cos(µ ln x) + C 2 x λ sin(µ ln x), Suppose the roots are repeated, r 1 = r 2 = r. Then we know one solution, y 1 = x r. To find the other solution we employ the method of the previous section. We find in this case y = c 1 x r + c 2 ln(x) x r. Homework 7.2 (Cauchy-Euler Equations) Find the (general) solution. 1. 2x 2 y + xy 3y = 0, y(1) = 1, y (1) = x 2 y + 8xy + 17y = 0 3. x 2 y 3xy + 4y = 0, y( 1) = 2, y ( 1) = 3 4. By making the substitution x = e t show that (7.3) can be written y + (a 1)y + by = 0, where differentiation is now with respect to t. Note the coefficients are now constant. 1. y = 2x 3/2 x 1 Answers 2. y = c 1 x 1/2 cos(2 ln x) + c 2 x 1/2 sin(2 ln x) 3. y = 2x 2 7x 2 ln x 7.3. Series Solutions There is a general method of finding solutions to (7.1). Let us suppose that the solution to (7.1) is analytic. That is, we suppose the solution y has a Taylor series which converges on an interval. Specifically, we suppose (7.4) y(x) = a 0 + a 1 x + a 2 x 2 + a 3 x a n x n + = a n x n, on some interval containing the origin, or more generally y(x) = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) a n (x x 0 ) n + = a n (x x 0 ) n,

4 76 7. Nonconstant Coefficients on some interval containing x 0. We suppose p(x) and q(x) are analytic as well. Familiar examples might include e x = 1 + x + x2 2! + x3 3! + = X sin x = x x3 3! + x5 5! + = X cos x = 1 x2 2! + x4 4! + = X x n n! ( 1) n (2n + 1)! n x 2n+1 ( 1) n 1 n x 2n. (2n)! The idea is to put (7.4) into the ODE and find the coefficients. To do so we will need some shifting formulas. One can easily verify the following. y(x) = a n x n, (7.5) y (x) = y (x) = = na n x n 1 = (n + 1)a n+1 x n, n=2 n(n 1)a n x n 2 = (n + 1)na n+1 x n 1, (n + 2)(n + 1)a n+2 x n. Example 7.2. Find the general solution to y + y = 0. Solution. We just have to compute the a n in (7.4). Using the formula (7.5), we get (n)(n 1)a n x n 2 + a n x n = (n + 2)(n + 1)a n+2 + a n x n = 0. n=2 The polynomials on either side of the equation must balance. So, (n + 2)(n + 1)a n+2 + a n = 0 for n = 0, 1, 2,.... This last equation is called an Recurrence Relation. We may write it as a n a n+2 = (n + 2)(n + 1). We can use it to find the coefficients in (7.4). It would also be easy to use in computations. If we know a 0, then the recurrence relation provides us with a 0, a 2, a 4... and knowledge of a 1 gives us a 1, a 3, a 5,.... In particular, if we set a 0 = c 1, then a 0 = c 1 a 2 = a 0 (0 + 2)(0 + 1) = c 1 2 a 4 = a 2 (2 + 2)(2 + 1) = a 2 = c 1 4!.

5 7.3. Series Solutions 77 In general, we have Similarly, if we set a 1 = c 2, we find In general, we find a 2n = ( 1) n c 1 (2n)!. a 1 = c 2 a 3 = a 1 (1 + 2)(1 + 1) = c a 5 = a 3 (3 + 2)(3 + 1) = a 3 = c 1 5!. a 2n+1 = ( 1) n c 1 (2n + 1)!. Thus the general solution is y(x) = c 1 1 x2 2! + x4 4! + + c 2 x x3 3! + x5 5! + = c 1 cos x + c 2 sin x as expected. Example 7.3. Find the series solution to Airy s equation y xy = 0, y(0) = 1, y (0) = 1. Solution. Again we put (7.4) into the ode. We find n(n 1)a n x n 2 x a n x n = 0 or That is, n=2 (n + 2)(n + 1)a n+2 x n a n 1 x n = 0. 2a 2 + We see a 2 = 0, and the recurrence relation is (n + 2)(n + 1)a n+2 a n 1 x n = 0. (n + 2)(n + 1)a n+2 a n 1 = 0 n 1. Knowledge of a 0, provides a 3, a 6, a 9..., and knowledge of a 1 gives us a 4, a 7, a Thus, a 0 = a 0 a 0 a 3 = (1 + 2)(1 + 1) = a a 6 = a 9 = a 3 (4 + 2)(4 + 1) = a a 6 (7 + 2)(7 + 1) = a

6 78 7. Nonconstant Coefficients and a 1 = a 1 a 1 a 4 = (2 + 2)(2 + 1) = a a 7 = a 10 = a 4 (5 + 2)(5 + 1) = a a 7 (8 + 2)(8 + 1) = a and the general solution is y = a 0 y 1 + a 1 y 2. That is, y(x) = a x x x a 1 x + x x x Y n=30 n=45 n=60 n=75 n= X Figure 1. Polynomial approximations of the solution y 1 in Airy s Equation. Example 7.4. Find the solution to n=2 y + xy + y = 0, y(0) = 1, y (0) = 0. We put (7.4) back into the ode and find n(n 1)a n x n 2 + x na n x n 1 + a n x n = 0 or That is, (n + 2)(n + 1)a n+2 x n + na n x n + a n x n = 0. (n + 2)(n + 1)a n+2 + na n + a n x n = 0,

7 7.3. Series Solutions 79 and the recurrence relation is (n + 2)(n + 1)a n+2 + (n + 1)a n = 0 or a n+2 = a n n + 2. Knowledge of a 0 reveals a 2, a 4,..., and knowledge of a 1 gives us a 3, a 5,.... and a 0 = a 0 a 2 = a 0 (0 + 2) = a 0 2 a 4 = a = a a 6 = a = a a 1 = a 1 a 3 = a = a 1 3 a 5 = a = a a 7 = a = a The general solution is y(x) = a 0 1 x2 2 + x4 2 4 x a 1 x x3 3 + x5 3 5 x X ( 1) n = a 0 2 n n! x2n + a 1 ( 1) n 2 n n! (2n + 1)! x2n+1.

8 80 7. Nonconstant Coefficients Homework 7.3 (Power Series) Find the recurrence relation on the first four terms in each of two solutions y 1 and y 2 (unless the series truncates sooner). 1. y y = 0 2. y xy y = 0 3. (1 x)y + y = 0 4. (1 + x 2 )y 4xy + 6y = 0 Partial Answers 1. a n+2 = a n /(n + 2)(n + 1) 2. a n+2 = a n /(n + 2) 3. (n + 2)(n + 1)a n+2 n(n + 1)a n+1 + a n = 0 for n 1; a 2 = 1 2 a 0 4. y 1 = 1 3x 2, y 2 = x x 3 /3.

9 Index asymptotically stable, 76 backward Euler, 12 Center, 59 Characteristic Polynomial, 20 Complex roots, 21 Convolution, 50 critical point, 75 Critically Damped, 32 second order linear ODE, 17 stable critical point, 76 trajectory, 75 unstable critical point, 76 Wronskian, 30 Delta function, 47 Eigenvalues, 55 Eigenvectors, 55 Euler Formula, 21 exponential order, 37 exponentially bounded, 37 Focus, 59 forward Euler, 10 Heaviside function, 42 improved Euler, 14 integrating factor, 4 Jacobian, 76 Laplace transform, 37 linear, 17 ODE, 1 Over Damped, 31 Partial Differential Equation, 1 Phase Portrait, 56 piecewise continuous, 37 piecewise smooth, 37 Real distinct roots, 20 Recurrence Relation, 84 Repeated roots, 23 Saddle, 56 81

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0

ODE Homework Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation. n(n 1)a n x n 2 = n=0 ODE Homework 6 5.2. Series Solutions Near an Ordinary Point, Part I 1. Seek power series solution of the equation y + k 2 x 2 y = 0, k a constant about the the point x 0 = 0. Find the recurrence relation;

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Math 334 A1 Homework 3 (Due Nov. 5 5pm)

Math 334 A1 Homework 3 (Due Nov. 5 5pm) Math 334 A1 Homework 3 Due Nov. 5 5pm No Advanced or Challenge problems will appear in homeworks. Basic Problems Problem 1. 4.1 11 Verify that the given functions are solutions of the differential equation,

More information

Series Solutions Near a Regular Singular Point

Series Solutions Near a Regular Singular Point Series Solutions Near a Regular Singular Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background We will find a power series solution to the equation:

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

such as the ratio test. However, even without knowing the formula for a n and y 4

such as the ratio test. However, even without knowing the formula for a n and y 4 5.2 Series Solutions near an Ordinary Point, Part I 247 such as the ratio test. However, even without knowing the formula for a n we shall see in Section 5.3 that it is possible to establish that the series

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Second-Order Linear ODEs A second order ODE is called linear if it can be written as y + p(t)y + q(t)y = r(t). (0.1) It is called homogeneous if r(t) = 0, and nonhomogeneous otherwise. We shall assume

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

MIDTERM REVIEW AND SAMPLE EXAM. Contents

MIDTERM REVIEW AND SAMPLE EXAM. Contents MIDTERM REVIEW AND SAMPLE EXAM Abstract These notes outline the material for the upcoming exam Note that the review is divided into the two main topics we have covered thus far, namely, ordinary differential

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

Existence Theory: Green s Functions

Existence Theory: Green s Functions Chapter 5 Existence Theory: Green s Functions In this chapter we describe a method for constructing a Green s Function The method outlined is formal (not rigorous) When we find a solution to a PDE by constructing

More information

Math 216 Final Exam 14 December, 2017

Math 216 Final Exam 14 December, 2017 Math 216 Final Exam 14 December, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

Math 256: Applied Differential Equations: Final Review

Math 256: Applied Differential Equations: Final Review Math 256: Applied Differential Equations: Final Review Chapter 1: Introduction, Sec 1.1, 1.2, 1.3 (a) Differential Equation, Mathematical Model (b) Direction (Slope) Field, Equilibrium Solution (c) Rate

More information

Section 4.7: Variable-Coefficient Equations

Section 4.7: Variable-Coefficient Equations Cauchy-Euler Equations Section 4.7: Variable-Coefficient Equations Before concluding our study of second-order linear DE s, let us summarize what we ve done. In Sections 4.2 and 4.3 we showed how to find

More information

Lecture 1: Review of methods to solve Ordinary Differential Equations

Lecture 1: Review of methods to solve Ordinary Differential Equations Introductory lecture notes on Partial Differential Equations - c Anthony Peirce Not to be copied, used, or revised without explicit written permission from the copyright owner 1 Lecture 1: Review of methods

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

The method of Fröbenius

The method of Fröbenius Note III.5 1 1 April 008 The method of Fröbenius For the general homogeneous ordinary differential equation y (x) + p(x)y (x) + q(x)y(x) = 0 (1) the series method works, as in the Hermite case, where both

More information

Math 20D: Form B Final Exam Dec.11 (3:00pm-5:50pm), Show all of your work. No credit will be given for unsupported answers.

Math 20D: Form B Final Exam Dec.11 (3:00pm-5:50pm), Show all of your work. No credit will be given for unsupported answers. Turn off and put away your cell phone. No electronic devices during the exam. No books or other assistance during the exam. Show all of your work. No credit will be given for unsupported answers. Write

More information

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order October 2 6, 2017 Second Order ODEs (cont.) Consider where a, b, and c are real numbers ay +by +cy = 0, (1) Let

More information

Homogeneous Equations with Constant Coefficients

Homogeneous Equations with Constant Coefficients Homogeneous Equations with Constant Coefficients MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 General Second Order ODE Second order ODEs have the form

More information

Linear Second Order ODEs

Linear Second Order ODEs Chapter 3 Linear Second Order ODEs In this chapter we study ODEs of the form (3.1) y + p(t)y + q(t)y = f(t), where p, q, and f are given functions. Since there are two derivatives, we might expect that

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Math 210 Differential Equations Mock Final Dec *************************************************************** 1. Initial Value Problems

Math 210 Differential Equations Mock Final Dec *************************************************************** 1. Initial Value Problems Math 210 Differential Equations Mock Final Dec. 2003 *************************************************************** 1. Initial Value Problems 1. Construct the explicit solution for the following initial

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2.

Sign the pledge. On my honor, I have neither given nor received unauthorized aid on this Exam : 11. a b c d e. 1. a b c d e. 2. Math 258 Name: Final Exam Instructor: May 7, 2 Section: Calculators are NOT allowed. Do not remove this answer page you will return the whole exam. You will be allowed 2 hours to do the test. You may leave

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Second Order ODEs. CSCC51H- Numerical Approx, Int and ODEs p.130/177

Second Order ODEs. CSCC51H- Numerical Approx, Int and ODEs p.130/177 Second Order ODEs Often physical or biological systems are best described by second or higher-order ODEs. That is, second or higher order derivatives appear in the mathematical model of the system. For

More information

0.1 Problems to solve

0.1 Problems to solve 0.1 Problems to solve Homework Set No. NEEP 547 Due September 0, 013 DLH Nonlinear Eqs. reducible to first order: 1. 5pts) Find the general solution to the differential equation: y = [ 1 + y ) ] 3/. 5pts)

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics Bessel s Equation MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Background Bessel s equation of order ν has the form where ν is a constant. x 2 y + xy

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georgia Tech PHYS 612 Mathematical Methods of Physics I Instructor: Predrag Cvitanović Fall semester 2012 Homework Set #5 due October 2, 2012 == show all your work for maximum credit, == put labels, title,

More information

Section 5.2 Series Solution Near Ordinary Point

Section 5.2 Series Solution Near Ordinary Point DE Section 5.2 Series Solution Near Ordinary Point Page 1 of 5 Section 5.2 Series Solution Near Ordinary Point We are interested in second order homogeneous linear differential equations with variable

More information

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is.

Find the Fourier series of the odd-periodic extension of the function f (x) = 1 for x ( 1, 0). Solution: The Fourier series is. Review for Final Exam. Monday /09, :45-:45pm in CC-403. Exam is cumulative, -4 problems. 5 grading attempts per problem. Problems similar to homeworks. Integration and LT tables provided. No notes, no

More information

LECTURE 14: REGULAR SINGULAR POINTS, EULER EQUATIONS

LECTURE 14: REGULAR SINGULAR POINTS, EULER EQUATIONS LECTURE 14: REGULAR SINGULAR POINTS, EULER EQUATIONS 1. Regular Singular Points During the past few lectures, we have been focusing on second order linear ODEs of the form y + p(x)y + q(x)y = g(x). Particularly,

More information

Lecture Notes on. Differential Equations. Emre Sermutlu

Lecture Notes on. Differential Equations. Emre Sermutlu Lecture Notes on Differential Equations Emre Sermutlu ISBN: Copyright Notice: To my wife Nurten and my daughters İlayda and Alara Contents Preface ix 1 First Order ODE 1 1.1 Definitions.............................

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 5 JoungDong Kim Set 5: Section 3.1, 3.2 Chapter 3. Second Order Linear Equations. Section 3.1 Homogeneous Equations with Constant Coefficients. In this

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition MATH 3860 REVIEW FOR FINAL EXAM The final exam will be comprehensive. It will cover materials from the following sections: 1.1-1.3; 2.1-2.2;2.4-2.6;3.1-3.7; 4.1-4.3;6.1-6.6; 7.1; 7.4-7.6; 7.8. The following

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Series Solutions of Linear ODEs

Series Solutions of Linear ODEs Chapter 2 Series Solutions of Linear ODEs This Chapter is concerned with solutions of linear Ordinary Differential Equations (ODE). We will start by reviewing some basic concepts and solution methods for

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Spring 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 14 pages (including this title page) for a total of 150 points. The exam has a multiple choice part, and partial

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

A: Brief Review of Ordinary Differential Equations

A: Brief Review of Ordinary Differential Equations A: Brief Review of Ordinary Differential Equations Because of Principle # 1 mentioned in the Opening Remarks section, you should review your notes from your ordinary differential equations (odes) course

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential

More information

MATHEMATICS FOR ENGINEERS & SCIENTISTS 23

MATHEMATICS FOR ENGINEERS & SCIENTISTS 23 MATHEMATICS FOR ENGINEERS & SCIENTISTS 3.5. Second order linear O.D.E.s: non-homogeneous case.. We ll now consider non-homogeneous second order linear O.D.E.s. These are of the form a + by + c rx) for

More information

Linear Independence and the Wronskian

Linear Independence and the Wronskian Linear Independence and the Wronskian MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Operator Notation Let functions p(t) and q(t) be continuous functions

More information

First-Order ODEs. Chapter Separable Equations. We consider in this chapter differential equations of the form dy (1.1)

First-Order ODEs. Chapter Separable Equations. We consider in this chapter differential equations of the form dy (1.1) Chapter 1 First-Order ODEs We consider in this chapter differential equations of the form dy (1.1) = F (t, y), where F (t, y) is a known smooth function. We wish to solve for y(t). Equation (1.1) is called

More information

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm

Differential Equations 2280 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 2015 at 12:50pm Differential Equations 228 Sample Midterm Exam 3 with Solutions Exam Date: 24 April 25 at 2:5pm Instructions: This in-class exam is 5 minutes. No calculators, notes, tables or books. No answer check is

More information

Series Solutions. 8.1 Taylor Polynomials

Series Solutions. 8.1 Taylor Polynomials 8 Series Solutions 8.1 Taylor Polynomials Polynomial functions, as we have seen, are well behaved. They are continuous everywhere, and have continuous derivatives of all orders everywhere. It also turns

More information

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test 2 SOLUTIONS 1. Find the radius of convergence of the power series Show your work. x + x2 2 + x3 3 + x4 4 + + xn

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

2 nd order Linear Homogeneous DEs with Non-Constant Coefficients

2 nd order Linear Homogeneous DEs with Non-Constant Coefficients Math 231, Wed 4-May-2011 -- Wed 4-May-2011 Wednesday, May 4th 2011 Topic:: DEs with Non-Constant Coeffs 2 nd order Linear Homogeneous DEs with Non-Constant Coefficients We consider linear 2 nd order homogeneous

More information

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie

Math 310 Introduction to Ordinary Differential Equations Final Examination August 9, Instructor: John Stockie Make sure this exam has 15 pages. Math 310 Introduction to Ordinary Differential Equations inal Examination August 9, 2006 Instructor: John Stockie Name: (Please Print) Student Number: Special Instructions

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

Applied Math for Engineers

Applied Math for Engineers Applied Math for Engineers Ming Zhong Lecture 15 March 28, 2018 Ming Zhong (JHU) AMS Spring 2018 1 / 28 Recap Table of Contents 1 Recap 2 Numerical ODEs: Single Step Methods 3 Multistep Methods 4 Method

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N). Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

Solutions to Final Exam Sample Problems, Math 246, Spring 2011

Solutions to Final Exam Sample Problems, Math 246, Spring 2011 Solutions to Final Exam Sample Problems, Math 246, Spring 2 () Consider the differential equation dy dt = (9 y2 )y 2 (a) Identify its equilibrium (stationary) points and classify their stability (b) Sketch

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015. APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Power Series and Analytic Function

Power Series and Analytic Function Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 21 Some Reviews of Power Series Differentiation and Integration of a Power Series

More information

7.3 Singular points and the method of Frobenius

7.3 Singular points and the method of Frobenius 284 CHAPTER 7. POWER SERIES METHODS 7.3 Singular points and the method of Frobenius Note: or.5 lectures, 8.4 and 8.5 in [EP], 5.4 5.7 in [BD] While behaviour of ODEs at singular points is more complicated,

More information

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC

Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC Math 215/255: Elementary Differential Equations I Harish N Dixit, Department of Mathematics, UBC First Order Equations Linear Equations y + p(x)y = q(x) Write the equation in the standard form, Calculate

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( ) #7. ( pts) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, λ 5 λ 7 t t ce The general solution is then : 5 7 c c c x( 0) c c 9 9 c+ c c t 5t 7 e + e A sketch of

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Nonlinear differential equations - phase plane analysis

Nonlinear differential equations - phase plane analysis Nonlinear differential equations - phase plane analysis We consider the general first order differential equation for y(x Revision Q(x, y f(x, y dx P (x, y. ( Curves in the (x, y-plane which satisfy this

More information

NAME: MA Sample Final Exam. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded.

NAME: MA Sample Final Exam. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded. NAME: MA 300 Sample Final Exam PUID: INSTRUCTIONS There are 5 problems on 4 pages. Record all your answers on the answer sheet provided. The answer sheet is the only thing that will be graded. No books

More information

Do not write below here. Question Score Question Score Question Score

Do not write below here. Question Score Question Score Question Score MATH-2240 Friday, May 4, 2012, FINAL EXAMINATION 8:00AM-12:00NOON Your Instructor: Your Name: 1. Do not open this exam until you are told to do so. 2. This exam has 30 problems and 18 pages including this

More information

Calculus C (ordinary differential equations)

Calculus C (ordinary differential equations) Calculus C (ordinary differential equations) Lesson 9: Matrix exponential of a symmetric matrix Coefficient matrices with a full set of eigenvectors Solving linear ODE s by power series Solutions to linear

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik AMATH 351 Mar 15, 013 FINAL REVIEW Instructor: Jiri Najemni ABOUT GRADES Scores I have so far will be posted on the website today sorted by the student number HW4 & Exam will be added early next wee Let

More information

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv V Problem 1 (Equations with the dependent variable missing) By means of the substitutions v = dy dt, dv dt = d2 y dt 2 solve the following second-order differential equations 1. t 2 d2 y dt + 2tdy 1 =

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

Exam 3 Review Sheet Math 2070

Exam 3 Review Sheet Math 2070 The syllabus for Exam 3 is Sections 3.6, 5.1 to 5.3, 5.5, 5.6, and 6.1 to 6.4. You should review the assigned exercises in these sections. Following is a brief list (not necessarily complete) of terms,

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination I February 23, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination I February 23, 2017 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

Lecture 16. Theory of Second Order Linear Homogeneous ODEs

Lecture 16. Theory of Second Order Linear Homogeneous ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 16. Theory of Second Order Linear Homogeneous ODEs February 17, 2012 Konstantin Zuev (USC) Math 245, Lecture 16 February 17, 2012 1 / 12 Agenda

More information