2 nd order Linear Homogeneous DEs with Non-Constant Coefficients

Size: px
Start display at page:

Download "2 nd order Linear Homogeneous DEs with Non-Constant Coefficients"

Transcription

1 Math 231, Wed 4-May Wed 4-May-2011 Wednesday, May 4th 2011 Topic:: DEs with Non-Constant Coeffs 2 nd order Linear Homogeneous DEs with Non-Constant Coefficients We consider linear 2 nd order homogeneous DEs of the form y 2 ppxqy 1 qpxqy 0 (1) [For some reason, Boyce & DiPrima begin, in Chapter 5, using x for the independent variable instead of t] The basic theory we learned in Chapter 3 holds for Equation (1) ie, it is a 2 nd order DE, and we seek a fundamental set of solutions ty 1 pxq, y 2 pxqu from which we may build a general solution ypxq c 1 y 1 pxq c 2 y 2 pxq, a form which all solutions take If the DE comes with ICs ypx 0 q y 0, y 1 px 0 q y 1 0, (2) then c 1, c 2 must be chosen so as to satisfy these conditions What makes Problem (1) new is that, without constant coefficients, we do not have a method for finding the solutions of a fundamental set [What we were able to do in Chapter 3 was this: given a first solution y 1 pxq for a fundamental set, use reduction of order and methods from Chapter 2 for 1 st order DEs to generate a 2 nd linearly independent solution y 2 pxq] The theorem (Theorem 321 in the text) on Existence and Uniqueness of solutions to an IVP (1) (2) says that, if p, q are continuous in an open interval I containing x 0, then the IVP has a unique solution that exists on I It is generally in the neighborhood of this initial time that we seek the solution The solutions of such problems are, however, unlikely to be expressible in terms of elementary functions (ie, polynomials, exponentials, logarithms, trig fns) Power Series Solutions As in other chapters, we will proceed as if our DE (1) has a solution of some specified form Since we seek a solution in the neighborhood of x 0, and since elementary functions do not prove

2 successful, we assume the form of a power series ypxq a n px x 0 q n (3) We often use summation notation for power series Summation notation is flexible in several ways which will prove useful when solving for the coefficients a n Included among these, are that it allows one to strip out as many terms as one likes: a n px x 0 q n a 0 a 1 px x 0 q a 2 px x 0 q 2 a n px x 0 q n, n3 it allows for a substitution rule involving the index of summation, much like the substitution rule for integration (changes to the dummy variable): a n px x 0 q n a 0 a 1 px x 0 q a 2 px x 0 q 2 a n px x 0 q n n3 a 0 a 1 px x 0 q a 2 px x 0 q 2 a j 3 px x 0 q j 3 (letting j n 3) j0 We employ ideas like this in the following examples Our first example is chosen so that we see how the method works when the problem is easily solved using other methods Example 1: Exercise 1, Section 52 Problem: Consider the DE y 2 y 0 Find a power series solution in an interval containing x 0 Answer: To guarantee the solution lives on an interval containing t 0, we seek a power series solution centered at 0: ypxq a n x n Taking derivatives and plugging them into the DE, get rpn 2qpn 1qa n 2 a n sx n 0 The only power series that gives zero is the one whose coefficients are all zero ie, 8 0 xn Thus, we can equate coefficients for various powers of x: pn 2qpn 1qa n 2 a n 0, or a n 2 a n, for n 0, 1, 2, pn 2qpn 1q 2

3 Show that a 2 a 0 p2qp1q, a 3 a 1 p3qp2q, a 4 a 2 p4qp3q a 0 4!, a 5 a 3 p5qp4q a 1 5!, a 2k a 0 p2kq!, a 2k 1 a 1 p2k 1q! This means our series really has just two free constants: a 0 and a 1, and looks like ypxq a 0 1 2! x2 4! x4 a 1 x 3! x3 5! x5 a 0 y 1 pxq where y 1 pxq x 2k p2kq! and y 2 pxq Note that, by Chapter 3 methods, we would get general solution x 2k 1 p2k 1q! a 1 y 2 pxq, ypxq c 1 e x c 2 e x Is there a discrepancy here? Using MacLaurin series expansions, we have c 1 e x c 2 e x c 1 x n n! c 1 1 x p xq n c 2 n! x 2 2! x 3 3! c 2 1 x pc 1 c 2 q1 pc 1 c 2 qx pc 1 c 2 q x2k p2kq! a 0 a 1 x 2k p2kq! where a 0 c 1 c 2 and a 1 c 1 c 2 x 2k 1 p2k 1q!, x 2 2! x3 3! x 2k 1 pc 1 c 2 q p2k 1q!, Example 2: Problem: How do we modify the solution strategy for the previous problem in the presence of ICs, say, yp0q 2, y 1 p0q 1? Answer: The fact that these ICs occur at the point where the power series is centered makes this very easy We have 2 yp0q 1 y 1 p0q a n x n x0 a 0 a 1 0 a 2 0 a 0, and na n x n 1 x0 a 1 2a 2 0 3a 3 0 a 1 3

4 Example 3: Airy s Equation: Example 2, p 255 (Section 52) Problem: Compute a series solution around x 0 for the DE y 2 xy 0 Answer: Start with 8 ypxq a nx n and use this and similar expressions for y, y 1 and y 2 to obtain 2a 2 rpn 2qpn 1qa n 2 a n 1 sx n 0, leading to the conclusions Show that a 2 0 and a n 2 a n 1 pn 2qpn 1q a 3 a 0 p3qp2q, a 4 a 1 p4qp3q,, for n 1, 2, 3, a 6 a 3 p6qp5q a 0 p6qp5qp3qp2q, a 7 a 4 p7qp6q a 1 p7qp8qp4qp3q, a 3k a 0 p2qp3qp5qp6q p3k, 1qp3kq a 3k 1 a 1 p3qp4qp7qp8q p3kqp3k while a 3k 2 0, for k 0, 1, 2, Thus, the general solution is ypxq a 0 u 0 pxq u 0 pxq 1 k1 x 3k p2qp3qp5qp6q p3k 1qp3kq and u 1 pxq x k1 1q a 1 u 1 pxq, where x 3k 1 p3qp4qp6qp7q p3kqp3k 1q One cannot really get a computer to compute the full infinite series that define u 0 pxq and u 1 pxq In practice, one takes a truncated approximation, keeping the first N terms for some reasonably-large N and leaving off the rest In the code below, I have called the 50-term truncated approximation of u 0 pxq f1(x), and the 50-term truncated approximation of u 1 pxq f2(x) var( x ) numtermstokeep = 50 f1(x) = 1 f2(x) = x for j in range(1,numtermstokeep): f1(x) = f1(x) + xˆ(3*j) * prod([3*k+1 for k in range(j)]) / factorial(3*j) f2(x) = f2(x) + xˆ(3*j+1) * prod([3*k+2 for k in range(j)]) / factorial(3*j+1) p1=plot(f1(x), -10, 3, color= red ) p2=plot(f2(x), -10, 3, color= blue ) show(p1+p2) 4

5 Example 4: Airy s Equation again, different center for power series: Example 3, p 257 Problem: For the same DE as the previous example, find the first five terms for a power series solution centered at x 1 Answer: Use the series expression 8 ypxq a npx 1q n and the fact that xy px 1qy y to obtain the equation pn 2qpn 1qa n 2 px 1q n a n 1 px 1q n a n px 1q n 0, or 2a 2 pn 2qpn 1qa n 2 px 1q n a n 1 px 1q n a 0 a n px 1q n 0 Proceed from there to obtain the relationships 2a 2 a 0 0, pn 2qpn 1qa n 2 a n 1 a n 0, or a a n 1 a n n 2, n 1, 2, pn 1qpn 2q After a little more work, get ypxq a 0 1 a 1 x 1 2 px 1 1q2 6 px 1 3q3 24 px 1 1q4 1 6 px 1 1q3 12 px 1 1q4 120 px 1q5 30 px 1q5 Knowledge to have for Exam 3: practically anything - discussed in class or class notes This includes, but is not limited to a working knowledge of concepts and how they are defined some sample concepts (to give the flavor of what ideas are important): linear DEs: homogeneous and nonhomogeneous convolution Laplace transform phase plain and portrait equilibrium/critical point a working knowledge of theorems: what they tell you, under what conditions 5

6 - that has come up in homework Skills to have for Exam 3: - linear 1st order homogeneous systems x = Ax (A is n-by-n matrix) eigenpairs of A find eigenvalues and their algebraic/geometric multiplicities find basis of corresponding eigenvectors for each find general soln in settings where GM = AM or GM = 1 for each eigenvalue this includes the complex e-value case this includes the 1 = GM < AM (for one or more eigenvalues) case when A is 2-by-2 with nonzero determinant sketch phase portraits classify the critical/equilibrium point at the origin - special functions: know what they model, be able to use their properties unit step function be able to express piecewise-defined functions using it unit impulse function - various algebraic procedures partial fraction decompositions completing the square determining if a quadratic is irreducible manipulate expressions into forms like those in the transform column, p Laplace transforms find the Laplace transform for a given input function from the definition itself given Entries 1-6, 12-14, and from p 319 find inverse Laplace transform for a given input function use the Laplace transform to solve DEs in the presence of initial conditions various nonhomogeneous terms - for a given linear DE, be able to identify its transfer function identify its impulse response express its solution (when zero ICs) as convolution of two functions - power series methods algebraic manipulation of summation expressions, including separating out some terms from the rest of the summation substitutions term-by-term differentiation solving DEs 6

7 expressing power series coefficients in terms of free variables finding a fundamental set of solutions, an writing a general solution using ICs to nail down a specific solution Wednesday, May 4th 2011 HW:: PS22 7

Series Solutions of Differential Equations

Series Solutions of Differential Equations Chapter 6 Series Solutions of Differential Equations In this chapter we consider methods for solving differential equations using power series. Sequences and infinite series are also involved in this treatment.

More information

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review

= 2e t e 2t + ( e 2t )e 3t = 2e t e t = e t. Math 20D Final Review Math D Final Review. Solve the differential equation in two ways, first using variation of parameters and then using undetermined coefficients: Corresponding homogenous equation: with characteristic equation

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

Nonconstant Coefficients

Nonconstant Coefficients Chapter 7 Nonconstant Coefficients We return to second-order linear ODEs, but with nonconstant coefficients. That is, we consider (7.1) y + p(t)y + q(t)y = 0, with not both p(t) and q(t) constant. The

More information

= L y 1. y 2. L y 2 (2) L c y = c L y, c.

= L y 1. y 2. L y 2 (2) L c y = c L y, c. Definition: A second order linear differential equation for a function y x is a differential equation that can be written in the form A x y B x y C x y = F x. We search for solution functions y x defined

More information

Math 216 First Midterm 6 February, 2017

Math 216 First Midterm 6 February, 2017 Math 216 First Midterm 6 February, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Math 331 Homework Assignment Chapter 7 Page 1 of 9

Math 331 Homework Assignment Chapter 7 Page 1 of 9 Math Homework Assignment Chapter 7 Page of 9 Instructions: Please make sure to demonstrate every step in your calculations. Return your answers including this homework sheet back to the instructor as a

More information

MATH 260 Homework assignment 8 March 21, px 2yq dy. (c) Where C is the part of the line y x, parametrized any way you like.

MATH 260 Homework assignment 8 March 21, px 2yq dy. (c) Where C is the part of the line y x, parametrized any way you like. MATH 26 Homework assignment 8 March 2, 23. Evaluate the line integral x 2 y dx px 2yq dy (a) Where is the part of the parabola y x 2 from p, q to p, q, parametrized as x t, y t 2 for t. (b) Where is the

More information

EXAMPLES OF PROOFS BY INDUCTION

EXAMPLES OF PROOFS BY INDUCTION EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction In this handout we illustrate proofs by induction from several areas of mathematics: linear algebra, polynomial algebra, and calculus. Becoming

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

Systems of Equations and Inequalities. College Algebra

Systems of Equations and Inequalities. College Algebra Systems of Equations and Inequalities College Algebra System of Linear Equations There are three types of systems of linear equations in two variables, and three types of solutions. 1. An independent system

More information

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems. Review Outline To review for the final, look over the following outline and look at problems from the book and on the old exam s and exam reviews to find problems about each of the following topics.. Basics

More information

Math 256: Applied Differential Equations: Final Review

Math 256: Applied Differential Equations: Final Review Math 256: Applied Differential Equations: Final Review Chapter 1: Introduction, Sec 1.1, 1.2, 1.3 (a) Differential Equation, Mathematical Model (b) Direction (Slope) Field, Equilibrium Solution (c) Rate

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

There are six more problems on the next two pages

There are six more problems on the next two pages Math 435 bg & bu: Topics in linear algebra Summer 25 Final exam Wed., 8/3/5. Justify all your work to receive full credit. Name:. Let A 3 2 5 Find a permutation matrix P, a lower triangular matrix L with

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

3.4 Introduction to power series

3.4 Introduction to power series 3.4 Introduction to power series Definition 3.4.. A polynomial in the variable x is an expression of the form n a i x i = a 0 + a x + a 2 x 2 + + a n x n + a n x n i=0 or a n x n + a n x n + + a 2 x 2

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

SOLUTIONS ABOUT ORDINARY POINTS

SOLUTIONS ABOUT ORDINARY POINTS 238 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS In Problems 23 and 24 use a substitution to shift the summation index so that the general term of given power series involves x k. 23. nc n x n2 n 24.

More information

8.7 MacLaurin Polynomials

8.7 MacLaurin Polynomials 8.7 maclaurin polynomials 67 8.7 MacLaurin Polynomials In this chapter you have learned to find antiderivatives of a wide variety of elementary functions, but many more such functions fail to have an antiderivative

More information

Algebra Workshops 10 and 11

Algebra Workshops 10 and 11 Algebra Workshops 1 and 11 Suggestion: For Workshop 1 please do questions 2,3 and 14. For the other questions, it s best to wait till the material is covered in lectures. Bilinear and Quadratic Forms on

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

Power Series and Analytic Function

Power Series and Analytic Function Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 21 Some Reviews of Power Series Differentiation and Integration of a Power Series

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Differential equations

Differential equations Differential equations Math 7 Spring Practice problems for April Exam Problem Use the method of elimination to find the x-component of the general solution of x y = 6x 9x + y = x 6y 9y Soln: The system

More information

Section IV.23. Factorizations of Polynomials over a Field

Section IV.23. Factorizations of Polynomials over a Field IV.23 Factorizations of Polynomials 1 Section IV.23. Factorizations of Polynomials over a Field Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent

More information

Introduction to Differential Equations

Introduction to Differential Equations Introduction to Differential Equations J. M. Veal, Ph. D. version 13.08.30 Contents 1 Introduction to Differential Equations 2 1.1 Definitions and Terminology.................... 2 1.2 Initial-Value Problems.......................

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material.

Exam Basics. midterm. 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. Exam Basics 1 There will be 9 questions. 2 The first 3 are on pre-midterm material. 3 The next 1 is a mix of old and new material. 4 The last 5 questions will be on new material since the midterm. 5 60

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls):

Relevant sections from AMATH 351 Course Notes (Wainwright): Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): Lecture 5 Series solutions to DEs Relevant sections from AMATH 35 Course Notes (Wainwright):.4. Relevant sections from AMATH 35 Course Notes (Poulin and Ingalls): 2.-2.3 As mentioned earlier in this course,

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University

The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University The Theory of Second Order Linear Differential Equations 1 Michael C. Sullivan Math Department Southern Illinois University These notes are intended as a supplement to section 3.2 of the textbook Elementary

More information

Polynomial Solutions of the Laguerre Equation and Other Differential Equations Near a Singular

Polynomial Solutions of the Laguerre Equation and Other Differential Equations Near a Singular Polynomial Solutions of the Laguerre Equation and Other Differential Equations Near a Singular Point Abstract Lawrence E. Levine Ray Maleh Department of Mathematical Sciences Stevens Institute of Technology

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

Chapter 4: Higher-Order Differential Equations Part 1

Chapter 4: Higher-Order Differential Equations Part 1 Chapter 4: Higher-Order Differential Equations Part 1 王奕翔 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 8, 2013 Higher-Order Differential Equations Most of this

More information

Ch 10.1: Two Point Boundary Value Problems

Ch 10.1: Two Point Boundary Value Problems Ch 10.1: Two Point Boundary Value Problems In many important physical problems there are two or more independent variables, so the corresponding mathematical models involve partial differential equations.

More information

DIFFERENTIAL EQUATIONS COURSE NOTES, LECTURE 2: TYPES OF DIFFERENTIAL EQUATIONS, SOLVING SEPARABLE ODES.

DIFFERENTIAL EQUATIONS COURSE NOTES, LECTURE 2: TYPES OF DIFFERENTIAL EQUATIONS, SOLVING SEPARABLE ODES. DIFFERENTIAL EQUATIONS COURSE NOTES, LECTURE 2: TYPES OF DIFFERENTIAL EQUATIONS, SOLVING SEPARABLE ODES. ANDREW SALCH. PDEs and ODEs, order, and linearity. Differential equations come in so many different

More information

Math 2233 Homework Set 7

Math 2233 Homework Set 7 Math 33 Homework Set 7 1. Find the general solution to the following differential equations. If initial conditions are specified, also determine the solution satisfying those initial conditions. a y 4

More information

5.1 Second order linear differential equations, and vector space theory connections.

5.1 Second order linear differential equations, and vector space theory connections. Math 2250-004 Wed Mar 1 5.1 Second order linear differential equations, and vector space theory connections. Definition: A vector space is a collection of objects together with and "addition" operation

More information

Columbus State Community College Mathematics Department. CREDITS: 5 CLASS HOURS PER WEEK: 5 PREREQUISITES: MATH 2173 with a C or higher

Columbus State Community College Mathematics Department. CREDITS: 5 CLASS HOURS PER WEEK: 5 PREREQUISITES: MATH 2173 with a C or higher Columbus State Community College Mathematics Department Course and Number: MATH 2174 - Linear Algebra and Differential Equations for Engineering CREDITS: 5 CLASS HOURS PER WEEK: 5 PREREQUISITES: MATH 2173

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 10, 2011 FORM A Name: Student Number: Section: This exam has 10 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Introduction and Review of Power Series

Introduction and Review of Power Series Introduction and Review of Power Series Definition: A power series in powers of x a is an infinite series of the form c n (x a) n = c 0 + c 1 (x a) + c 2 (x a) 2 +...+c n (x a) n +... If a = 0, this is

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

CHAPTER 1. Theory of Second Order. Linear ODE s

CHAPTER 1. Theory of Second Order. Linear ODE s A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 2 A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY

More information

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity Topic 3 Outline 1 Limits and Continuity What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity D. Kalajdzievska (University of Manitoba) Math 1520 Fall 2015 1 / 27 Topic 3 Learning

More information

10. e tan 1 (y) 11. sin 3 x

10. e tan 1 (y) 11. sin 3 x MATH B FINAL REVIEW DISCLAIMER: WHAT FOLLOWS IS A LIST OF PROBLEMS, CONCEPTUAL QUESTIONS, TOPICS, AND SAMPLE PROBLEMS FROM THE TEXTBOOK WHICH COMPRISE A HEFTY BUT BY NO MEANS EXHAUSTIVE LIST OF MATERIAL

More information

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010

Assignment. Disguises with Trig Identities. Review Product Rule. Integration by Parts. Manipulating the Product Rule. Integration by Parts 12/13/2010 Fitting Integrals to Basic Rules Basic Integration Rules Lesson 8.1 Consider these similar integrals Which one uses The log rule The arctangent rule The rewrite with long division principle Try It Out

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2... 3 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 6. REVIEW OF POWER SERIES REVIEW MATERIAL Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric series, tests

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Ch 6.2: Solution of Initial Value Problems

Ch 6.2: Solution of Initial Value Problems Ch 6.2: Solution of Initial Value Problems! The Laplace transform is named for the French mathematician Laplace, who studied this transform in 1782.! The techniques described in this chapter were developed

More information

Lecture 31. Basic Theory of First Order Linear Systems

Lecture 31. Basic Theory of First Order Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 31. Basic Theory of First Order Linear Systems April 4, 2012 Konstantin Zuev (USC) Math 245, Lecture 31 April 4, 2012 1 / 10 Agenda Existence

More information

Lesson 6b Rational Exponents & Radical Functions

Lesson 6b Rational Exponents & Radical Functions Lesson 6b Rational Exponents & Radical Functions In this lesson, we will continue our review of Properties of Exponents and will learn some new properties including those dealing with Rational and Radical

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by MATH 1700 MATH 1700 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 2 / 11 Rational functions A rational function is one of the form where P and Q are

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Theorem 3: The solution space to the second order homogeneous linear differential equation y p x y q x y = 0 is 2-dimensional.

Theorem 3: The solution space to the second order homogeneous linear differential equation y p x y q x y = 0 is 2-dimensional. Unlike in the previous example, and unlike what was true for the first order linear differential equation y p x y = q x there is not a clever integrating factor formula that will always work to find the

More information

Systems of Second Order Differential Equations Cayley-Hamilton-Ziebur

Systems of Second Order Differential Equations Cayley-Hamilton-Ziebur Systems of Second Order Differential Equations Cayley-Hamilton-Ziebur Characteristic Equation Cayley-Hamilton Cayley-Hamilton Theorem An Example Euler s Substitution for u = A u The Cayley-Hamilton-Ziebur

More information

A Partial List of Topics: Math Spring 2009

A Partial List of Topics: Math Spring 2009 A Partial List of Topics: Math 112 - Spring 2009 This is a partial compilation of a majority of the topics covered this semester and may not include everything which might appear on the exam. The purpose

More information

Math 3 Unit 5: Polynomial and Rational Representations and Modeling

Math 3 Unit 5: Polynomial and Rational Representations and Modeling Approximate Time Frame: 5-6 weeks Connections to Previous Learning: In Math 1 and 2, students worked with one-variable equations. They studied linear, exponential and quadratic functions and compared them

More information

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions Title Integration of Rational Functions by Partial Fractions MATH 1700 December 6, 2016 MATH 1700 Partial Fractions December 6, 2016 1 / 11 Readings Readings Readings: Section 7.4 MATH 1700 Partial Fractions

More information

Series Solutions Near an Ordinary Point

Series Solutions Near an Ordinary Point Series Solutions Near an Ordinary Point MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 Ordinary Points (1 of 2) Consider the second order linear homogeneous

More information

Section 5.2 Series Solution Near Ordinary Point

Section 5.2 Series Solution Near Ordinary Point DE Section 5.2 Series Solution Near Ordinary Point Page 1 of 5 Section 5.2 Series Solution Near Ordinary Point We are interested in second order homogeneous linear differential equations with variable

More information

Series Solutions. 8.1 Taylor Polynomials

Series Solutions. 8.1 Taylor Polynomials 8 Series Solutions 8.1 Taylor Polynomials Polynomial functions, as we have seen, are well behaved. They are continuous everywhere, and have continuous derivatives of all orders everywhere. It also turns

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

Welcome to Math 257/316 - Partial Differential Equations

Welcome to Math 257/316 - Partial Differential Equations Welcome to Math 257/316 - Partial Differential Equations Instructor: Mona Rahmani email: mrahmani@math.ubc.ca Office: Mathematics Building 110 Office hours: Mondays 2-3 pm, Wednesdays and Fridays 1-2 pm.

More information

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016 Mathematics 36 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 9 and 2, 206 Every rational function (quotient of polynomials) can be written as a polynomial

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Analytic Number Theory Solutions Sean Li Cornell University sxl6@cornell.edu Jan. 03 Introduction This document is a work-in-progress solution manual for Tom Apostol s Introduction to Analytic Number Theory.

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 27: 7.8 Repeated Eigenvalues

Lecture Notes for Math 251: ODE and PDE. Lecture 27: 7.8 Repeated Eigenvalues Lecture Notes for Math 25: ODE and PDE. Lecture 27: 7.8 Repeated Eigenvalues Shawn D. Ryan Spring 22 Repeated Eigenvalues Last Time: We studied phase portraits and systems of differential equations with

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations Definition A first-order differential equation that can be written in the form Is said to be separable. Note: the variables of a separable equation can be written as Examples Solve

More information

APPM 2360: Midterm exam 3 April 19, 2017

APPM 2360: Midterm exam 3 April 19, 2017 APPM 36: Midterm exam 3 April 19, 17 On the front of your Bluebook write: (1) your name, () your instructor s name, (3) your lecture section number and (4) a grading table. Text books, class notes, cell

More information

Jim Lambers MAT 419/519 Summer Session Lecture 13 Notes

Jim Lambers MAT 419/519 Summer Session Lecture 13 Notes Jim Lambers MAT 419/519 Summer Session 2011-12 Lecture 13 Notes These notes correspond to Section 4.1 in the text. Least Squares Fit One of the most fundamental problems in science and engineering is data

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

Introduction to the z-transform

Introduction to the z-transform z-transforms and applications Introduction to the z-transform The z-transform is useful for the manipulation of discrete data sequences and has acquired a new significance in the formulation and analysis

More information

Cathedral Catholic High School Course Catalog

Cathedral Catholic High School Course Catalog Cathedral Catholic High School Course Catalog Course Title: Pre-Calculus Course Description: This course is designed to prepare students to begin their college studies in introductory Calculus. Students

More information

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2. Handout on induction and written assignment 1. MA113 Calculus I Spring 2007 Why study mathematical induction? For many students, mathematical induction is an unfamiliar topic. Nonetheless, this is an important

More information

Week 12: Optimisation and Course Review.

Week 12: Optimisation and Course Review. Week 12: Optimisation and Course Review. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway November 21-22, 2016 Assignments. Problem

More information

Math 216 Second Midterm 16 November, 2017

Math 216 Second Midterm 16 November, 2017 Math 216 Second Midterm 16 November, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

PARTIAL FRACTIONS. Introduction

PARTIAL FRACTIONS. Introduction Introduction PARTIAL FRACTIONS Writing any given proper rational expression of one variable as a sum (or difference) of rational expressions whose denominators are in the simplest forms is called the partial

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

Generalized eigenspaces

Generalized eigenspaces Generalized eigenspaces November 30, 2012 Contents 1 Introduction 1 2 Polynomials 2 3 Calculating the characteristic polynomial 5 4 Projections 7 5 Generalized eigenvalues 10 6 Eigenpolynomials 15 1 Introduction

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 4884 NOVEMBER 9, 7 Summary This is an introduction to ordinary differential equations We

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information