Self-Organized Criticality in Models of Complex System Dynamics

Size: px
Start display at page:

Download "Self-Organized Criticality in Models of Complex System Dynamics"

Transcription

1 Self-Organized Criticality in Models of Complex System Dynamics Department of Theoretical Physics, State University Saint-Petersburg Dual Year Spain-Russia Particle Physics, Nuclear Physics and Astroparticle Physics, Barcelona, Spain, 5-12 November 2011

2 Summary The Bak-Sneppen model of self-organized biological evolution [P. Bak and K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] in the case of randomly interacting species can be investigated analytically. The master equation obtained in [J. de Boer, B.Derrida, H.Flyvbjerg, A.D.Jackson, and T.Wettig, Phys.Rev. Lett. 73 (1994) 906] is solved exactly for finite system [Yu.M.Pis mak, Phys. Rev. E 56 (1997) R1325], and for the infinite system it is represented in terms of an infinite set of variables which can be considered as an analog to the set of integrals of motion of completely integrable system. Each of this variables remains to be constant but its influence on the evolution process is restricted in time and after definite point in time its value is excluded from description of the system dynamics [Yu.M.Pis mak, Phys. Rev. Lett. 83 (1999) 4892].

3 Summary The possibility of application of the Bak-Sneppen approach for modeling of evolution of real complex systems is demonstrated in the case of investigation of evolution of large open codes programm products. [A.A.Gorshenev, Yu.M.Pis mak Phys. Rev. E, V.70, P , 2004]

4 Formulation of model In the framework of the BSM the evolution of biological ecosystem is described as follows. The state of the ecosystem of N species is characterized by a set {x 1,..., x N } of N number, 0 x i 1. The number x i represents the barrier of the i-th species toward further evolution. Initially, each x i is set to a randomly chosen value. At each time step the barrier x i with minimal value and the barriers of its nears neighbors are replaced by new random numbers. In the random neighbor model (RNM) [5] the K 1 of the specie with minimal barriers are chosen at random. The interaction structure in the local model nears neighbors is given a near neighbor graph (for the lattice in D-dimensional space). Thus, for each species in the LM the nearest neighbors are assumed to be fixed.

5 Summary For the LM t he most of results are obtained by numerical experiments or in the framework of mean field approximation. The RNM is more convenient for analytical studies. The master equations obtained in [6] for RNM are very useful for this aim. These equations appeared to be exact solvable. The stationary solution was found in [6]. The time dependent solutions were obtained in [7] ( infinite system), [8] (finite syst

6 State of system after large time of evolution b(i) i

7 Master equations for RNM The master equations for the RNM are obtained in [3]. They are of the form: P n (t + 1) = A n P n (t) + B n+1 P n+1 (t) + C n 1 P n 1 (t)+ +D n+2 P n+2 (t) + (B 1 δ n,0 + A 1 δ n,1 + C 1 δ n,2 )P 0 (t).

8 Master equations for RNM The master equations for the RNM are obtained in [3]. They are of the form: P n (t + 1) = A n P n (t) + B n+1 P n+1 (t) + C n 1 P n 1 (t)+ +D n+2 P n+2 (t) + (B 1 δ n,0 + A 1 δ n,1 + C 1 δ n,2 )P 0 (t). Here, P n (t) is the probability that n is the number of barriers having values less than a fixed parameter λ at the time t; 0 n N, 0 λ 1, t 0. The initial probability distribution P n (0) is supposed to be given. For 0 < n N A n = 2λ(1 λ) + n 1 λ(3λ 2), N 1 B n = (1 λ) 2 + n 1 (1 λ)(3λ 1), N 1 C n = λ 2 n 1 N 1 λ2, D n = (1 λ) 2 n 1 N 1. (1) A n = B n = C n = D n = 0 for n = 0 and n > N.

9 Dynamical variables and parameters It holds P n (t) 0, N P n (t) = 1. n=0 For analysis of master equations it is convenient to introduce the generating function q(z, u): N q(z, u) P n (t)z n u t. t=0 n=0 In virtue of definition, q(z, t) is polynomial in z, analytical in u for u < 1 and q(1, u) = 1 1 u.

10 Master equation for generating function q(z, u) The master equations can be rewritten for the generating function q(z, u) as follows: ( ( 1 1 u (q(z, u) q(z, 0)) = (1 λ+λz)2 1 1 z ( 1 z N 1 z )) z (q(z, u) q(0, u)) + q(0, u) ). The function q(z, 0) = N n=0 P n (0)z n in (8) is assumed to be given.

11 Exact solution of the master equations The generating function q(z, u) can be presented in the form q(z, u) = z N 1 e R(z,u) u +q(0, u)(1 + z N 1 e R(z,u) u λ 1 λ z λ 1 λ z e R(x,u) q(x, 0)dx (1 λ + λx) 2 (1 x) + e R(x,u) (1 u(1 λ + λx)2 )dx (1 λ + λx) 2 (1 x) ), where q(0, u) = 1 λ 1 λ 1 λ 1 λ e R(x,u) q(x,0)dx (1 λ+λx) 2 (1 x) e R(x,u) (1 u(1 λ+λx)2 )dx (1 λ+λx) 2 (1 x).

12 Infinite system with K random neighbors The master equation in the case N = and K interacting random neighbors is of the form P n (t + 1) = K Cnθ(K l l)λ l (1 λ) K l P n l+1 (t) + l=0 +θ(k n)c n K λ n (1 λ) K n P 0 (t). Here, P n (t) is the probability that n is the number of barriers having values less than a fixed parameter λ at the time t; 0 λ 1, t 0 n 0. For compact writing we used the threshold function θ(n) defined as follows θ(n) = 1 for n 0 and θ(n) = 0 for n < 0. The initial probability distribution P n (0) is supposed to be given.

13 Master equation for q(z, u) The generating function q(z, u) fulfil the equation (z u(1 λ+λz) K )q(z, u) = (z 1)u(1 λ+λz) K q(0, u)+zq(z, 0). If α(u) is the analytical in u solution of equation and then α(u) u(1 + λ(α(u) 1)) K = 0. β(z) = z (1 λ + λz) K, α(β(z)) = z, β(α(u)) = u, and q(α(y), u) d(y, u) = 1 α(y) is analytical in y and u in the neighborhood of y = 0 and u = 0: d(y, u) = C n (t)y n u t. n,t=0

14 Equations for C n (t) The coefficients C n (t) fulfill the equations C n (t + 1) = C n+1 (t) for n 0, t 0. The initial conditions c 0 = C n (0) are defined by the function q(z, 0). c n = 1 2πi z =ɛ q(z, 0)β(z) n (1 z) ln β(z)dz z (2) The equation for C n (t) has the simple solution: C n (t) = c n+t.

15 Asymptotic of c n for large n c n = { [ K 1 K 1 M 2 + K 2 ] ( ) K + 1 } 1 2πKn 2n(K 1) 6K 2 + O n 2 for λ = 1/K λ cr, c n = θ(λ cr λ)(1 Kλ) + z { 0 Ke nγ(z 0 ) z 0 2 φ 0 K 2π(K 1)n 3 2n(K 1) [φ 2+ 2(K + 1) + z 0 K φ 1 + K K + 1 6z0 2K 2 φ 0 n=0 ] ( ) } 1 + O n 2 if λ λ cr. Here, we have used the following notations: ( ) M 2 P n (0)n 2, φ n = n+1 q(z, 0) z n+1. 1 z z=z0 We have denoted γ(z) ln(β(z)). In the saddle point z 0 we have γ (z 0 ) = 0.

16 Self-Organized Criticality in Software Evolution The better sources of information about changes in computer programs are version control systems. One of them is Concurrent Versions System (CVS). It keeps information about changes happened in short time intervals. Using the CVS in our work, we studied the histories of three software projects: Mozilla web browser, Free-BSD Operating System and Gnu Emacs text editor. For each of these projects we analyzed only files written in the basic for the project language. They are: C++ for Mozilla, C for Free-BSD and Lisp for Emacs. Header files for C/C++ were not studied. Total amounts of the processed files are approximately in order 9000, 11000, 900 for Mozilla, Free-BSD, Emacs. Total lengths of RCS-files are , and lines. Total amount of the processed data exceeds 2 Gigabytes. Due to some resource limitations only part of the Free-BSD CVS storage ware processed. Histories of all three projects are stored under control of the CVS and were publicly available during our research period from the corresponding Internet servers.

17 Self-Organized Criticality in Software Evolution. Distribution P(A) for Emacs log A

18 Self-Organized Criticality in Software Evolution.Distribution P(D) for Emacs log D

19 Self-Organized Criticality in Software Evolution. Distribution P(A) for Free-BSD log A

20 Self-Organized Criticality in Software Evolution. Distribution P(D) for Free-BSD log D

21 Distribution P(S) of temporal durations of avalanches for a one dimensional lattice model log S

22 Distribution P(S) of temporal durations of avalanches for a random neighbor model log S

23 Self-Organized Criticality in Software Evolution In our work we studied two modifications of the BS-model: on one-dimensional lattice with periodic boundary conditions and with one random neighbor. The α coefficient always taken as 1 2. The initial size of the system was 8000 elements. The experiment went on until one million of avalanches registered. For the one-dimensional lattice with periodic boundary conditions version of model we got the following results: 1 P(S) distribution of temporal durations of avalanches. P(S) in log-log scale. is a power law with exponent τ = ± Distribution P(A) of number of inserted nodes is a power law with exponent µ a 1.45 ± Distribution P(D) of number of deleted nodes is a power law with exponent µ d = 1.47 ± 0.02

24 For the one random neighbor version of model we got the following results: 1 P(S) distribution of temporal durations of avalanches. At fig.?? P(S) is shown in log-log scale. P(S) is a power law with exponent τ = ± Distribution P(A) of number of inserted nodes is a power law with exponent µ a 1.98 ± Distribution P(D) of number of deleted nodes is a power law with exponent µ d = 2.10 ± 0.02

25 Conclusions Self-organized criticality seems to be fruitful approach for investigations of evolution of natural complex systems.

26 Thank you for your attention!

Self-organized Criticality in a Modified Evolution Model on Generalized Barabási Albert Scale-Free Networks

Self-organized Criticality in a Modified Evolution Model on Generalized Barabási Albert Scale-Free Networks Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 512 516 c International Academic Publishers Vol. 47, No. 3, March 15, 2007 Self-organized Criticality in a Modified Evolution Model on Generalized Barabási

More information

A Simple Model of Self-organized Biological Evolution. Abstract

A Simple Model of Self-organized Biological Evolution. Abstract A Simple Model of Self-organized Biological Evolution Jan de Boer 1, Bernard Derrida 2,3,4, Henrik Flyvbjerg 2,5, Andrew D. Jackson 1, and Tilo Wettig 1 1 Department of Physics, State University of New

More information

Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network Added with Nonlinear Preference

Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network Added with Nonlinear Preference Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 137 142 c International Academic Publishers Vol. 48, No. 1, July 15, 2007 Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network

More information

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 242 246 c International Academic Publishers Vol. 42, No. 2, August 15, 2004 Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Multiobjective Optimization of an Extremal Evolution Model

Multiobjective Optimization of an Extremal Evolution Model Multiobjective Optimization of an Extremal Evolution Model Mohamed Fathey Elettreby Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt Reprint requests to M. F. E.;

More information

Cover times of random searches

Cover times of random searches Cover times of random searches by Chupeau et al. NATURE PHYSICS www.nature.com/naturephysics 1 I. DEFINITIONS AND DERIVATION OF THE COVER TIME DISTRIBUTION We consider a random walker moving on a network

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks

Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire Neuron Model Based on Small World Networks Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 466 470 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Self-organized Criticality and Synchronization in a Pulse-coupled Integrate-and-Fire

More information

A Simple Model of Evolution with Variable System Size

A Simple Model of Evolution with Variable System Size A Simple Model of Evolution with Variable System Size Claus Wilke and Thomas Martinetz Institut für Neuroinformatik Ruhr-Universität Bochum (Submitted: ; Printed: September 28, 2001) A simple model of

More information

Nonconservative Abelian sandpile model with the Bak-Tang-Wiesenfeld toppling rule

Nonconservative Abelian sandpile model with the Bak-Tang-Wiesenfeld toppling rule PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000 Nonconservative Abelian sandpile model with the Bak-Tang-Wiesenfeld toppling rule Alexei Vázquez 1,2 1 Abdus Salam International Center for Theoretical

More information

Branching Process Approach to Avalanche Dynamics on Complex Networks

Branching Process Approach to Avalanche Dynamics on Complex Networks Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 633 637 Branching Process Approach to Avalanche Dynamics on Complex Networks D.-S. Lee, K.-I. Goh, B. Kahng and D. Kim School of

More information

Separable Equations (1A) Young Won Lim 3/24/15

Separable Equations (1A) Young Won Lim 3/24/15 Separable Equations (1A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

Supplementary Information: The origin of bursts and heavy tails in human dynamics

Supplementary Information: The origin of bursts and heavy tails in human dynamics Supplementary Information: The origin of bursts and heavy tails in human dynamics Albert-László Barabási Department of Physics, University of Notre Dame, IN 46556, USA (Dated: February 7, 2005) 1 Contents

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

The Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension

The Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension Phys. Rev. E 56, 518 (1997. 518 The Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension S. Lübeck and K. D. Usadel Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität Duisburg,

More information

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors . Find the minimum value of the function f (x) x 2 + (A) 6 (B) 3 6 (C) 4 Solution. We have f (x) x 2 + + x 2 + (D) 3 4, which is equivalent to x 0. x 2 + (E) x 2 +, x R. x 2 + 2 (x 2 + ) 2. How many solutions

More information

Numerical evaluation of the upper critical dimension of percolation in scale-free networks

Numerical evaluation of the upper critical dimension of percolation in scale-free networks umerical evaluation of the upper critical dimension of percolation in scale-free networks Zhenhua Wu, 1 Cecilia Lagorio, 2 Lidia A. Braunstein, 1,2 Reuven Cohen, 3 Shlomo Havlin, 3 and H. Eugene Stanley

More information

arxiv:cond-mat/ v1 17 Aug 1994

arxiv:cond-mat/ v1 17 Aug 1994 Universality in the One-Dimensional Self-Organized Critical Forest-Fire Model Barbara Drossel, Siegfried Clar, and Franz Schwabl Institut für Theoretische Physik, arxiv:cond-mat/9408046v1 17 Aug 1994 Physik-Department

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 16 Dec 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 16 Dec 1997 arxiv:cond-mat/9712183v1 [cond-mat.stat-mech] 16 Dec 1997 Sandpiles on a Sierpinski gasket Frank Daerden, Carlo Vanderzande Departement Wiskunde Natuurkunde Informatica Limburgs Universitair Centrum 3590

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Complex Systems Methods 10. Self-Organized Criticality (SOC)

Complex Systems Methods 10. Self-Organized Criticality (SOC) Complex Systems Methods 10. Self-Organized Criticality (SOC) Eckehard Olbrich e.olbrich@gmx.de http://personal-homepages.mis.mpg.de/olbrich/complex systems.html Potsdam WS 2007/08 Olbrich (Leipzig) 18.01.2007

More information

Parallel Dynamics and Computational Complexity of the Bak-Sneppen Model

Parallel Dynamics and Computational Complexity of the Bak-Sneppen Model University of Massachusetts Amherst From the SelectedWorks of Jonathan Machta 2001 Parallel Dynamics and Computational Complexity of the Bak-Sneppen Model Jonathan Machta, University of Massachusetts Amherst

More information

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years.

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years. Exam 4 Review Approximate the number using a calculator. Round your answer to three decimal places. 1) 2 1.7 2) e -1.4 Use the compound interest formulas A = P 1 + r n nt and A = Pe rt to solve. 3) Find

More information

Temporal Evolution of the ScientificCollaboration Network in Europe

Temporal Evolution of the ScientificCollaboration Network in Europe Temporal Evolution of the ScientificCollaboration Network in Europe Jori Jämsä 23.3.2015 Instructor: Ph.D Raj Kumar Pan Supervisor: Prof. Harri Ehtamo This work can be saved and published in Aalto University

More information

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 1011 1016 c International Academic Publishers Vol. 46, No. 6, December 15, 2006 A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

More information

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual 1. n 5 = 0 n 5 = 1 n 5 = 2 n 5 = 3 n 5 = 4 n 5 = 5 d n 5,0,0,0,0 4 0 0 0 0 1 5 4,1,0,0,0 12 4 0 0 4 0 20 3,2,0,0,0 12 0 4 4 0

More information

Distributed MAP probability estimation of dynamic systems with wireless sensor networks

Distributed MAP probability estimation of dynamic systems with wireless sensor networks Distributed MAP probability estimation of dynamic systems with wireless sensor networks Felicia Jakubiec, Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania https://fling.seas.upenn.edu/~life/wiki/

More information

Clusters and Percolation

Clusters and Percolation Chapter 6 Clusters and Percolation c 2012 by W. Klein, Harvey Gould, and Jan Tobochnik 5 November 2012 6.1 Introduction In this chapter we continue our investigation of nucleation near the spinodal. We

More information

COMP 382: Reasoning about algorithms

COMP 382: Reasoning about algorithms Fall 2014 Unit 4: Basics of complexity analysis Correctness and efficiency So far, we have talked about correctness and termination of algorithms What about efficiency? Running time of an algorithm For

More information

arxiv:cond-mat/ v1 3 Oct 2002

arxiv:cond-mat/ v1 3 Oct 2002 Metric structure of random networks S.N. Dorogovtsev,,, J.F.F. Mendes,, and A.N. Samukhin,, Departamento de Física and Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto Rua do Campo

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

Avalanches in Fractional Cascading

Avalanches in Fractional Cascading Avalanches in Fractional Cascading Angela Dai Advisor: Prof. Bernard Chazelle May 8, 2012 Abstract This paper studies the distribution of avalanches in fractional cascading, linking the behavior to studies

More information

Exact solution of site and bond percolation. on small-world networks. Abstract

Exact solution of site and bond percolation. on small-world networks. Abstract Exact solution of site and bond percolation on small-world networks Cristopher Moore 1,2 and M. E. J. Newman 2 1 Departments of Computer Science and Physics, University of New Mexico, Albuquerque, New

More information

Self-organized criticality and the self-organizing map

Self-organized criticality and the self-organizing map PHYSICAL REVIEW E, VOLUME 63, 036130 Self-organized criticality and the self-organizing map John A. Flanagan Neural Networks Research Center, Helsinki University of Technology, P.O. Box 5400, FIN-02015

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

Russia. St. Petersburg, , Russia

Russia. St. Petersburg, , Russia PACS 81.07.Bc, 61.72.Cc An asymptotic formula for displacement field in triangular lattice with vacancy V.A. Tsaplin 1, V.A. Kuzkin 1,2 vtsaplin@yandex.ru, kuzkinva@gmail.com 1 Institute for Problems in

More information

QUESTION 6 (16 Marks) A continuous random variable X has a Weibull distribution if it has a probability distribution function given by

QUESTION 6 (16 Marks) A continuous random variable X has a Weibull distribution if it has a probability distribution function given by QUESTION 6 (6 Marks) A continuous random variable X has a Weibull distribution if it has a probability distribution function given by x f ( x) e x / if x otherwise where and are positive constants. The

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS International Journal of Bifurcation and Chaos, Vol 9, No 11 (1999) 19 4 c World Scientific Publishing Company STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS ZBIGNIEW

More information

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( )

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( ) 1. The growth of a cancerous tumor can be modeled by the Gompertz Law: ( ) dn b = an ln, (1) dt N where N measures the size of the tumor. (a) Interpret the parameters a and b (both non-negative) biologically.

More information

Controlling chaos in random Boolean networks

Controlling chaos in random Boolean networks EUROPHYSICS LETTERS 20 March 1997 Europhys. Lett., 37 (9), pp. 597-602 (1997) Controlling chaos in random Boolean networks B. Luque and R. V. Solé Complex Systems Research Group, Departament de Fisica

More information

Invariance properties in the root sensitivity of time-delay systems with double imaginary roots

Invariance properties in the root sensitivity of time-delay systems with double imaginary roots Invariance properties in the root sensitivity of time-delay systems with double imaginary roots Elias Jarlebring, Wim Michiels Department of Computer Science, KU Leuven, Celestijnenlaan A, 31 Heverlee,

More information

4.3 Composition Series

4.3 Composition Series 4.3 Composition Series Let M be an A-module. A series for M is a strictly decreasing sequence of submodules M = M 0 M 1... M n = {0} beginning with M and finishing with {0 }. The length of this series

More information

0.1 Naive formulation of PageRank

0.1 Naive formulation of PageRank PageRank is a ranking system designed to find the best pages on the web. A webpage is considered good if it is endorsed (i.e. linked to) by other good webpages. The more webpages link to it, and the more

More information

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004 Conservation laws for the voter model in complex networks arxiv:cond-mat/0408101v1 [cond-mat.other] 4 Aug 2004 Krzysztof Suchecki, 1,2 Víctor M. Eguíluz, 1 and Maxi San Miguel 1 1 Instituto Mediterráneo

More information

arxiv:q-bio/ v1 [q-bio.pe] 23 Jan 2006

arxiv:q-bio/ v1 [q-bio.pe] 23 Jan 2006 arxiv:q-bio/0601039v1 [q-bio.pe] 23 Jan 2006 Food-chain competition influences gene s size. Marta Dembska 1, Miros law R. Dudek 1 and Dietrich Stauffer 2 1 Instituteof Physics, Zielona Góra University,

More information

Heat Equation on Unbounded Intervals

Heat Equation on Unbounded Intervals Heat Equation on Unbounded Intervals MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 28 Objectives In this lesson we will learn about: the fundamental solution

More information

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION Kenichi Nakazato Nagoya University Graduate School of Human Informatics nakazato@create.human.nagoya-u.ac.jp Takaya Arita Nagoya University

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 Apr 2006

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 Apr 2006 Exact solutions for models of evolving networks with addition and deletion of nodes arxiv:cond-mat/6469v [cond-mat.stat-mech] 4 Apr 26 Cristopher Moore,,2, 3 Gourab Ghoshal, 4, 5 and M. E. J. Newman 3,

More information

CRITICAL BEHAVIOR IN AN EVOLUTIONARY ULTIMATUM GAME WITH SOCIAL STRUCTURE

CRITICAL BEHAVIOR IN AN EVOLUTIONARY ULTIMATUM GAME WITH SOCIAL STRUCTURE Advances in Complex Systems, Vol. 12, No. 2 (2009) 221 232 c World Scientific Publishing Company CRITICAL BEHAVIOR IN AN EVOLUTIONARY ULTIMATUM GAME WITH SOCIAL STRUCTURE VÍCTOR M. EGUÍLUZ, and CLAUDIO

More information

KINETICS OF COMPLEX SOCIAL CONTAGION. János Kertész Central European University. Pohang, May 27, 2016

KINETICS OF COMPLEX SOCIAL CONTAGION. János Kertész Central European University. Pohang, May 27, 2016 KINETICS OF COMPLEX SOCIAL CONTAGION János Kertész Central European University Pohang, May 27, 2016 Theory: Zhongyuan Ruan, Gerardo Iniguez, Marton Karsai, JK: Kinetics of social contagion Phys. Rev. Lett.

More information

Complex Functions (1A) Young Won Lim 2/22/14

Complex Functions (1A) Young Won Lim 2/22/14 Complex Functions (1A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

arxiv: v2 [physics.soc-ph] 15 Nov 2017

arxiv: v2 [physics.soc-ph] 15 Nov 2017 arxiv:1702.00239v2 [physics.soc-ph] 15 Nov 2017 Mean Field Analysis of Algorithms for Scale-free Networks in Molecular Biology S Konini and EJ Janse van Rensburg Department of Mathematics and Statistics,

More information

Self-Averaging Expectation Propagation

Self-Averaging Expectation Propagation Self-Averaging Expectation Propagation Burak Çakmak Department of Electronic Systems Aalborg Universitet Aalborg 90, Denmark buc@es.aau.dk Manfred Opper Department of Artificial Intelligence Technische

More information

HOMEWORK 7 SOLUTIONS

HOMEWORK 7 SOLUTIONS HOMEWORK 7 SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Using the method of Lagrange multipliers, find the largest and smallest values of the function f(x, y) xy on the ellipse x + y 1. Solution: The

More information

General Least Squares Fitting

General Least Squares Fitting Appendix B General Least Squares Fitting B.1 Introduction Previously you have done curve fitting in two dimensions. Now you will learn how to extend that to multiple dimensions. B.1.1 Linearizable Non-linear

More information

A case study for self-organized criticality and complexity in forest landscape ecology

A case study for self-organized criticality and complexity in forest landscape ecology Chapter 1 A case study for self-organized criticality and complexity in forest landscape ecology Janine Bolliger Swiss Federal Research Institute (WSL) Zürcherstrasse 111; CH-8903 Birmendsdorf, Switzerland

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G

More information

On the Damage-Spreading in the Bak-Sneppen Model. Max-Planck-Institut fur Physik komplexer Systeme, Nothnitzer Str. 38, D Dresden.

On the Damage-Spreading in the Bak-Sneppen Model. Max-Planck-Institut fur Physik komplexer Systeme, Nothnitzer Str. 38, D Dresden. On the Damage-Spreading in the Bak-Sneppen Model Angelo Valleriani a and Jose Luis Vega b Max-Planck-Institut fur Physik komplexer Systeme, Nothnitzer Str. 38, D-01187 Dresden. We explain the results recently

More information

Latent voter model on random regular graphs

Latent voter model on random regular graphs Latent voter model on random regular graphs Shirshendu Chatterjee Cornell University (visiting Duke U.) Work in progress with Rick Durrett April 25, 2011 Outline Definition of voter model and duality with

More information

Critical behavior of nonequilibrium phase transitions to magnetically ordered states

Critical behavior of nonequilibrium phase transitions to magnetically ordered states PHYSICAL REVIEW E, VOLUME 65, 4611 Critical behavior of nonequilibrium phase transitions to magnetically ordered states Thomas Birner, Karen Lippert, Reinhard Müller, Adolf Kühnel, and Ulrich Behn Institut

More information

Learning Bayesian Networks for Biomedical Data

Learning Bayesian Networks for Biomedical Data Learning Bayesian Networks for Biomedical Data Faming Liang (Texas A&M University ) Liang, F. and Zhang, J. (2009) Learning Bayesian Networks for Discrete Data. Computational Statistics and Data Analysis,

More information

EXTREMAL PROPERTIES OF THE DERIVATIVES OF THE NEWMAN POLYNOMIALS

EXTREMAL PROPERTIES OF THE DERIVATIVES OF THE NEWMAN POLYNOMIALS EXTREMAL PROPERTIES OF THE DERIVATIVES OF THE NEWMAN POLYNOMIALS Tamás Erdélyi Abstract. Let Λ n := {λ,λ,...,λ n } be a set of n distinct positive numbers. The span of {e λ t,e λ t,...,e λ nt } over R

More information

The Sandpile Model on Random Apollonian Networks

The Sandpile Model on Random Apollonian Networks 1 The Sandpile Model on Random Apollonian Networks Massimo Stella Bak, Teng and Wiesenfel originally proposed a simple model of a system whose dynamics spontaneously drives, and then maintains it, at the

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators PDE-SEP-HEAT-1 Partial Differential Equations Separation of Variables 1 Partial Differential Equations and Operators et C = C(R 2 ) be the collection of infinitely differentiable functions from the plane

More information

Challenges of the Beam Delivery System for the future Linear Colliders

Challenges of the Beam Delivery System for the future Linear Colliders Challenges of the Beam Delivery System for the future s Eduardo Marin eduardo.marin.lacoma@cern.ch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics Barcelona, SPAIN 10

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Complex Series (3A) Young Won Lim 8/17/13

Complex Series (3A) Young Won Lim 8/17/13 Complex Series (3A) 8/7/3 Copyright (c) 202, 203 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

arxiv: v2 [cond-mat.stat-mech] 6 Jun 2010

arxiv: v2 [cond-mat.stat-mech] 6 Jun 2010 Chaos in Sandpile Models Saman Moghimi-Araghi and Ali Mollabashi Physics department, Sharif University of Technology, P.O. Box 55-96, Tehran, Iran We have investigated the weak chaos exponent to see if

More information

Limit of a Function Philippe B. Laval

Limit of a Function Philippe B. Laval Limit of a Function Philippe B. Laval Limit of a Function 2 1 Limit of a Function 1.1 Definitions and Elementary Theorems Unlike for sequences, there are many possibilities for the limit of a function.

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information

Math 216 First Midterm 19 October, 2017

Math 216 First Midterm 19 October, 2017 Math 6 First Midterm 9 October, 7 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

DRAFT. Appendix H. Grade 12 Prototype Examination. Pre-calculus 30. Course Code For more information, see the Table of Specifications.

DRAFT. Appendix H. Grade 12 Prototype Examination. Pre-calculus 30. Course Code For more information, see the Table of Specifications. Grade 1 Prototype Examination Pre-calculus 30 Course Code 846 Barcode Number DRAFT Appendix H For more information, see the Table of Specifications. Month Day Date of Birth November 013 AMPLE Pre-calculus

More information

Hash tables. Hash tables

Hash tables. Hash tables Dictionary Definition A dictionary is a data-structure that stores a set of elements where each element has a unique key, and supports the following operations: Search(S, k) Return the element whose key

More information

Epidemics in Complex Networks and Phase Transitions

Epidemics in Complex Networks and Phase Transitions Master M2 Sciences de la Matière ENS de Lyon 2015-2016 Phase Transitions and Critical Phenomena Epidemics in Complex Networks and Phase Transitions Jordan Cambe January 13, 2016 Abstract Spreading phenomena

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

INCT2012 Complex Networks, Long-Range Interactions and Nonextensive Statistics

INCT2012 Complex Networks, Long-Range Interactions and Nonextensive Statistics Complex Networks, Long-Range Interactions and Nonextensive Statistics L. R. da Silva UFRN DFTE Natal Brazil 04/05/12 1 OUR GOALS Growth of an asymptotically scale-free network including metrics. Growth

More information

Centers of projective vector fields of spatial quasi-homogeneous systems with weight (m, m, n) and degree 2 on the sphere

Centers of projective vector fields of spatial quasi-homogeneous systems with weight (m, m, n) and degree 2 on the sphere Electronic Journal of Qualitative Theory of Differential Equations 2016 No. 103 1 26; doi: 10.14232/ejqtde.2016.1.103 http://www.math.u-szeged.hu/ejqtde/ Centers of projective vector fields of spatial

More information

Hash tables. Hash tables

Hash tables. Hash tables Dictionary Definition A dictionary is a data-structure that stores a set of elements where each element has a unique key, and supports the following operations: Search(S, k) Return the element whose key

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11875 Method for Encoding and Decoding Arbitrary Computer Files in DNA Fragments 1 Encoding 1.1: An arbitrary computer file is represented as a string S 0 of

More information

H2 MATHS SET D PAPER 1

H2 MATHS SET D PAPER 1 H Maths Set D Paper H MATHS Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e b The curve y ax c x 3 points, and, H Maths Set D Paper has a stationary point at x 3. It also

More information

Synchronization Transitions in Complex Networks

Synchronization Transitions in Complex Networks Synchronization Transitions in Complex Networks Y. Moreno 1,2,3 1 Institute for Biocomputation and Physics of Complex Systems (BIFI) University of Zaragoza, Zaragoza 50018, Spain 2 Department of Theoretical

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994

International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994 International Competition in Mathematics for Universtiy Students in Plovdiv, Bulgaria 1994 1 PROBLEMS AND SOLUTIONS First day July 29, 1994 Problem 1. 13 points a Let A be a n n, n 2, symmetric, invertible

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

Training Path FNT IT Infrastruktur Management

Training Path FNT IT Infrastruktur Management Training Path FNT IT Infrastruktur Management // TRAINING PATH: FNT IT INFRASTRUCTURE MANAGEMENT Training Path: FNT IT Infrastructure Management 2 9 // FNT COMMAND BASIC COURSE FNT Command Basic Course

More information

Introduction to Heat Transfer Analysis

Introduction to Heat Transfer Analysis Introduction to Heat Transfer Analysis Thermal Network Solutions with TNSolver Bob Cochran Applied Computational Heat Transfer Seattle, WA TNSolver@heattransfer.org ME 331 Introduction to Heat Transfer

More information

The nuclear fragmentation problem and Bormio's contribution to its solution

The nuclear fragmentation problem and Bormio's contribution to its solution The nuclear fragmentation problem and Bormio's contribution to its solution 1 Department of Physics and Astronomy, Michigan State University and National Superconducting Cyclotron Laboratory 567 Wilson

More information

Live Formulations of International Association for the properties of Water and Steam (IAPWS)

Live Formulations of International Association for the properties of Water and Steam (IAPWS) Live Formulations of International Association for the properties of Water and Steam (IAPWS) V F Ochkov 1, K A Orlov 1, S Gerk 2 1 National Research University "Moscow Power Engineering Institute" Russia,

More information

Generalized Manna Sandpile Model with Height Restrictions

Generalized Manna Sandpile Model with Height Restrictions 75 Brazilian Journal of Physics, vol. 36, no. 3A, September, 26 Generalized Manna Sandpile Model with Height Restrictions Wellington Gomes Dantas and Jürgen F. Stilck Instituto de Física, Universidade

More information

Quantum Chemistry Exam 2 Solutions

Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 17 Dr. Jean M. Standard November 8, 17 Name KEY Quantum Chemistry Exam Solutions 1.) ( points) Answer the following questions by selecting the correct answer from the choices provided.

More information

Mathematics for Engineers. Numerical mathematics

Mathematics for Engineers. Numerical mathematics Mathematics for Engineers Numerical mathematics Integers Determine the largest representable integer with the intmax command. intmax ans = int32 2147483647 2147483647+1 ans = 2.1475e+09 Remark The set

More information

3.7 Part 1 Rational Functions

3.7 Part 1 Rational Functions 7 Part 1 Rational Functions Rational functions are used in science and engineering to model complex equations in areas such as 1) fields and forces in physics, 2) electronic circuitry, 3) aerodynamics,

More information

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i Real Analysis Problem 1. If F : R R is a monotone function, show that F T V ([a,b]) = F (b) F (a) for any interval [a, b], and that F has bounded variation on R if and only if it is bounded. Here F T V

More information

CONVERGENCE PROPERTIES OF COMBINED RELAXATION METHODS

CONVERGENCE PROPERTIES OF COMBINED RELAXATION METHODS CONVERGENCE PROPERTIES OF COMBINED RELAXATION METHODS Igor V. Konnov Department of Applied Mathematics, Kazan University Kazan 420008, Russia Preprint, March 2002 ISBN 951-42-6687-0 AMS classification:

More information